Study on inertia weight decreasing strategy of particle swarm optimization based on inverse coseca

The standard particle swarm optimization (pso), which introduces inertia weight w, is an effective method to find the extreme value of the function. However, particle swarm optimization (pso) has some disadvantages. When dealing with optimization problems, pso lacks effective parameter control and i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of physics. Conference series Ročník 1486; číslo 7; s. 72004 - 72009
Hlavní autori: Liu, Huiming, Liu, Yong, Zhen, Jiaqi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Bristol IOP Publishing 01.04.2020
Predmet:
ISSN:1742-6588, 1742-6596
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The standard particle swarm optimization (pso), which introduces inertia weight w, is an effective method to find the extreme value of the function. However, particle swarm optimization (pso) has some disadvantages. When dealing with optimization problems, pso lacks effective parameter control and is prone to fall into local optimization, which leads to low convergence accuracy. In, this paper, put forward a new improved particle swarm optimization (pso) algorithm, The nonlinear decreasing inertia weight by the CSC function strategy, at the same time to join the beta distribution on random Numbers, thus to balance the global search and local search ability of the algorithm. The learning factor is the changed asynchronously to improve the learning ability of the algorithm. By adopting Griewank, Rastrigrin, J.D. Schaffer three standard test functions to simulate experiment, at the same time and the basic particle swarm algorithm the inertia weight in a fixed value, the linear regressive LDIW and nonlinear regressive comparison. The experimental results show that the nonlinear decreasing strategy with dynamic adjustment of inverse cosecant function can improve the convergence speed and stability.
AbstractList The standard particle swarm optimization (pso), which introduces inertia weight w, is an effective method to find the extreme value of the function. However, particle swarm optimization (pso) has some disadvantages. When dealing with optimization problems, pso lacks effective parameter control and is prone to fall into local optimization, which leads to low convergence accuracy. In, this paper, put forward a new improved particle swarm optimization (pso) algorithm, The nonlinear decreasing inertia weight by the CSC function strategy, at the same time to join the beta distribution on random Numbers, thus to balance the global search and local search ability of the algorithm. The learning factor is the changed asynchronously to improve the learning ability of the algorithm. By adopting Griewank, Rastrigrin, J.D. Schaffer three standard test functions to simulate experiment, at the same time and the basic particle swarm algorithm the inertia weight in a fixed value, the linear regressive LDIW and nonlinear regressive comparison. The experimental results show that the nonlinear decreasing strategy with dynamic adjustment of inverse cosecant function can improve the convergence speed and stability.
Author Zhen, Jiaqi
Liu, Yong
Liu, Huiming
Author_xml – sequence: 1
  givenname: Huiming
  surname: Liu
  fullname: Liu, Huiming
  organization: Heilongjiang University
– sequence: 2
  givenname: Yong
  surname: Liu
  fullname: Liu, Yong
  email: liuyong@hlju.edu.cn
  organization: Heilongjiang University
– sequence: 3
  givenname: Jiaqi
  surname: Zhen
  fullname: Zhen, Jiaqi
  organization: Heilongjiang University
BookMark eNqFkF1LwzAUhoNMcJv-BgPeCXX5apNdyvCTgcL0OqTJ6czY2pp0jvnrbalMBMFzcw6c57wHnhEalFUJCJ1TckWJUhMqBUuydJpNqFDZRE6IZISIIzQ8bAaHWakTNIpxRQhvSw5Rvmi2bo-rEvsSQuMN3oFfvjXYgQ1goi-XODbBNLBsqQLXpoXsGnDcmbDBVd34jf80jW8TchPB9VEfECJgW0Ww5hQdF2Yd4ey7j9Hr7c3L7D6ZP909zK7niWVSiESp1AphZEq44y6XQiqgaSrywglGwECRCjBUsYJzAtzILHXWUiJyzgpKgY_RRZ9bh-p9C7HRq2obyvalZmk2zWTGWNZSsqdsqGIMUOg6-I0Je02J7oTqTpXutOlOqJa6F9peXvaXvqp_oh-fZ4vfoK5d0cL8D_i_F18BeIg6
Cites_doi 10.1109/TEVC.2004.826071
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/1486/7/072004
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Study on inertia weight decreasing strategy of particle swarm optimization based on inverse coseca
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_1486_7_072004
JPCS_1486_7_072004
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
AEINN
AFFHD
CITATION
OVT
PHGZM
PHGZT
PQGLB
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2744-885c44a7503d3db7478e1554bfd420eaef54ea182f330e3a765dcc104b32f11e3
IEDL.DBID O3W
ISSN 1742-6588
IngestDate Fri Jul 25 04:34:51 EDT 2025
Sat Nov 29 05:11:39 EST 2025
Thu Jan 07 15:21:18 EST 2021
Wed Aug 21 03:34:56 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2744-885c44a7503d3db7478e1554bfd420eaef54ea182f330e3a765dcc104b32f11e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iopscience.iop.org/article/10.1088/1742-6596/1486/7/072004
PQID 2569676226
PQPubID 4998668
PageCount 6
ParticipantIDs proquest_journals_2569676226
crossref_primary_10_1088_1742_6596_1486_7_072004
iop_journals_10_1088_1742_6596_1486_7_072004
PublicationCentury 2000
PublicationDate 20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 20200401
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Kennedy (JPCS_1486_7_072004bib9) 1995
Guimin (JPCS_1486_7_072004bib5); 06
Yuhang (JPCS_1486_7_072004bib1) 2017
Shi (JPCS_1486_7_072004bib4) 1998
Qiujuan (JPCS_1486_7_072004bib2) 2019
Huirong (JPCS_1486_7_072004bib3) 2007
Kang (JPCS_1486_7_072004bib7) 2016
lili (JPCS_1486_7_072004bib8) 2019
Xiaochuan (JPCS_1486_7_072004bib6) 2013; 8
Ratnaweera (JPCS_1486_7_072004bib10) 2004; 8
References_xml – volume: 06
  start-page: 53
  ident: JPCS_1486_7_072004bib5
  article-title: Research on inertia weight decreasing strategy of particle swarm optimization algorithm [J]
  publication-title: Journal of xi ‘an jiaotong university, 20
– year: 2019
  ident: JPCS_1486_7_072004bib8
– year: 2017
  ident: JPCS_1486_7_072004bib1
  article-title: An adaptive bat algorithm for dynamically adjusting inertia weight [J]
– year: 2019
  ident: JPCS_1486_7_072004bib2
  article-title: Particle swarm optimization algorithm based on ada ptive dynamic change [J]
– volume: 8
  year: 2013
  ident: JPCS_1486_7_072004bib6
– volume: 8
  start-page: 240
  year: 2004
  ident: JPCS_1486_7_072004bib10
  article-title: Self-organizing hierarchical particle swar m optimizer with time-varying acceleration coefficients
  publication-title: IEEE Transactions on Ev olutionary Computation
  doi: 10.1109/TEVC.2004.826071
– start-page: 16
  year: 2007
  ident: JPCS_1486_7_072004bib3
  article-title: A particle swarm optimization algorithm for nonlin ear decreasing inertia weight strategy [J]
  publication-title: Journal of shangluo university
– year: 2016
  ident: JPCS_1486_7_072004bib7
– start-page: 1942
  year: 1995
  ident: JPCS_1486_7_072004bib9
  article-title: Particle swarm optimization
– start-page: 69
  year: 1998
  ident: JPCS_1486_7_072004bib4
  article-title: A modified particle swarm optimizer
SSID ssj0033337
Score 2.225702
Snippet The standard particle swarm optimization (pso), which introduces inertia weight w, is an effective method to find the extreme value of the function. However,...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 72004
SubjectTerms Algorithms
Convergence
Extreme values
Inertia
Local optimization
Machine learning
Optimization
Particle swarm optimization
Physics
Probability distribution functions
Random numbers
Weight
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-wYtvcX0R0KNh2zRtsicRcREPy4IK4iWkeYAHt3W7Kv57M2mKLIIe7LEdSuk3mcnMfJlB6CwXqWZUaWISagjTRUmESxnx-pNyy33EUpgwbIKPRuLxcTCOCbcm0io7mxgMtak05Mj73jUPCr9yaXFRvxKYGgXV1ThCYxEtQ5cEGN0wzp86S5z5i7cHIinxnlZ0_C4f9MV7g6Lv44Giz_sJB32Z806Lz1X9w0QHvzPc-O8Xb6L1uOPEl62KbKEFO9lGq4H5qZsdVAKT8BNXEwzHAP16xx8hW4pN2FBCKgE3bQtbL-VwHXUNNx9q-oIrb3Je4llODC7RtK8CtofFwIbXahc9DK_vr25IHLxANDQMJELkmjEFJU4D_ZcZFxb2HaUzjCZWWZczq3xk4rIssZniRW609oFdmVGXpjbbQ0uTamL3EU6cywpjjKLWMpeLkjmqy0xZpn2gaGgPJd0Pl3XbX0OGurgQEjCSgJEEjCSXLUY9dO6BkXGtNX-Ln86J346v7uYlZG1cDx11IH6LfiN48PvjQ7RGIQ4PjJ4jtDSbvtljtKLfZ8_N9CQo5RclBuTJ
  priority: 102
  providerName: ProQuest
Title Study on inertia weight decreasing strategy of particle swarm optimization based on inverse coseca
URI https://iopscience.iop.org/article/10.1088/1742-6596/1486/7/072004
https://www.proquest.com/docview/2569676226
Volume 1486
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS-QwFA5ewRd1veDoKIH10TptkiaZRxVFhZ0t7oqXl5DmAj44M0zVwX_vSdpBBhER7EMp4eTC1-RcknNOENrPZWYY0SaxKbEJM7xMpM9YAvMnE06AxcJtvGxC9Hry9rY7FQszGDas_xA-60TBNYSNQ5zsgA5NEp53eQdUed4RnVSQmBJ0nkqQ5jCn_9KbCTem8Ig6KDJUknLi4_V5Q1MSahZG8YFNR9lztvITo15Fy43miY_qGr_QjOuvocXoAWqqdVQGj8JXPOjjEA4I6x6P464ptlGxDFsKuKpT2QKVx8Oma1yN9egRD4D1PDYxnTiIRls3Fbw-HA5e8UZvoOuz0_8n50lzAUNiQuLARMrcMKbDUacNeZiZkC7oH6W3jKROO58zp8FC8ZSmjmrBc2sMGHglJT7LHN1Ec_1B320hnHpPubVWE-eYz2XJPDEl1Y4ZMBgtaaF0Aroa1nk2VDwfl1IF6FSATgXolFA1dC10AGCrZs1VX5P_niK_LE7-TVOoofUt1J7863dSUAu7HKQG4dvf63MHLZFgn0dPnzaaexo9u120YF6eHqrRHpo_Pu0VV3txwsK7yO-hrLj4U9y9AX0q5jU
linkProvider IOP Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61WxC9lLdYWsAScCPaxHFi76FCqFB1abtaiSKVk-v4IfXQTboprPqn-I2dyUPVCglOPZBjMoqU-Jv5PON5ALzLVGIFNzZyMXeRsHkRqZCICPGTSC_RY8ldM2xCTqfq9HQ8W4PffS0MpVX2NrEx1K60FCMfITWPc9Rcnn-sLiOaGkWnq_0IjRYWh_56iS5bvTv5jOv7nvP9Lyd7B1E3VSCy1A0vUiqzQhg6v3PUXFhI5YlUi-AEj73xIRPe4LY7oKvvUyPzzFmLXkuR8pAkPsX3rsOGILAPYGM2OZ796G1_ipdsSzB5hNyu-owydDO7e-N8hB5IPpKjWBJCV_hw_bys_iCFhun2H_5v_-gRbHV7avapVYLHsObnT-B-k9tq66dQUK7kNSvnjAod0aKxZRMPZq7ZMlOwhNVtk16UCqzqtInVS7O4YCUa1YuuWpUR6bv2VZTP4hnl-1vzDL7fyQc-h8G8nPsXwOIQ0tw5Z7j3ImSqEIHbIjVeWHSFHR9C3C-wrtoOIro5-VdKEyY0YUITJrTULSaG8AGBoDtrUv9b_O2K-NfZ3rdVCV25MISdHjS3oreIefn3x2_gwcHJ8ZE-mkwPt2GTU9ShyV_agcHV4qd_Bffsr6vzevG6UwkGZ3eNsBv1OEHs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB61pUVceLWoC6VYKsemSWzH9h5RYQUFbVcqqL1Zjh9SD_vQpqXi3zOTZEErhFAlcsph_NCMPQ_7mzHA28qUXnLns1DwkEmv6sykUma4fkodNUYsKrSPTejx2FxdDScbMPqVCzNf9Kr_BH-7QsEdC3tAnMnRh-aZqoYqR1de5TovNIk6X4S0CQ-oXAmt7nNxudLIAj_dJUZSQ2NWOK-_d7ZmpTZxJn-o6tb-jJ78r5k_hce9B8reda2ewUacPYedFgnqm12oCVn4g81njNICcf-zu_b0lIXWwaSjBdZ0JW2RKrFFPzxr7txyyuaogqZ9bicjExm6rgj9ERmh473bg2-jD19PP2b9QwyZpwKCmTGVl9LRlWegesxSm0h-SJ2C5EV0MVUyOoxUkhBFFE6rKniPgV4teCrLKF7A1mw-i_vAipSECiE4HqNMlall4r4WLkqPgWPgAyhWjLeLrt6Gbe_JjbHEPkvss8Q-q23HvgEcI8Ntv_eaf5MfrZGfTU4v1iksymMAByt5_yZF93Co0Hpw9fJ-Y76Bh5P3I_vl0_jzK3jEKWRvwT8HsHWzvI2vYdt_v7luloftuv0JOFHnUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+inertia+weight+decreasing+strategy+of+particle+swarm+optimization+based+on+inverse+coseca&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Liu%2C+Huiming&rft.au=Liu%2C+Yong&rft.au=Zhen%2C+Jiaqi&rft.date=2020-04-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1486&rft.issue=7&rft.spage=72004&rft_id=info:doi/10.1088%2F1742-6596%2F1486%2F7%2F072004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_1486_7_072004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon