Study on inertia weight decreasing strategy of particle swarm optimization based on inverse coseca
The standard particle swarm optimization (pso), which introduces inertia weight w, is an effective method to find the extreme value of the function. However, particle swarm optimization (pso) has some disadvantages. When dealing with optimization problems, pso lacks effective parameter control and i...
Uložené v:
| Vydané v: | Journal of physics. Conference series Ročník 1486; číslo 7; s. 72004 - 72009 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Bristol
IOP Publishing
01.04.2020
|
| Predmet: | |
| ISSN: | 1742-6588, 1742-6596 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The standard particle swarm optimization (pso), which introduces inertia weight w, is an effective method to find the extreme value of the function. However, particle swarm optimization (pso) has some disadvantages. When dealing with optimization problems, pso lacks effective parameter control and is prone to fall into local optimization, which leads to low convergence accuracy. In, this paper, put forward a new improved particle swarm optimization (pso) algorithm, The nonlinear decreasing inertia weight by the CSC function strategy, at the same time to join the beta distribution on random Numbers, thus to balance the global search and local search ability of the algorithm. The learning factor is the changed asynchronously to improve the learning ability of the algorithm. By adopting Griewank, Rastrigrin, J.D. Schaffer three standard test functions to simulate experiment, at the same time and the basic particle swarm algorithm the inertia weight in a fixed value, the linear regressive LDIW and nonlinear regressive comparison. The experimental results show that the nonlinear decreasing strategy with dynamic adjustment of inverse cosecant function can improve the convergence speed and stability. |
|---|---|
| AbstractList | The standard particle swarm optimization (pso), which introduces inertia weight w, is an effective method to find the extreme value of the function. However, particle swarm optimization (pso) has some disadvantages. When dealing with optimization problems, pso lacks effective parameter control and is prone to fall into local optimization, which leads to low convergence accuracy. In, this paper, put forward a new improved particle swarm optimization (pso) algorithm, The nonlinear decreasing inertia weight by the CSC function strategy, at the same time to join the beta distribution on random Numbers, thus to balance the global search and local search ability of the algorithm. The learning factor is the changed asynchronously to improve the learning ability of the algorithm. By adopting Griewank, Rastrigrin, J.D. Schaffer three standard test functions to simulate experiment, at the same time and the basic particle swarm algorithm the inertia weight in a fixed value, the linear regressive LDIW and nonlinear regressive comparison. The experimental results show that the nonlinear decreasing strategy with dynamic adjustment of inverse cosecant function can improve the convergence speed and stability. |
| Author | Zhen, Jiaqi Liu, Yong Liu, Huiming |
| Author_xml | – sequence: 1 givenname: Huiming surname: Liu fullname: Liu, Huiming organization: Heilongjiang University – sequence: 2 givenname: Yong surname: Liu fullname: Liu, Yong email: liuyong@hlju.edu.cn organization: Heilongjiang University – sequence: 3 givenname: Jiaqi surname: Zhen fullname: Zhen, Jiaqi organization: Heilongjiang University |
| BookMark | eNqFkF1LwzAUhoNMcJv-BgPeCXX5apNdyvCTgcL0OqTJ6czY2pp0jvnrbalMBMFzcw6c57wHnhEalFUJCJ1TckWJUhMqBUuydJpNqFDZRE6IZISIIzQ8bAaHWakTNIpxRQhvSw5Rvmi2bo-rEvsSQuMN3oFfvjXYgQ1goi-XODbBNLBsqQLXpoXsGnDcmbDBVd34jf80jW8TchPB9VEfECJgW0Ww5hQdF2Yd4ey7j9Hr7c3L7D6ZP909zK7niWVSiESp1AphZEq44y6XQiqgaSrywglGwECRCjBUsYJzAtzILHXWUiJyzgpKgY_RRZ9bh-p9C7HRq2obyvalZmk2zWTGWNZSsqdsqGIMUOg6-I0Je02J7oTqTpXutOlOqJa6F9peXvaXvqp_oh-fZ4vfoK5d0cL8D_i_F18BeIg6 |
| Cites_doi | 10.1109/TEVC.2004.826071 |
| ContentType | Journal Article |
| Copyright | Published under licence by IOP Publishing Ltd 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1088/1742-6596/1486/7/072004 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| DocumentTitleAlternate | Study on inertia weight decreasing strategy of particle swarm optimization based on inverse coseca |
| EISSN | 1742-6596 |
| ExternalDocumentID | 10_1088_1742_6596_1486_7_072004 JPCS_1486_7_072004 |
| GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX AEINN AFFHD CITATION OVT PHGZM PHGZT PQGLB 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c2744-885c44a7503d3db7478e1554bfd420eaef54ea182f330e3a765dcc104b32f11e3 |
| IEDL.DBID | O3W |
| ISSN | 1742-6588 |
| IngestDate | Fri Jul 25 04:34:51 EDT 2025 Sat Nov 29 05:11:39 EST 2025 Thu Jan 07 15:21:18 EST 2021 Wed Aug 21 03:34:56 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2744-885c44a7503d3db7478e1554bfd420eaef54ea182f330e3a765dcc104b32f11e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://iopscience.iop.org/article/10.1088/1742-6596/1486/7/072004 |
| PQID | 2569676226 |
| PQPubID | 4998668 |
| PageCount | 6 |
| ParticipantIDs | proquest_journals_2569676226 crossref_primary_10_1088_1742_6596_1486_7_072004 iop_journals_10_1088_1742_6596_1486_7_072004 |
| PublicationCentury | 2000 |
| PublicationDate | 20200401 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 20200401 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | Journal of physics. Conference series |
| PublicationTitleAlternate | J. Phys.: Conf. Ser |
| PublicationYear | 2020 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Kennedy (JPCS_1486_7_072004bib9) 1995 Guimin (JPCS_1486_7_072004bib5); 06 Yuhang (JPCS_1486_7_072004bib1) 2017 Shi (JPCS_1486_7_072004bib4) 1998 Qiujuan (JPCS_1486_7_072004bib2) 2019 Huirong (JPCS_1486_7_072004bib3) 2007 Kang (JPCS_1486_7_072004bib7) 2016 lili (JPCS_1486_7_072004bib8) 2019 Xiaochuan (JPCS_1486_7_072004bib6) 2013; 8 Ratnaweera (JPCS_1486_7_072004bib10) 2004; 8 |
| References_xml | – volume: 06 start-page: 53 ident: JPCS_1486_7_072004bib5 article-title: Research on inertia weight decreasing strategy of particle swarm optimization algorithm [J] publication-title: Journal of xi ‘an jiaotong university, 20 – year: 2019 ident: JPCS_1486_7_072004bib8 – year: 2017 ident: JPCS_1486_7_072004bib1 article-title: An adaptive bat algorithm for dynamically adjusting inertia weight [J] – year: 2019 ident: JPCS_1486_7_072004bib2 article-title: Particle swarm optimization algorithm based on ada ptive dynamic change [J] – volume: 8 year: 2013 ident: JPCS_1486_7_072004bib6 – volume: 8 start-page: 240 year: 2004 ident: JPCS_1486_7_072004bib10 article-title: Self-organizing hierarchical particle swar m optimizer with time-varying acceleration coefficients publication-title: IEEE Transactions on Ev olutionary Computation doi: 10.1109/TEVC.2004.826071 – start-page: 16 year: 2007 ident: JPCS_1486_7_072004bib3 article-title: A particle swarm optimization algorithm for nonlin ear decreasing inertia weight strategy [J] publication-title: Journal of shangluo university – year: 2016 ident: JPCS_1486_7_072004bib7 – start-page: 1942 year: 1995 ident: JPCS_1486_7_072004bib9 article-title: Particle swarm optimization – start-page: 69 year: 1998 ident: JPCS_1486_7_072004bib4 article-title: A modified particle swarm optimizer |
| SSID | ssj0033337 |
| Score | 2.225702 |
| Snippet | The standard particle swarm optimization (pso), which introduces inertia weight w, is an effective method to find the extreme value of the function. However,... |
| SourceID | proquest crossref iop |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 72004 |
| SubjectTerms | Algorithms Convergence Extreme values Inertia Local optimization Machine learning Optimization Particle swarm optimization Physics Probability distribution functions Random numbers Weight |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-wYtvcX0R0KNh2zRtsicRcREPy4IK4iWkeYAHt3W7Kv57M2mKLIIe7LEdSuk3mcnMfJlB6CwXqWZUaWISagjTRUmESxnx-pNyy33EUpgwbIKPRuLxcTCOCbcm0io7mxgMtak05Mj73jUPCr9yaXFRvxKYGgXV1ThCYxEtQ5cEGN0wzp86S5z5i7cHIinxnlZ0_C4f9MV7g6Lv44Giz_sJB32Z806Lz1X9w0QHvzPc-O8Xb6L1uOPEl62KbKEFO9lGq4H5qZsdVAKT8BNXEwzHAP16xx8hW4pN2FBCKgE3bQtbL-VwHXUNNx9q-oIrb3Je4llODC7RtK8CtofFwIbXahc9DK_vr25IHLxANDQMJELkmjEFJU4D_ZcZFxb2HaUzjCZWWZczq3xk4rIssZniRW609oFdmVGXpjbbQ0uTamL3EU6cywpjjKLWMpeLkjmqy0xZpn2gaGgPJd0Pl3XbX0OGurgQEjCSgJEEjCSXLUY9dO6BkXGtNX-Ln86J346v7uYlZG1cDx11IH6LfiN48PvjQ7RGIQ4PjJ4jtDSbvtljtKLfZ8_N9CQo5RclBuTJ priority: 102 providerName: ProQuest |
| Title | Study on inertia weight decreasing strategy of particle swarm optimization based on inverse coseca |
| URI | https://iopscience.iop.org/article/10.1088/1742-6596/1486/7/072004 https://www.proquest.com/docview/2569676226 |
| Volume | 1486 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: O3W dateStart: 20040101 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: P5Z dateStart: 20040801 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: BENPR dateStart: 20040801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: PIMPY dateStart: 20040801 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS-QwFA5ewRd1veDoKIH10TptkiaZRxVFhZ0t7oqXl5DmAj44M0zVwX_vSdpBBhER7EMp4eTC1-RcknNOENrPZWYY0SaxKbEJM7xMpM9YAvMnE06AxcJtvGxC9Hry9rY7FQszGDas_xA-60TBNYSNQ5zsgA5NEp53eQdUed4RnVSQmBJ0nkqQ5jCn_9KbCTem8Ig6KDJUknLi4_V5Q1MSahZG8YFNR9lztvITo15Fy43miY_qGr_QjOuvocXoAWqqdVQGj8JXPOjjEA4I6x6P464ptlGxDFsKuKpT2QKVx8Oma1yN9egRD4D1PDYxnTiIRls3Fbw-HA5e8UZvoOuz0_8n50lzAUNiQuLARMrcMKbDUacNeZiZkC7oH6W3jKROO58zp8FC8ZSmjmrBc2sMGHglJT7LHN1Ec_1B320hnHpPubVWE-eYz2XJPDEl1Y4ZMBgtaaF0Aroa1nk2VDwfl1IF6FSATgXolFA1dC10AGCrZs1VX5P_niK_LE7-TVOoofUt1J7863dSUAu7HKQG4dvf63MHLZFgn0dPnzaaexo9u120YF6eHqrRHpo_Pu0VV3txwsK7yO-hrLj4U9y9AX0q5jU |
| linkProvider | IOP Publishing |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61WxC9lLdYWsAScCPaxHFi76FCqFB1abtaiSKVk-v4IfXQTboprPqn-I2dyUPVCglOPZBjMoqU-Jv5PON5ALzLVGIFNzZyMXeRsHkRqZCICPGTSC_RY8ldM2xCTqfq9HQ8W4PffS0MpVX2NrEx1K60FCMfITWPc9Rcnn-sLiOaGkWnq_0IjRYWh_56iS5bvTv5jOv7nvP9Lyd7B1E3VSCy1A0vUiqzQhg6v3PUXFhI5YlUi-AEj73xIRPe4LY7oKvvUyPzzFmLXkuR8pAkPsX3rsOGILAPYGM2OZ796G1_ipdsSzB5hNyu-owydDO7e-N8hB5IPpKjWBJCV_hw_bys_iCFhun2H_5v_-gRbHV7avapVYLHsObnT-B-k9tq66dQUK7kNSvnjAod0aKxZRMPZq7ZMlOwhNVtk16UCqzqtInVS7O4YCUa1YuuWpUR6bv2VZTP4hnl-1vzDL7fyQc-h8G8nPsXwOIQ0tw5Z7j3ImSqEIHbIjVeWHSFHR9C3C-wrtoOIro5-VdKEyY0YUITJrTULSaG8AGBoDtrUv9b_O2K-NfZ3rdVCV25MISdHjS3oreIefn3x2_gwcHJ8ZE-mkwPt2GTU9ShyV_agcHV4qd_Bffsr6vzevG6UwkGZ3eNsBv1OEHs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB61pUVceLWoC6VYKsemSWzH9h5RYQUFbVcqqL1Zjh9SD_vQpqXi3zOTZEErhFAlcsph_NCMPQ_7mzHA28qUXnLns1DwkEmv6sykUma4fkodNUYsKrSPTejx2FxdDScbMPqVCzNf9Kr_BH-7QsEdC3tAnMnRh-aZqoYqR1de5TovNIk6X4S0CQ-oXAmt7nNxudLIAj_dJUZSQ2NWOK-_d7ZmpTZxJn-o6tb-jJ78r5k_hce9B8reda2ewUacPYedFgnqm12oCVn4g81njNICcf-zu_b0lIXWwaSjBdZ0JW2RKrFFPzxr7txyyuaogqZ9bicjExm6rgj9ERmh473bg2-jD19PP2b9QwyZpwKCmTGVl9LRlWegesxSm0h-SJ2C5EV0MVUyOoxUkhBFFE6rKniPgV4teCrLKF7A1mw-i_vAipSECiE4HqNMlall4r4WLkqPgWPgAyhWjLeLrt6Gbe_JjbHEPkvss8Q-q23HvgEcI8Ntv_eaf5MfrZGfTU4v1iksymMAByt5_yZF93Co0Hpw9fJ-Y76Bh5P3I_vl0_jzK3jEKWRvwT8HsHWzvI2vYdt_v7luloftuv0JOFHnUQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+inertia+weight+decreasing+strategy+of+particle+swarm+optimization+based+on+inverse+coseca&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Liu%2C+Huiming&rft.au=Liu%2C+Yong&rft.au=Zhen%2C+Jiaqi&rft.date=2020-04-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1486&rft.issue=7&rft.spage=72004&rft_id=info:doi/10.1088%2F1742-6596%2F1486%2F7%2F072004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_1486_7_072004 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |