Round Traffic Sign Detection Algorithm

Traffic signs are an important part of autonomous driving and intelligent transportation. It provides instructions for pedestrians and vehicles and is critical to road traffic safety. However, existing detection algorithms cannot achieve real-time high-precision detection. Therefore, this paper prop...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series Vol. 2179; no. 1; pp. 12034 - 12039
Main Authors: Huang, Yinrong, Wang, Bing, Yuan, Xiemin
Format: Journal Article
Language:English
Published: Bristol IOP Publishing 01.01.2022
Subjects:
ISSN:1742-6588, 1742-6596
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Traffic signs are an important part of autonomous driving and intelligent transportation. It provides instructions for pedestrians and vehicles and is critical to road traffic safety. However, existing detection algorithms cannot achieve real-time high-precision detection. Therefore, this paper proposes an algorithm that combines traditional methods with deep learning to detect circular traffic signs. Based on the HSV color space, the red and blue channel images are separated, and the candidate regions of the original image are extracted using the Hough transform. The shallow convolutional neural network (CNN) classifier rejects not traffic signs and classifies traffic signs. Experiments show that the algorithm is real and effective. On the CPU platform, the average accuracy rate is 96.2%, and the detection speed reaches 0.3 s / frame. Under the condition of ensuring the average accuracy rate, the detection speed is greatly reduced. The algorithm achieves the fastest speed, which makes real-time high-precision detection possible. The algorithm is more suitable for vehicle embedded systems.
AbstractList Traffic signs are an important part of autonomous driving and intelligent transportation. It provides instructions for pedestrians and vehicles and is critical to road traffic safety. However, existing detection algorithms cannot achieve real-time high-precision detection. Therefore, this paper proposes an algorithm that combines traditional methods with deep learning to detect circular traffic signs. Based on the HSV color space, the red and blue channel images are separated, and the candidate regions of the original image are extracted using the Hough transform. The shallow convolutional neural network (CNN) classifier rejects not traffic signs and classifies traffic signs. Experiments show that the algorithm is real and effective. On the CPU platform, the average accuracy rate is 96.2%, and the detection speed reaches 0.3 s / frame. Under the condition of ensuring the average accuracy rate, the detection speed is greatly reduced. The algorithm achieves the fastest speed, which makes real-time high-precision detection possible. The algorithm is more suitable for vehicle embedded systems.
Author Huang, Yinrong
Wang, Bing
Yuan, Xiemin
Author_xml – sequence: 1
  givenname: Yinrong
  surname: Huang
  fullname: Huang, Yinrong
  organization: School of Electronics and Information Engineering, Guang’an Vocational and Technical College , China
– sequence: 2
  givenname: Bing
  surname: Wang
  fullname: Wang, Bing
  organization: School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications
– sequence: 3
  givenname: Xiemin
  surname: Yuan
  fullname: Yuan, Xiemin
  organization: School of Electronics and Information Engineering, Guang’an Vocational and Technical College , China
BookMark eNqFkFtLw0AQhRepYFv9DQYEH4SYvWUvj6XeKSi2Pi_bvdSUNhs3yYP_3oRIRRCclxmYb-ZwzgSMylA6AM4RvEZQiAxxilOWS5ZhxGWGMogwJPQIjA-b0WEW4gRM6noLIemKj8Hla2hLm6yi9r4wybLYlMmNa5xpilAms90mxKJ535-CY693tTv77lPwdne7mj-ki-f7x_lskRrMKU0Ft4YRTy12BPucOOoYWxtKidQcU-uYpEznlkNGnTS5MJLoNdLcSsuEdWQKLoa_VQwfrasbtQ1tLDtJhRnJRe-AdBQfKBNDXUfnVRWLvY6fCkHVh6J6u6q3rvpQFFJDKN3l1XBZhOrn9dPLfPkbVJX1HUz-gP-T-AIzaXEN
Cites_doi 10.1109/TITS.2012.2209421
10.1109/SIPROCESS.2016.7888348
10.1109/ICIP.2012.6466896
10.1007/s00521-011-0718-z
10.1109/ICSensT.2018.8603600
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/2179/1/012034
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_2179_1_012034
JPCS_2179_1_012034
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
AEINN
AFFHD
CITATION
OVT
PHGZM
PHGZT
PQGLB
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2744-87dc63f4d2e32f53e4e66bc4439a724de6946a5d7064e9c58c93ab1a7d9d68de3
IEDL.DBID P5Z
ISSN 1742-6588
IngestDate Fri Jul 25 04:20:22 EDT 2025
Sat Nov 29 02:07:37 EST 2025
Wed Aug 21 03:35:06 EDT 2024
Tue Feb 01 23:41:09 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2744-87dc63f4d2e32f53e4e66bc4439a724de6946a5d7064e9c58c93ab1a7d9d68de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2635865883?pq-origsite=%requestingapplication%
PQID 2635865883
PQPubID 4998668
PageCount 6
ParticipantIDs proquest_journals_2635865883
crossref_primary_10_1088_1742_6596_2179_1_012034
iop_journals_10_1088_1742_6596_2179_1_012034
PublicationCentury 2000
PublicationDate 20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 20220101
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2022
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Greenhalgh (JPCS_2179_1_012034bib2) 2012; 13
Creusen (JPCS_2179_1_012034bib3)
Kumaraswarmy (JPCS_2179_1_012034bib7) 2011
Changzhen (JPCS_2179_1_012034bib9)
Pazhoumand-dar (JPCS_2179_1_012034bib5) 2013; 22
Gudigar (JPCS_2179_1_012034bib6) 2012
Zhang (JPCS_2179_1_012034bib8)
Mogelmose (JPCS_2179_1_012034bib1) 2012; 12
Houben (JPCS_2179_1_012034bib4) 2013
References_xml – volume: 12
  start-page: 1484
  year: 2012
  ident: JPCS_2179_1_012034bib1
  article-title: Vision-based traffic sign detection and analysis for intelligent driver assistance systems[C]
  publication-title: Perspectives and survey. IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2012.2209421
– ident: JPCS_2179_1_012034bib9
  article-title: A traffic sign detection algorithm based on deep convolutional neural network[C]
  doi: 10.1109/SIPROCESS.2016.7888348
– year: 2013
  ident: JPCS_2179_1_012034bib4
  article-title: Detection of Traffic Signs in Real-World Images
– start-page: 339
  year: 2011
  ident: JPCS_2179_1_012034bib7
– start-page: 153
  year: 2012
  ident: JPCS_2179_1_012034bib6
– volume: 13
  start-page: 1498
  year: 2012
  ident: JPCS_2179_1_012034bib2
  article-title: Real-time detection and recognition of road traffic signs[J]
  publication-title: Intelligent Transportation Systems
– ident: JPCS_2179_1_012034bib3
  article-title: Color transformation for improved traffic sign detection[C]
  doi: 10.1109/ICIP.2012.6466896
– volume: 22
  start-page: 615
  year: 2013
  ident: JPCS_2179_1_012034bib5
  article-title: A new approach in road sign recognition based on fast fractal coding[J]
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-011-0718-z
– ident: JPCS_2179_1_012034bib8
  article-title: An Algorithm for Obstacle Detection based on YOLO and Light Filed Camera[C]
  doi: 10.1109/ICSensT.2018.8603600
SSID ssj0033337
Score 2.2890527
Snippet Traffic signs are an important part of autonomous driving and intelligent transportation. It provides instructions for pedestrians and vehicles and is critical...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12034
SubjectTerms Algorithms
Artificial neural networks
Embedded systems
Hough transformation
Machine learning
Pedestrians
Physics
Real time
Traffic control
Traffic signs
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90KvjitzidUlB8srZr0jR5HNMhIlOcH3sLaZLOgXZjq_79Jv1AiogI9qkPlzZ3ud79aO5-AThhgsVU-9pVSmgXKy1dQaPAZULabaKQqJzU5-km6vfpcMhqvTCTaRn6z81tQRRcmLAsiKOewdCBS0JGPAOnmdf2bP8nwouwhKjJ5sanb9FzFY2RuaKiKdIOorSq8fr5QbUMtWhm8S1M57mnt_4fs96AtRJ5Op1ixCYs6HQLVvIKUDnfhtN7e8CSY3KXJZVwBuNR6lzoLK_USp3O62gyG2cvbzvw2Lt86F655SEKrrTkfybaKUlQglWgUZCESGNNSCyxASIiCsziEIaJCFVksIlmMqSSIRG3RaSYIlRptAuNdJLqPXCokr7wg1gwLDELFBPC1zixJGIGZEW4CX5lOD4tuDJ4vsdNKbfqc6s-t-rzNi_Ub8KZMRgvv5v57-LHNfHru-6gLsGnKmlCq1qvL1FLukOtA6D9v73zAFYD2_KQ_3ZpQSObvetDWJYf2Xg-O8qd7ROQ-MqV
  priority: 102
  providerName: IOP Publishing
Title Round Traffic Sign Detection Algorithm
URI https://iopscience.iop.org/article/10.1088/1742-6596/2179/1/012034
https://www.proquest.com/docview/2635865883
Volume 2179
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED-cH-CL3-J0joLik2Vdk7bJk8w5UdFZ5rcvIUuyOdBuuunfb65rGUPQB_uYXku5S-6u9_E7gH0ueZsZz7haS-NSbZQrWeS7XCpMEwWhTkF97i-jZpM9PvI4C7gNs7LKXCemilr3FcbIKwiawqy5ZORo8O7i1CjMrmYjNAowhygJOLohDp5zTUzsFY0bIn0XH83ru-xPX7bGw4r1yXmlWsEmUkKnrFOh1x_8UNGp3Tld_u8Xr8BS5nE6tfEWWYUZk6zBQlr5qYbrcNDCwUqOtVkIJuHc9LqJc2JGaYVW4tReu_aVo5e3Dbg7bdzWz9xseIKrEPTPajmtQtKh2jfE7wTEUBOGbUWtAyIj3wol5DSUgY6sT2K4CpjiRLarMtJch0wbsgmzST8xW-AwrTzp-W3JqaLc11xKz9AOgodZ5yqiRfByponBGCNDpLltxgTyWSCfBfJZVMWYz0U4tMwV2XkZ_k2-N0V-EddvpinEQHeKUMoFMSGdSGH799s7sOhja0MaXinB7Ojj0-zCvPoa9YYfZZg7bjTjVhkK1-ShnG4zuxafX8VP3-kY0d8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VAoILO6KskVhORE0dN7EPCCEWUShVxSY4Gdd2oRKkpS0gfopvxJNFqEKCEwdyTEaRkzeeZ3s2gA0ueYMZz7haS-NSbZQrWUhcLhW6icqBjov6XFfDWo3d3PB6Dj6yXBgMq8xsYmyodVvhGXkRi6YwS5fM3-08u9g1Cr2rWQuNRC1Ozfub3bL1dioHFt9NQo4OL_eP3bSrgKuwGp6d_loFfpNqYnzSLPuGmiBoKGqZWYbEjjbgNJBlHVqyNlyVmeK-bJRkqLkOmDa-fe8QDFNU9jwM1ytn9dvM9vv2CpMUTOLiYLOIMrvNTO_xoGh3AbxYKmLaqk8H-HCo1e58I4WY6Y4m_9s_moKJdE3t7CWTYBpyJpqB0Ti2VfVmYescW0c5lpWxXIZz0bqPnAPTj2PQImfv8d5-Qv_haQ6u_mSQ85CP2pFZAIdp5UmPNCSninKiuZSeoU0sj2aXjyEtgJeBJDpJFRARe-8ZE4irQFwF4ipKIsG1ANsWTJFahN7v4usD4if1_YtBCdHRzQIsZ8B_iX6hvvjz4zUYO748q4pqpXa6BOMEEzniw6RlyPe7L2YFRtRrv9XrrqZq7cDdX2vJJ-DBK-g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bT8IwFD4BvMQX70YUdYnGJ-fG2nXtIwGJF4JEvPDWlLYgiQ4C6O-33YaGGGNM3NMeTrfm69k5X9ZzvgKcMMG6VPvaVUpoFystXUGjwGVC2m2ikKhE1OexETWbtNNhrRzUP3thhqMs9J-b21QoOIUwK4ijnuHQgUtCRjxDp5lX9mz_J8LeSPXysGDlSqx336KnWURG5orSxkg7kNJZndfPD5vLUnkzk2-hOsk_9bX_mvk6rGYM1KmkozYgp-NNWEoqQeVkC07v7EFLjslhVlzCaQ_6sVPT06RiK3YqL_3heDB9ft2Gh_rFffXSzQ5TcKUVATRRT0mCelgFGgW9EGmsCelKbAiJiAKzSIRhIkIVGY6imQypZEh0yyJSTBGqNNqBQjyM9S44VElf-EFXMCwxCxQTwte4Z8XEDNmKcBH8GXh8lGpm8GSvm1JuIeAWAm4h4GWeQlCEMwMaz76fye_mx3Pm161qe96CG0yLUJqt2ZepFd-h1gnQ3t_eeQTLrVqdN66aN_uwEtguiORPTAkK0_GbPoBF-T4dTMaHie99AEEoz_0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Round+Traffic+Sign+Detection+Algorithm&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Huang%2C+Yinrong&rft.au=Wang%2C+Bing&rft.au=Yuan%2C+Xiemin&rft.date=2022-01-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2179&rft.issue=1&rft.spage=012034&rft_id=info:doi/10.1088%2F1742-6596%2F2179%2F1%2F012034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon