Round Traffic Sign Detection Algorithm
Traffic signs are an important part of autonomous driving and intelligent transportation. It provides instructions for pedestrians and vehicles and is critical to road traffic safety. However, existing detection algorithms cannot achieve real-time high-precision detection. Therefore, this paper prop...
Saved in:
| Published in: | Journal of physics. Conference series Vol. 2179; no. 1; pp. 12034 - 12039 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Bristol
IOP Publishing
01.01.2022
|
| Subjects: | |
| ISSN: | 1742-6588, 1742-6596 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Traffic signs are an important part of autonomous driving and intelligent transportation. It provides instructions for pedestrians and vehicles and is critical to road traffic safety. However, existing detection algorithms cannot achieve real-time high-precision detection. Therefore, this paper proposes an algorithm that combines traditional methods with deep learning to detect circular traffic signs. Based on the HSV color space, the red and blue channel images are separated, and the candidate regions of the original image are extracted using the Hough transform. The shallow convolutional neural network (CNN) classifier rejects not traffic signs and classifies traffic signs. Experiments show that the algorithm is real and effective. On the CPU platform, the average accuracy rate is 96.2%, and the detection speed reaches 0.3 s / frame. Under the condition of ensuring the average accuracy rate, the detection speed is greatly reduced. The algorithm achieves the fastest speed, which makes real-time high-precision detection possible. The algorithm is more suitable for vehicle embedded systems. |
|---|---|
| AbstractList | Traffic signs are an important part of autonomous driving and intelligent transportation. It provides instructions for pedestrians and vehicles and is critical to road traffic safety. However, existing detection algorithms cannot achieve real-time high-precision detection. Therefore, this paper proposes an algorithm that combines traditional methods with deep learning to detect circular traffic signs. Based on the HSV color space, the red and blue channel images are separated, and the candidate regions of the original image are extracted using the Hough transform. The shallow convolutional neural network (CNN) classifier rejects not traffic signs and classifies traffic signs. Experiments show that the algorithm is real and effective. On the CPU platform, the average accuracy rate is 96.2%, and the detection speed reaches 0.3 s / frame. Under the condition of ensuring the average accuracy rate, the detection speed is greatly reduced. The algorithm achieves the fastest speed, which makes real-time high-precision detection possible. The algorithm is more suitable for vehicle embedded systems. |
| Author | Huang, Yinrong Wang, Bing Yuan, Xiemin |
| Author_xml | – sequence: 1 givenname: Yinrong surname: Huang fullname: Huang, Yinrong organization: School of Electronics and Information Engineering, Guang’an Vocational and Technical College , China – sequence: 2 givenname: Bing surname: Wang fullname: Wang, Bing organization: School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications – sequence: 3 givenname: Xiemin surname: Yuan fullname: Yuan, Xiemin organization: School of Electronics and Information Engineering, Guang’an Vocational and Technical College , China |
| BookMark | eNqFkFtLw0AQhRepYFv9DQYEH4SYvWUvj6XeKSi2Pi_bvdSUNhs3yYP_3oRIRRCclxmYb-ZwzgSMylA6AM4RvEZQiAxxilOWS5ZhxGWGMogwJPQIjA-b0WEW4gRM6noLIemKj8Hla2hLm6yi9r4wybLYlMmNa5xpilAms90mxKJ535-CY693tTv77lPwdne7mj-ki-f7x_lskRrMKU0Ft4YRTy12BPucOOoYWxtKidQcU-uYpEznlkNGnTS5MJLoNdLcSsuEdWQKLoa_VQwfrasbtQ1tLDtJhRnJRe-AdBQfKBNDXUfnVRWLvY6fCkHVh6J6u6q3rvpQFFJDKN3l1XBZhOrn9dPLfPkbVJX1HUz-gP-T-AIzaXEN |
| Cites_doi | 10.1109/TITS.2012.2209421 10.1109/SIPROCESS.2016.7888348 10.1109/ICIP.2012.6466896 10.1007/s00521-011-0718-z 10.1109/ICSensT.2018.8603600 |
| ContentType | Journal Article |
| Copyright | Published under licence by IOP Publishing Ltd Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1088/1742-6596/2179/1/012034 |
| DatabaseName | Institute of Physics Journals Open Access IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Journals Open Access url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1742-6596 |
| ExternalDocumentID | 10_1088_1742_6596_2179_1_012034 JPCS_2179_1_012034 |
| GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX AEINN AFFHD CITATION OVT PHGZM PHGZT PQGLB 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c2744-87dc63f4d2e32f53e4e66bc4439a724de6946a5d7064e9c58c93ab1a7d9d68de3 |
| IEDL.DBID | O3W |
| ISSN | 1742-6588 |
| IngestDate | Fri Jul 25 04:20:22 EDT 2025 Sat Nov 29 02:07:37 EST 2025 Wed Aug 21 03:35:06 EDT 2024 Tue Feb 01 23:41:09 EST 2022 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2744-87dc63f4d2e32f53e4e66bc4439a724de6946a5d7064e9c58c93ab1a7d9d68de3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://iopscience.iop.org/article/10.1088/1742-6596/2179/1/012034 |
| PQID | 2635865883 |
| PQPubID | 4998668 |
| PageCount | 6 |
| ParticipantIDs | proquest_journals_2635865883 crossref_primary_10_1088_1742_6596_2179_1_012034 iop_journals_10_1088_1742_6596_2179_1_012034 |
| PublicationCentury | 2000 |
| PublicationDate | 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 20220101 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | Journal of physics. Conference series |
| PublicationTitleAlternate | J. Phys.: Conf. Ser |
| PublicationYear | 2022 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Greenhalgh (JPCS_2179_1_012034bib2) 2012; 13 Creusen (JPCS_2179_1_012034bib3) Kumaraswarmy (JPCS_2179_1_012034bib7) 2011 Changzhen (JPCS_2179_1_012034bib9) Pazhoumand-dar (JPCS_2179_1_012034bib5) 2013; 22 Gudigar (JPCS_2179_1_012034bib6) 2012 Zhang (JPCS_2179_1_012034bib8) Mogelmose (JPCS_2179_1_012034bib1) 2012; 12 Houben (JPCS_2179_1_012034bib4) 2013 |
| References_xml | – volume: 12 start-page: 1484 year: 2012 ident: JPCS_2179_1_012034bib1 article-title: Vision-based traffic sign detection and analysis for intelligent driver assistance systems[C] publication-title: Perspectives and survey. IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2012.2209421 – ident: JPCS_2179_1_012034bib9 article-title: A traffic sign detection algorithm based on deep convolutional neural network[C] doi: 10.1109/SIPROCESS.2016.7888348 – year: 2013 ident: JPCS_2179_1_012034bib4 article-title: Detection of Traffic Signs in Real-World Images – start-page: 339 year: 2011 ident: JPCS_2179_1_012034bib7 – start-page: 153 year: 2012 ident: JPCS_2179_1_012034bib6 – volume: 13 start-page: 1498 year: 2012 ident: JPCS_2179_1_012034bib2 article-title: Real-time detection and recognition of road traffic signs[J] publication-title: Intelligent Transportation Systems – ident: JPCS_2179_1_012034bib3 article-title: Color transformation for improved traffic sign detection[C] doi: 10.1109/ICIP.2012.6466896 – volume: 22 start-page: 615 year: 2013 ident: JPCS_2179_1_012034bib5 article-title: A new approach in road sign recognition based on fast fractal coding[J] publication-title: Neural Computing and Applications doi: 10.1007/s00521-011-0718-z – ident: JPCS_2179_1_012034bib8 article-title: An Algorithm for Obstacle Detection based on YOLO and Light Filed Camera[C] doi: 10.1109/ICSensT.2018.8603600 |
| SSID | ssj0033337 |
| Score | 2.2890527 |
| Snippet | Traffic signs are an important part of autonomous driving and intelligent transportation. It provides instructions for pedestrians and vehicles and is critical... |
| SourceID | proquest crossref iop |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 12034 |
| SubjectTerms | Algorithms Artificial neural networks Embedded systems Hough transformation Machine learning Pedestrians Physics Real time Traffic control Traffic signs |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9uKvjitzidUlB8snTNV5MnGdMhPozhFIYvIU3SOdCurtW_36RrGUPQB_vYXkv5XXp3vdzdD4BLJENsTKJ9TWnHx5oQXyotfeuNCI2hQiyWJdlENBiw8ZgPq4RbXpVV1jaxNNR6plyOPHBDU5h1lwzdZB--Y41yu6sVhUYDrLspCY66YUheakuM7BEtGiKh726t67vsT191jtPAxuQ8CAPXRIrwindqTGfZDxNd-p3-zn_feBdsVxGn110skT2wZtJ9sFlWfqr8AFw9OmIlz_osN0zCG00nqXdrirJCK_W6bxP7yOL1_RA89--eevd-RZ7gKzf0z1o5rShKsIYGwYQggw2lscI2AJERxNpQjqkkOrIxieGKMMWRjEMZaa4p0wYdgWY6S80x8ByHp0nChEOCsJaYhVadXFFioxEME9UCnRo0kS1mZIhyb5sx4XAWDmfhcBahWODcAtcWXFF9L_nf4hcr4g_D3mhVQmQ6aYF2rYil6FILJ79fPgVb0LU2lOmVNmgW809zBjbUVzHN5-flwvoGwCvNjA priority: 102 providerName: ProQuest |
| Title | Round Traffic Sign Detection Algorithm |
| URI | https://iopscience.iop.org/article/10.1088/1742-6596/2179/1/012034 https://www.proquest.com/docview/2635865883 |
| Volume | 2179 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Journals Open Access customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: O3W dateStart: 20040101 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: P5Z dateStart: 20040801 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (NC Live) customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: BENPR dateStart: 20040801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: PIMPY dateStart: 20040801 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD54BV-8i9MpBcUn69bm0uRx3lDBWTbFy0vIklQH2o1t-vtNekGKiAj2IZRykuacJOd8tOcCsI9kgI1JtK8pbfpYE-JLpaVvrRGhvVAh1pNZsYmo3WYPD7wSCzMYFqr_yN7miYJzERYOcaxhMXToU8Jpw8Jp3ggaLv4T4WmYRXZ8V8XgBt2X2hjZK8qDIl0nxkofr58HqlioaTuLb2o6sz3nS_8x62VYLJCn18p7rMCUSVdhPvMAVeM1OOi4AkuetV0uqYTX7T-n3qmZZJ5aqdd6fR6M-pOXt3W4Oz-7PbnwiyIKvnLJ_6y204qiBOvQoDAhyGBDaU9hC0RkFGJtKMdUEh1ZbGK4IkxxJHuBjDTXlGmDNmAmHaRmEzxXy9MkQcJDgrCWmAV2WbmixKISHCaqBs1ScGKY58oQ2T9uxoRjXzj2hWNfBCJnvwaHVmCiODfj38n3KuRX8Um3SiGGOqlBvVyvL1KXdIe5DYC2_vbObVgIXchD9tmlDjOT0bvZgTn1MemPR7swe3zWjju72aazbUye7LP48jp-_ATV5M7U |
| linkProvider | IOP Publishing |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BAcGFHVHWSCwnoja249gHhBCLKEtVsUhwMq7tQCVICy0gfopvxM4iVCHBiQM5JqPIyRvP89izAKxjGRBjYu1rSqs-0WHoS6Wlb9kopE2kMGvKtNlEVK-z62veGICPIhfGhVUWNjE11Lqt3B55xRVNYZYuGd7pPPmua5Q7XS1aaGRqcWLe36zL1t2u7Vt8NxA6PLjcO_LzrgK-ctXw7PTXiuKYaGQwikNsiKG0qYhlZhkhog3lhMpQR5asDVchUxzLZiAjzTVl2mD73kEYIk7ZSzDUqJ01bgrbj-0VZSmYyHeDLSLKrJuZ3-O0Yr0AXgkqLm0Vkz4-HGy1O99IIWW6w4n_9o8mYTxfU3u72SSYggGTTMNIGtuqujOwee5aR3mWlV25DO-idZd4-6aXxqAl3u7Dnf2E3v3jLFz9ySDnoJS0EzMPnutSauIg5ijEREvCAquwXNHQrrcIilUZqgVIopNVARHp6T1jwuEqHK7C4SoCkeFahi0LpsgtQvd38bU-8ePG3kW_hOjouAxLBfBfol-oL_z8eBVGjy7PTsVprX6yCGPIJXKkm0lLUOo9v5hlGFavvVb3eSVXaw9u_1pLPgFzfSvb |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7MecEX7-K8FhSfrF2bS5PHsTm8MYcX9C1kSToH2o1t-vtN2k4ZIiLYpz6ctOFLes5Hc853AI6QDLExifY1pVUfa0J8qbT0bTQitBMpxDoyazYRt1rs6Ym3S9D8rIXpDwrXf2pvc6HgHMIiIY4FlkNHPiWcBpZO8yAMXP0nwsFAJzMw6-RK3O6-QY8Tj4zsFeeFkW4gY5M8r58fNhWlZuxMvrnqLP40l_9r5iuwVDBQr5aPWoWSSddgPssEVaN1OL51jZY8G8OcuIR31-umXsOMs4yt1Ku9dPvD3vj5dQMemmf39XO_aKbgKycCaL2eVhQlWEcGRQlBBhtKOwpbQiLjCGtDOaaS6NhyFMMVYYoj2QllrLmmTBu0CeW0n5ot8FxPT5OECY8IwlpiFtrl5YoSy05wlKgKVCfgiUGumSGys27GhINAOAiEg0CEIoegAicWNFF8P6PfzQ-nzC_b9btpC2ExrcDuZM2-TJ34DnObAG3_7Z0HsNBuNMX1RetqBxYjVwWR_YnZhfJ4-Gb2YE69j3uj4X629z4A7lnP8A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Round+Traffic+Sign+Detection+Algorithm&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Huang%2C+Yinrong&rft.au=Wang%2C+Bing&rft.au=Yuan%2C+Xiemin&rft.date=2022-01-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2179&rft.issue=1&rft.spage=12034&rft_id=info:doi/10.1088%2F1742-6596%2F2179%2F1%2F012034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_2179_1_012034 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |