Automatic code parallelization for data-intensive computing in multicore systems

A major driving force behind the increasing popularity of data science is the increasing need for data-driven analytics fuelled by massive amounts of complex data. Increasingly, parallel processing has become a cost-effective method for computationally large and data-intensive problems. Many existin...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of physics. Conference series Ročník 1411; číslo 1; s. 12014 - 12022
Hlavní autori: Subramanian, Ranjini, Zhang, Hui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Bristol IOP Publishing 01.11.2019
Predmet:
ISSN:1742-6588, 1742-6596
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A major driving force behind the increasing popularity of data science is the increasing need for data-driven analytics fuelled by massive amounts of complex data. Increasingly, parallel processing has become a cost-effective method for computationally large and data-intensive problems. Many existing applications are sequential in nature and if such applications are ported to multi-processor systems for execution, they would make use of only one core and the optimal usage of all cores is not guaranteed. Knowledge of parallel programming is necessary to ensure the use of processing power offered by multi-processor systems in order to achieve better performance. However, many users do not possess the skills and knowledge required to convert existing sequential code to parallel code to achieve speedups and scalability. In this paper, we introduce a framework that automatically transforms existing sequential code to parallel code while ensuring functional correctness using divide-and-conquer paradigm, so that the benefits offered by multi-core systems can be maximized. The paper will outline the implementation of the framework and demonstrate its usage with practical use cases.
AbstractList A major driving force behind the increasing popularity of data science is the increasing need for data-driven analytics fuelled by massive amounts of complex data. Increasingly, parallel processing has become a cost-effective method for computationally large and data-intensive problems. Many existing applications are sequential in nature and if such applications are ported to multi-processor systems for execution, they would make use of only one core and the optimal usage of all cores is not guaranteed. Knowledge of parallel programming is necessary to ensure the use of processing power offered by multi-processor systems in order to achieve better performance. However, many users do not possess the skills and knowledge required to convert existing sequential code to parallel code to achieve speedups and scalability. In this paper, we introduce a framework that automatically transforms existing sequential code to parallel code while ensuring functional correctness using divide-and-conquer paradigm, so that the benefits offered by multi-core systems can be maximized. The paper will outline the implementation of the framework and demonstrate its usage with practical use cases.
Author Zhang, Hui
Subramanian, Ranjini
Author_xml – sequence: 1
  givenname: Ranjini
  surname: Subramanian
  fullname: Subramanian, Ranjini
  organization: University of Louisville, Computer Science Department , USA
– sequence: 2
  givenname: Hui
  surname: Zhang
  fullname: Zhang, Hui
  email: h0zhan22@louisville.edu
  organization: University of Louisville, Computer Science Department , USA
BookMark eNqFkNFKwzAUhoNMcJs-gwXvhNqkSZv0cgydysCBeh3SJJWMNqlJK8ynt6UyEQRzk3Dyf-ccvgWYWWc1AJcI3iDIWIIoSeM8K_IEEYQSlECUQkROwPz4Mzu-GTsDixD2EOLh0DnYrfrONaIzMpJO6agVXtS1rs3nUHM2qpyPlOhEbGynbTAfesg1bd8Z-xYZGzV9PbDO6ygcQqebcA5OK1EHffF9L8Hr3e3L-j7ePm0e1qttLFNKSIyEQoqUqaJs3DeThMiKIkE1gQrKAtOxonDORKELzKSWLM1FKasSliUkeAmupr6td--9Dh3fu97bYSRPs5xhRDOaDSk6paR3IXhd8dabRvgDR5CP-vgoho-S-KiPIz7pG0g8kca1P63_p67_oB536-ffQd6qCn8BIfuCCw
Cites_doi 10.1088/1367-2630/aab1ef
10.1109/MC.2008.122
10.1109/TC.1983.1676280
10.1109/BigData.2017.8258341
10.1109/ICTM.2009.5412930
10.1007/10968987_3
10.1109/TrustCom.2013.126
10.1145/2616498.2616557
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/1411/1/012014
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Automatic code parallelization for data-intensive computing in multicore systems
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_1411_1_012014
JPCS_1411_1_012014
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
AEINN
AFFHD
CITATION
OVT
PHGZM
PHGZT
PQGLB
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2744-1ad1d4b2d7801205c44cf71a7e40d0c937c44cd368a9e938cec826abcfb0bb043
IEDL.DBID O3W
ISSN 1742-6588
IngestDate Fri Jul 25 06:48:01 EDT 2025
Sat Nov 29 02:26:45 EST 2025
Wed Aug 21 03:40:16 EDT 2024
Fri Jan 08 09:41:26 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2744-1ad1d4b2d7801205c44cf71a7e40d0c937c44cd368a9e938cec826abcfb0bb043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iopscience.iop.org/article/10.1088/1742-6596/1411/1/012014
PQID 2568317575
PQPubID 4998668
PageCount 9
ParticipantIDs crossref_primary_10_1088_1742_6596_1411_1_012014
proquest_journals_2568317575
iop_journals_10_1088_1742_6596_1411_1_012014
PublicationCentury 2000
PublicationDate 20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 20191101
  day: 01
PublicationDecade 2010
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2019
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Cui (JPCS_1411_1_012014bib3) 2009
Horowitz (JPCS_1411_1_012014bib2) 1983; C-32
Ruan (JPCS_1411_1_012014bib9) 2014
Dean (JPCS_1411_1_012014bib7) 2004; 51
Zhang (JPCS_1411_1_012014bib6) 2017
Gorton (JPCS_1411_1_012014bib1) 2008; 41
Kalavri (JPCS_1411_1_012014bib8) 2013
Subramanian (JPCS_1411_1_012014bib5) 2018
Yoo (JPCS_1411_1_012014bib10) 2003; 2862
Hadfield (JPCS_1411_1_012014bib4) 2018
References_xml – year: 2018
  ident: JPCS_1411_1_012014bib4
  article-title: Divide and conquer approach to quantum Hamiltonian simulation
  doi: 10.1088/1367-2630/aab1ef
– volume: 41
  start-page: 30
  year: 2008
  ident: JPCS_1411_1_012014bib1
  publication-title: Data-Intensive Computing in the 21st Century, in Computer
  doi: 10.1109/MC.2008.122
– volume: C-32
  start-page: 582
  year: 1983
  ident: JPCS_1411_1_012014bib2
  article-title: Divide-and-Conquer for Parallel Processing
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/TC.1983.1676280
– year: 2017
  ident: JPCS_1411_1_012014bib6
  article-title: Divide-and-Conquer Strategies for Large-scale Simulations in R
  doi: 10.1109/BigData.2017.8258341
– year: 2018
  ident: JPCS_1411_1_012014bib5
– start-page: 319
  year: 2009
  ident: JPCS_1411_1_012014bib3
  article-title: Divide and conquer algorithm for computer simulation and application in the matrix eigenvalue problem
  doi: 10.1109/ICTM.2009.5412930
– volume: 2862
  start-page: 44
  year: 2003
  ident: JPCS_1411_1_012014bib10
  article-title: Slurm: Simple Linux Utility for Resource Management, Job Scheduling Strategies for Parallel Processing
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/10968987_3
– volume: 51
  start-page: 137
  year: 2004
  ident: JPCS_1411_1_012014bib7
  article-title: MapReduce: Simplified Data Processing on Large Clusters
  publication-title: Communications of the ACM
– start-page: 1031
  year: 2013
  ident: JPCS_1411_1_012014bib8
  article-title: MapReduce : Limitations, Optimizations and Open Issues, 12th IEEE International Conference on Trust
  doi: 10.1109/TrustCom.2013.126
– year: 2014
  ident: JPCS_1411_1_012014bib9
  article-title: TextRWeb : Large-Scale Text Analytics with R on the Web
  doi: 10.1145/2616498.2616557
SSID ssj0033337
Score 2.2177584
Snippet A major driving force behind the increasing popularity of data science is the increasing need for data-driven analytics fuelled by massive amounts of complex...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12014
SubjectTerms Microprocessors
Parallel processing
Parallel programming
Physics
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5uKnjxtzidEtCjYUmbrslJxnCIhzFQYXgJzY_CYGxz3fz7zUtbxhD0YI_payn90ve9Ju99D6H7bgIaITonmZUR4Yl2RCQiJ46mnmC7lFtuQ7OJdDgU47EcVQtuRZVWWfvE4Kjt3MAaecdfKYDr0uRx8UmgaxTsrlYtNBpoF1QSoHXDKPmoPXHsj7QsiIyIZ1pR53f5n75qTHY7jDPWYR0oImV8i50ak_nih4sOvDM4-u8TH6PDKuLEvXKKnKAdNztF-yHz0xRnaNRbr-ZBtxVDeTsGLfDp1E2r-kzsg1oMaaRkUie7YxM6QXjOw5MZDhmJoIWJS1Ho4hy9D57e-s-karNADMgDEpZZZrmObApsRRPDuclTlqWOU0uNj19gxMZdkUknY2Gc8f8kmTa5plpTHl-g5mw-c5cIa5Yn1AiZSx9nOSmk0Y7y3PJURsbwuIVo_XrVolTTUGEXXAgFiChARAEiiqkSkRZ68DCo6ssq_ja_2zJ_GfVfty3UwuYt1K4h25hu8Lr6_fQ1OvA3kmVFYhs1V8u1u0F75ms1KZa3YQp-Az1k3eU
  priority: 102
  providerName: ProQuest
Title Automatic code parallelization for data-intensive computing in multicore systems
URI https://iopscience.iop.org/article/10.1088/1742-6596/1411/1/012014
https://www.proquest.com/docview/2568317575
Volume 1411
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZS8NAEF60KvjiLVarLOija3ebTbL7WItFBWvwwONlyR6BQmlLD3-_szmQIiKCeUjCMpssXyYzEzLzDUJnUeg5QnRGUitbhIfaERGKjDgag4ONKLfc5s0m4l5PvL7KhVqY0bg0_RdwWhAFFxCWCXGiCTF0i0ShjJqMM9ZkTV__6XtZrwQCvDno9H3wUlnjALa4KIr0k4Socrx-vtCCh1qGVXwz07nv6W7-x6q30EYZeeJ2MWMbLbnhDlrLM0DNdBcl7flslPO3Yl_mjj0n-GDgBmWdJobgFvt0UtKvkt6xyTtCgO_D_SHOMxM9JyYuyKGne-i5e_XUuSZluwViPE0gYallluuWjb3XoqHh3GQxS2PHqaUG4hg_YoNIpNLJQBhn4Nsk1SbTVGvKg31UG46G7gBhzbKQGiEzCfGWk0Ia7SjPLI9lyxge1BGtIFbjglVD5X_DhVAeKOWBUh4oxVQBVB2dA7SqfMOmv4ufLojfJp3HRQk1tlkdNaon-yUKOip8VBWHh3-75xFah4MsKhUbqDabzN0xWjUfs_50coJWLq96ycNJrp6wT8J3GEtu7pK3T5A03xI
linkProvider IOP Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7BUgSXPqAV21JqqXDDWjtxNvahqhAtYgusIgESnEz8iLTSanchS6v-qf7GevIQWlUqJw7k6EwcJf4839ieB8BuP8EcIaaguVMRFYnxVCayoJ6lgWD7TDjhqmIT6XAor65UtgR_2lgYdKtsdWKlqN3U4h55LzwpkevS5OvslmLVKDxdbUto1LA48b9_hSVb-WXwLYzvXhQdfb84PKZNVQFqMRse5bnjTpjIpaicWWKFsEXK89QL5pgNdI0tLu7LXHkVS-ttMMFzYwvDjGEiDv0uw4pAsHdgJRucZdet7o_DldYhmBEN3C5bj7KwzGzaVL_HBec93sO3c7HAh8uj6ewfUqiY7ujVc_tHr-FlY1OTg3oSvIElP9mA1cq31ZabkB3cz6dVZlqCAfwEs52Px37cRKCSYLYTdJSlo9adn9iq1kVgdTKakMrnErN9kjrtdfkWLp_kc95BZzKd-C0ghhcJs1IVKliSXklljWeicCJVkbUi7gJrh1PP6nwhujrnl1IjAjQiQCMCNNc1ArqwH4ZdN7qjfFz884L4j-zwfFFCz1zRhe0WIg-iD_h4___bn2Dt-OLsVJ8OhicfYD10qur4y23ozO_u_Ud4YX_OR-XdTjMBCNw8NZ7-AtThPKY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD5s3vDFuzidGtBHY5M1bZNHUYc35kDFvYXmUhiMbWzT32_SizJERLBPJZy04etpzld6zncATuPIa4SoDKdGtDCLlMU84hm2JHEBNibMMJM3m0g6Hd7riW4N2p-1MKNxufWfu9NCKLiAsEyI44Hj0C0cRyIOKKM0oIGv_6QsGJusDotersR792P4Wu3IoTuSojDST-S8yvP6-WJzUaruVvJtq87jT3v9v1a-AWslA0UXxaxNqNnhFiznmaB6ug3di7fZKNdxRb7cHXlt8MHADsp6TeRILvJppbhfJb8jnXeGcDEQ9Ycoz1D02pioEIme7sBL-_r58gaXbRew9nKBmKaGGqZaJvHRi0SaMZ0lNE0sI4Zox2f8iAljngorQq6tdt8oqdKZIkoRFu7CwnA0tHuAFM0iornIhONdVnChlSUsMywRLa1Z2ABSwSzHhbqGzP-Kcy49WNKDJT1YksoCrAacOXhl-aZNfzc_mTO_614-zVtIh34DmtXT_TJ1vso9u0qi_b_d8xhWuldt-XDbuT-AVTciiuLFJizMJm_2EJb0-6w_nRzlXvoBZe7gLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+code+parallelization+for+data-intensive+computing+in+multicore+systems&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Subramanian%2C+Ranjini&rft.au=Zhang%2C+Hui&rft.date=2019-11-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1411&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F1411%2F1%2F012014&rft.externalDocID=JPCS_1411_1_012014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon