Defect Detection Image Processing Technology Based on Swarm Intelligence Optimization Algorithm
The swarm intelligence optimization algorithm has obtained good results in practical application in the field of image processing with defect detection, and it has become the focus and hot spot of attention and research in the field of image processing. In this paper, the application of ALO as the r...
Saved in:
| Published in: | Journal of physics. Conference series Vol. 2400; no. 1; pp. 12031 - 12037 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Bristol
IOP Publishing
01.12.2022
|
| Subjects: | |
| ISSN: | 1742-6588, 1742-6596 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The swarm intelligence optimization algorithm has obtained good results in practical application in the field of image processing with defect detection, and it has become the focus and hot spot of attention and research in the field of image processing. In this paper, the application of ALO as the representative of the relevant swarm intelligence optimization algorithm is studied to address the problems and shortcomings of image processing technology in the field of object defect detection. By extracting typical defect detection image samples, the effect of the application of the algorithm in sample processing is systematically studied. In addition, the introduction of perturbation strategy and inertia weights in ALO effectively improves the search performance of the algorithm. Finally, this paper analyzes the performance comparison between the commonly used defect detection image processing techniques and the algorithm in this paper by establishing comparative verification experiments. The experimental results show that the image processing strategy constructed in this paper has significant application advantages in the dimensions of image enhancement and image processing applicability. |
|---|---|
| AbstractList | The swarm intelligence optimization algorithm has obtained good results in practical application in the field of image processing with defect detection, and it has become the focus and hot spot of attention and research in the field of image processing. In this paper, the application of ALO as the representative of the relevant swarm intelligence optimization algorithm is studied to address the problems and shortcomings of image processing technology in the field of object defect detection. By extracting typical defect detection image samples, the effect of the application of the algorithm in sample processing is systematically studied. In addition, the introduction of perturbation strategy and inertia weights in ALO effectively improves the search performance of the algorithm. Finally, this paper analyzes the performance comparison between the commonly used defect detection image processing techniques and the algorithm in this paper by establishing comparative verification experiments. The experimental results show that the image processing strategy constructed in this paper has significant application advantages in the dimensions of image enhancement and image processing applicability. |
| Author | Zhu, Shan Zhang, Kui |
| Author_xml | – sequence: 1 givenname: Kui surname: Zhang fullname: Zhang, Kui organization: Shanghai Normal University Tianhua College , China – sequence: 2 givenname: Shan surname: Zhu fullname: Zhu, Shan organization: Shanghai Normal University Tianhua College , China |
| BookMark | eNqFkF1LwzAUhoNMcJv-BgveCbVJ-pVczs2PyWCDzeuQpUmX0TY16ZD5622tTATBc3MOnPd9D-cZgUFlKgnANYJ3CBISoDTCfhLTJMARhAEKIMIwRGdgeNoMTjMhF2Dk3B7CsK10CNhMKikabyabtmlTefOS59JbWSOkc7rKvY0Uu8oUJj9699zJzGtF63duS29eNbIodC4rIb1l3ehSf_CvkEmRG6ubXXkJzhUvnLz67mPw-viwmT77i-XTfDpZ-AKnEfKzDCu0jeIwRQmhFFGRJVssFOZcRHEGVda-SgWOuFQki8MtpYLHOI4TzAlBKhyDmz63tubtIF3D9uZgq_Ykw2kcwYQgQltV2quENc5ZqVhtdcntkSHIOpqs48Q6ZqyjyRDrabbOsHdqU_9E_--6_cP1spqufwtZnanwE-kBhlw |
| Cites_doi | 10.1016/j.inffus.2012.01.007 10.1016/j.chaos.2009.01.012 10.1016/j.chemolab.2017.11.018 10.1007/s40031-017-0296-2 10.1016/j.ijhydene.2019.04.039 |
| ContentType | Journal Article |
| Copyright | Published under licence by IOP Publishing Ltd Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1088/1742-6596/2400/1/012031 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Aerospace Database SciTech Collection (ProQuest) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1742-6596 |
| ExternalDocumentID | 10_1088_1742_6596_2400_1_012031 JPCS_2400_1_012031 |
| GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX AEINN AFFHD CITATION OVT PHGZM PHGZT PQGLB 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c2741-dd2f1b45371689919cd6b2cf2aac45d0fd0889c24aef8d53b99ca525562a881f3 |
| IEDL.DBID | O3W |
| ISSN | 1742-6588 |
| IngestDate | Fri Jul 25 05:21:55 EDT 2025 Sat Nov 29 02:51:22 EST 2025 Wed Dec 21 00:39:29 EST 2022 Wed Aug 21 03:32:22 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2741-dd2f1b45371689919cd6b2cf2aac45d0fd0889c24aef8d53b99ca525562a881f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://iopscience.iop.org/article/10.1088/1742-6596/2400/1/012031 |
| PQID | 2754068189 |
| PQPubID | 4998668 |
| PageCount | 7 |
| ParticipantIDs | proquest_journals_2754068189 crossref_primary_10_1088_1742_6596_2400_1_012031 iop_journals_10_1088_1742_6596_2400_1_012031 |
| PublicationCentury | 2000 |
| PublicationDate | 20221201 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 20221201 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | Journal of physics. Conference series |
| PublicationTitleAlternate | J. Phys.: Conf. Ser |
| PublicationYear | 2022 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Neogi (JPCS_2400_1_012031bib8) 2017; 98 Li (JPCS_2400_1_012031bib5) 2021; 28 Zeng (JPCS_2400_1_012031bib4) 2020; 52 Huang (JPCS_2400_1_012031bib11) 2020; 66 Chun (JPCS_2400_1_012031bib7) 2017; 36 Gong (JPCS_2400_1_012031bib6) 2018; 172 De (JPCS_2400_1_012031bib2) 2018; 14 Coelho (JPCS_2400_1_012031bib1) 2019; 42 Gong (JPCS_2400_1_012031bib9) 2018; 172 Hao (JPCS_2400_1_012031bib10) 2020; 45 Zhongqiang (JPCS_2400_1_012031bib3) 2020; 41 |
| References_xml | – volume: 66 start-page: 519 year: 2020 ident: JPCS_2400_1_012031bib11 article-title: A review of image segmentation methods [J] publication-title: Journal of Wuhan University (Science Edition) – volume: 14 start-page: 136 year: 2018 ident: JPCS_2400_1_012031bib2 article-title: Multi-focus image fusion using a morphology-based focus measure in a; quad-tree structure[J] publication-title: Information Fusion doi: 10.1016/j.inffus.2012.01.007 – volume: 42 start-page: 522 year: 2019 ident: JPCS_2400_1_012031bib1 article-title: Differential evolution optimization combined with chaotic sequences for image contrast enhancement [J] publication-title: Chaos Solitons & Fractals doi: 10.1016/j.chaos.2009.01.012 – volume: 36 start-page: 308 year: 2017 ident: JPCS_2400_1_012031bib7 article-title: Surface defect segmentation of cold rolled very thin strip under threshold decomposition [J] publication-title: Mechanical Science and Technology – volume: 52 start-page: 36 year: 2020 ident: JPCS_2400_1_012031bib4 article-title: Mutation motion tracking based on dynamic weight grasshopper optimization algorithm [J] publication-title: Journal of Zhengzhou University (Science Edition) – volume: 172 start-page: 109 year: 2018 ident: JPCS_2400_1_012031bib6 article-title: Steel surface defect classification using multiple hyper-spheres support vector machine with additional information [J] publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2017.11.018 – volume: 172 start-page: 109 year: 2018 ident: JPCS_2400_1_012031bib9 article-title: Steel surface defect classification using multiple hyper-spheres support vector machine with additional information [J] publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2017.11.018 – volume: 41 start-page: 1536 year: 2020 ident: JPCS_2400_1_012031bib3 article-title: Parameter identification of photovoltaic cell model based on improved locust optimization algorithm [J] publication-title: Journal of Metrology – volume: 98 start-page: 557 year: 2017 ident: JPCS_2400_1_012031bib8 article-title: Defect detection of steel surfaces with global adaptive percentile thresholding of gradient image [J] publication-title: Journal of the Institution of Engineers (India): Series B. doi: 10.1007/s40031-017-0296-2 – volume: 28 start-page: 451 year: 2021 ident: JPCS_2400_1_012031bib5 article-title: Enhancement and segmentation methods for strip steel surface defect images [J] publication-title: Control Engineering – volume: 45 start-page: 5309 year: 2020 ident: JPCS_2400_1_012031bib10 article-title: Experimental study of hydrogen-enriched compressed natural gas (HCNG) engine and application of support vector machine (SVM) on prediction of engine performance at specific condition [J] publication-title: International Journal of Hydrogen Energy doi: 10.1016/j.ijhydene.2019.04.039 |
| SSID | ssj0033337 |
| Score | 2.3339863 |
| Snippet | The swarm intelligence optimization algorithm has obtained good results in practical application in the field of image processing with defect detection, and it... |
| SourceID | proquest crossref iop |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 12031 |
| SubjectTerms | Algorithms Defects Image enhancement Image processing Optimization Optimization algorithms Perturbation Physics Swarm intelligence |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5ewRfv4nRKQB8NW9O0TZ9kbg4nMgdeEF9CLo0K7uI29e970qXMIeiDfWwPJfRLzy3fOQehY5VArGMMJSrSkjBGGZFaa0K11XEaKx3mzarvr5J2mz88pB2fcBt5WmWhE3NFbfra5cgrNAHfIgbzkp4O3oibGuVOV_0IjXm06LokuNENneix0MQhXMmkIJISsLS84HdB0OfvpXHFkSgrQcUVkYbBjHWaf-kPfqjo3O401_674nW06j1OXJtskQ00l_U20XLO_NSjLSQamWN04EY2zllZPdzqgo7BvoIALBuept_xGRg9g0Ho5lMOu7j1raEnvgbt0_Vlnbj2-gRrGT93t9Fd8_y2fkH81AWiXSsbAsDZQLEohEgKgrEg1SZWAB2VUrPIVK1xzChNmcwsN1Go0lTLyHUyo5LzwIY7aKHX72W7CCvDEyutZc4tY8zIRGWpibWEl_JEJSVULb62GEyaa4j8UJxz4QASDiDhABKBmABUQieAivA_2uhv8aMZ8ctO_WZWQgyMLaFygeBUdArf3u-P99EKdTUROceljBbGw_fsAC3pj_HLaHiY78gveQ7jkg priority: 102 providerName: ProQuest |
| Title | Defect Detection Image Processing Technology Based on Swarm Intelligence Optimization Algorithm |
| URI | https://iopscience.iop.org/article/10.1088/1742-6596/2400/1/012031 https://www.proquest.com/docview/2754068189 |
| Volume | 2400 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: O3W dateStart: 20040101 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: P5Z dateStart: 20040801 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: BENPR dateStart: 20040801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: PIMPY dateStart: 20040801 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA7qFHzxLs7LCOijdTZN2_Rx04kTncXr9CXk0ujAXeim_n1P2g4dIiLYh1LKSRu-pOectN93itCeDGGtozVxpK-EQymhjlBKOUQZFUSBVF5WrPruPGy1WLsdTWhh-oPC9R_AYV4oOIewIMSxKuTQxAn8KKha_mPVrVr9p5VSlzwG0Rzm9KV3P_bGHmxhLoq0jRgbc7x-vtBEhJqGXnxz01nsOVn8j14voYUi88S1vMUymkp6K2guY4Cq4Srix4llduDjZJSxs3q42QVfgwslAUQ4_PkaHtch-GkMRtfvIu3i5pfCnvgSvFC3kHfi2stTP-2Mnrtr6PakcXN06hR_X3CULWnjwAAaV1LfgxUVLMrcSOlAwhASIRT19aHRliGlCBWJYdr3ZBQp4duKZkQw5hpvHc30-r1kA2GpWWiEMdSmZ5RqEcok0oEScFEWyrCMDseI80FeZINnH8cZ4xY3bnHjFjfu8hy3MtoHpHnxwA1_N9-dMD-Lj64nLfhAmzLaHg_0pykJIakNIK-JNv92zy00T6xWIuO-bKOZUfqa7KBZ9TbqDNMKKtUbrfiqks1W2Mf-I5yLmxfxwwdAF-S2 |
| linkProvider | IOP Publishing |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bTxQxFD6BBYMvKqhhFbWJ-EazTKcz03kwBlkJA8uyCZfgU-1lCiTuxd1V4p_yN3o6l6wbEnnigXmcOWk606_n65l-5xRgUycY61jLqI6MopwzTpUxhjLjTJzG2oRFserzTtLtiouLtLcAf-pcGC-rrH1i4ajt0Ph_5C2W4NoiRnpJP41-UH9qlN9drY_QKGFxmP--wZBt8jFr4_h-YGzvy-nuPq1OFaDGl2qh2DEXaB6FGClgsBGkxsYau8aUMjyy28565Y9hXOVO2CjUaWpU5Ct1MSVE4EJsdxGWuAd7A5Z62VHva-37Q7ySMgWTUeR2USvKMMys7qVxy8s2W0HLp62GwRwfLl4PR7dIoWC6vacP7Rs9gyfVmprslJNgFRbywRo8KrStZvIcZDv3mhXSzqeF7mxAsj56UVLlSCB3k9kGA_mMtG4JGp3cqHGfZP-ULCXH6F_7VeIq2fl-ie8-veq_gLN7ebuX0BgMB_k6EG1F4pRz3C88Obcq0XlqY6OwUZHopAnb9ejKUVk-RBbb_kJIDwjpASE9IGQgS0A0YQtRICtXMrnb_P2c-UFv92TeQo6sa8JGjZiZ6Qwur_7_-B2s7J8edWQn6x6-hsfMZ4AUip4NaEzHP_M3sGx-Ta8n47fVfCDw7b7h9RffekGi |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9pAEB4BfaiXJH2p5NWV2mMd4_XaXh8TKAoNAiTahNtqH94WqTxkaPP3M2ubEFRFVaX65MPsevWNPTNrf_MZ4KNKcK9jDPVUpKXHGGWe1Fp7VFsdp7HSYSFWfd1PBgM-maSjGnTve2EWyyr0n-FpKRRcQlgR4riPNTT14iiNfcd_9APf9X-Ggb80tg5PnFyJu7uH4c0mIod4JGVjpBvI-Ybn9fhkO1mqjiv5I1QX-ae7_79WfgB7VQVKzstRL6GWzV_Bs4IJqlevQXQyx_AgnWxdsLTmpDfDmEOqjgLMdGT7Op5cYBI0BI3GtzKfkd4DgU8yxGg0q9o8yfnP74t8uv4xewPfup-_ti-96i8MnnbSNh460gaKRSHurHBzFqTaxApdSaXULDItaxxTSlMmM8tNFKo01TJyymZUch7Y8C005ot59g6IMjyx0lrmyjTGjExUlppYS5yUJyppQmuDuliWYhui-EjOuXDYCYedcNiJQJTYNeEToi2qB2_1d_MPO-ZfRu3xroVAZzTheOPsrSlNsLiNsb5JD__tmu_h-ajTFf3e4OoIXlDXPlHQYY6hsc5_ZSfwVP9eT1f5aXHT3gEJOuXS |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+Detection+Image+Processing+Technology+Based+on+Swarm+Intelligence+Optimization+Algorithm&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Zhang%2C+Kui&rft.au=Zhu%2C+Shan&rft.date=2022-12-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2400&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F2400%2F1%2F012031&rft.externalDocID=JPCS_2400_1_012031 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |