Research on multi-sensor data fusion algorithm for unmanned vehicles under extreme conditions

Aiming at the problem of insufficient accuracy in Simultaneous Localization and Mapping of vehicle robot using a single sensor in extreme environment scenes, according to the characteristics of the sensors, a method of fusing the data of lidar and inertial sensors is proposed, the vehicle robot syst...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of physics. Conference series Ročník 1952; číslo 3; s. 32001 - 32008
Hlavní autor: Zhang, Ruiqi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bristol IOP Publishing 01.06.2021
Témata:
ISSN:1742-6588, 1742-6596
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Aiming at the problem of insufficient accuracy in Simultaneous Localization and Mapping of vehicle robot using a single sensor in extreme environment scenes, according to the characteristics of the sensors, a method of fusing the data of lidar and inertial sensors is proposed, the vehicle robot system is designed, and the positioning principle of lidar and inertial sensor is elaborated. Two data fusion algorithms, weighted fusion and Kalman filter, are mainly studied, and the experiments prove that the Kalman filter algorithm has higher positioning accuracy.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1952/3/032001