SDAE-LFM: A Latent Factor Model for Recommendation Based on Stack Denoising AutoEncoder

Recommendation methods usually associated with data sparsity. The traditional recommendation methods take the users' rating information as the recommendation basis, which ignore the latent features that can be taking into consideration to model for better recommendations. In order to deal with...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of physics. Conference series Ročník 1646; číslo 1; s. 12151 - 12157
Hlavní autoři: Luo, Jianyan, Xing, Xing, Zheng, Hang, Xin, Mindong, Jia, Zhichun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bristol IOP Publishing 01.09.2020
Témata:
ISSN:1742-6588, 1742-6596
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Recommendation methods usually associated with data sparsity. The traditional recommendation methods take the users' rating information as the recommendation basis, which ignore the latent features that can be taking into consideration to model for better recommendations. In order to deal with these problems, we proposed a latent factor model recommendation algorithm based on stack denoising autoencoder (SDAE-LFM), applying Deep Learning technology for latent feature representation learning. A stack denoising autoencoder is applied to extracting feature about item from the label information. Then we factorize the item feature information to perform matrix decomposition training. Finally, we predict the result by the user-item preference matrix. Experimental results on these datasets demonstrate that the proposed recommendation method has better performance.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1646/1/012151