Adaptive density peak clustering algorithm combined with sparse search

With the advantages of few parameters and the ability to deal with clusters of arbitrary shape, the density peak clustering algorithm has attracted wide attention since it came out. However, the algorithm has problems such as high time complexity, poor clustering effect on complex data sets, and the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of physics. Conference series Ročník 2493; číslo 1; s. 12010 - 12019
Hlavní autoři: Ma, Weiyuan, Duan, Baobin, Wei, Ping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bristol IOP Publishing 01.05.2023
Témata:
ISSN:1742-6588, 1742-6596
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the advantages of few parameters and the ability to deal with clusters of arbitrary shape, the density peak clustering algorithm has attracted wide attention since it came out. However, the algorithm has problems such as high time complexity, poor clustering effect on complex data sets, and the need to manually select cluster centers. Aiming at the above shortcomings, an improved density peak clustering algorithm is proposed. Combined with the sparse search algorithm, the calculation of the similarity between each point and its nearest neighbor is simplified, and the problem of the high time complexity of the algorithm is overcome. A new local density definition method is adopted to make the density of data points better reflect the spatial structure of data distribution and to improve the clustering accuracy of the algorithm. Finally, a strategy for automatically selecting cluster centers is proposed to improve the adaptability of the algorithm. The algorithm is used to compare with the other improved algorithm on artificial data sets and real data sets. The experimental results show that the proposed algorithm can show a better clustering effect and can quickly and accurately identify various complex clusters.
AbstractList With the advantages of few parameters and the ability to deal with clusters of arbitrary shape, the density peak clustering algorithm has attracted wide attention since it came out. However, the algorithm has problems such as high time complexity, poor clustering effect on complex data sets, and the need to manually select cluster centers. Aiming at the above shortcomings, an improved density peak clustering algorithm is proposed. Combined with the sparse search algorithm, the calculation of the similarity between each point and its nearest neighbor is simplified, and the problem of the high time complexity of the algorithm is overcome. A new local density definition method is adopted to make the density of data points better reflect the spatial structure of data distribution and to improve the clustering accuracy of the algorithm. Finally, a strategy for automatically selecting cluster centers is proposed to improve the adaptability of the algorithm. The algorithm is used to compare with the other improved algorithm on artificial data sets and real data sets. The experimental results show that the proposed algorithm can show a better clustering effect and can quickly and accurately identify various complex clusters.
Author Wei, Ping
Ma, Weiyuan
Duan, Baobin
Author_xml – sequence: 1
  givenname: Weiyuan
  surname: Ma
  fullname: Ma, Weiyuan
  organization: School of Artificial Intelligence and Big Data, Hefei University , China
– sequence: 2
  givenname: Baobin
  surname: Duan
  fullname: Duan, Baobin
  organization: School of Artificial Intelligence and Big Data, Hefei University , China
– sequence: 3
  givenname: Ping
  surname: Wei
  fullname: Wei, Ping
  organization: School of Artificial Intelligence and Big Data, Hefei University , China
BookMark eNqFkN9LwzAQgINMcE7_BgO-CbVJ07TJ4xjOHwwU1OeQJpetc2tr0in7722pTATBe7k77rs7-E7RqKorQOiCkmtKhIhpniZRxmUWJ6lkMY0JTQglR2h8mIwOtRAn6DSENSGsi3yM5lOrm7b8AGyhCmW7xw3oN2w2u9CCL6sl1ptl7ct2tcWm3hZlBRZ_di0OjfYBcADtzeoMHTu9CXD-nSfodX7zMruLFo-397PpIjJJnpJIEy5MDpYJaUEXJtOcyZzpgqeG6JRbqQtREMc5OJulzlAHwjlmmStk4gSboMvhbuPr9x2EVq3rna-6lyoRlEmZ8ox1VD5QxtcheHCq8eVW-72iRPXSVK9D9WpUL01RNUjrNq-GzbJufk4_PM2ef4Oqsa6D2R_wfy--AMZFfwI
Cites_doi 10.1126/science.1242072
10.1109/TII.2016.2628747
10.1080/01621459.1983.10478008
10.1016/j.ins.2020.11.050
10.1007/978-981-16-5188-5
10.1109/TKDE.2005.198
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/2493/1/012010
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_2493_1_012010
JPCS_2493_1_012010
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
AEINN
AFFHD
CITATION
OVT
PHGZM
PHGZT
PQGLB
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2740-a058c7ed389deabc6a53973ab54c0a45d9ab8b0f55efd64fc1fe8ff3d3fb92f83
IEDL.DBID P5Z
ISSN 1742-6588
IngestDate Fri Jul 25 05:30:52 EDT 2025
Sat Nov 29 02:51:38 EST 2025
Wed Aug 21 03:33:43 EDT 2024
Wed May 17 01:26:53 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2740-a058c7ed389deabc6a53973ab54c0a45d9ab8b0f55efd64fc1fe8ff3d3fb92f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2813994563?pq-origsite=%requestingapplication%
PQID 2813994563
PQPubID 4998668
PageCount 10
ParticipantIDs crossref_primary_10_1088_1742_6596_2493_1_012010
proquest_journals_2813994563
iop_journals_10_1088_1742_6596_2493_1_012010
PublicationCentury 2000
PublicationDate 20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 20230501
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Cover (JPCS_2493_1_012010bib14) 1991
Rodriguez (JPCS_2493_1_012010bib8) 2014; 344
Qiao (JPCS_2493_1_012010bib6) 2020; 28
Zhang (JPCS_2493_1_012010bib10) 2022; 42
Wang (JPCS_2493_1_012010bib1) 2022
Pichler (JPCS_2493_1_012010bib2) 2021
Shen (JPCS_2493_1_012010bib7) 2020; 38
Chen (JPCS_2493_1_012010bib11) 2020; 57
Scheidt (JPCS_2493_1_012010bib5) 2021
Xu (JPCS_2493_1_012010bib13) 2020; 554
Guo (JPCS_2493_1_012010bib3) 2021; 42
Bo (JPCS_2493_1_012010bib9) 2017; 13
Yuan (JPCS_2493_1_012010bib12) 2021; 3
Fowlkes (JPCS_2493_1_012010bib16) 1983; 78
Zhang (JPCS_2493_1_012010bib4) 2021; 1
Cai (JPCS_2493_1_012010bib15) 2005; 17
References_xml – start-page: 6
  year: 2022
  ident: JPCS_2493_1_012010bib1
  article-title: New Efficient Approach to Solve Big Data Systems Using ParallelGauss–Seidel Algorithms
– volume: 344
  start-page: 1492
  year: 2014
  ident: JPCS_2493_1_012010bib8
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 57
  start-page: 378
  year: 2020
  ident: JPCS_2493_1_012010bib11
  article-title: Summary of Density Peak Clustering Algorithms
  publication-title: Computer Research and Development
– volume: 13
  start-page: 1620
  year: 2017
  ident: JPCS_2493_1_012010bib9
  article-title: A fast density and grid-based clustering method for data with arbitrary shapes and noise
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2016.2628747
– volume: 78
  start-page: 553
  year: 1983
  ident: JPCS_2493_1_012010bib16
  article-title: A method for comparing two hierarchical clusterings
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1983.10478008
– volume: 38
  start-page: 83
  year: 2020
  ident: JPCS_2493_1_012010bib7
  article-title: Cluster Analysis and Geographical Division of Insect Distribution Pattern in the World
  publication-title: Science and Technology Bulletin
– volume: 554
  start-page: 61
  year: 2020
  ident: JPCS_2493_1_012010bib13
  article-title: A fast density peaks clustering algorithm with sparse search
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.11.050
– start-page: 279
  year: 1991
  ident: JPCS_2493_1_012010bib14
  article-title: Information theory and statistics
– volume: 28
  start-page: 6
  year: 2020
  ident: JPCS_2493_1_012010bib6
  article-title: Cluster analysis of karyotype resemblance-near coefficient of 13 species of Taraxacum L
  publication-title: Acta Grassland Sinica
– volume: 1
  year: 2021
  ident: JPCS_2493_1_012010bib4
  article-title: Neural network in sports cluster analysis
  publication-title: Neural Computing and Applications
  doi: 10.1007/978-981-16-5188-5
– volume: 17
  start-page: 1624
  year: 2005
  ident: JPCS_2493_1_012010bib15
  article-title: Document clustering using locality preserving indexing
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2005.198
– volume: 3
  year: 2021
  ident: JPCS_2493_1_012010bib12
  article-title: A novel density peaks clustering algorithm based on K nearest neighbors with adaptive merging strategy
  publication-title: International Journal of Machine Learning and Cybernetics
– start-page: 3
  year: 2021
  ident: JPCS_2493_1_012010bib2
  article-title: Distributed Information-Theoretic Clustering
– volume: 42
  start-page: 524
  year: 2021
  ident: JPCS_2493_1_012010bib3
  article-title: Corn leaf image segmentation based on improved K-means algorithm
  publication-title: Journal of Central North University (Natural Science Edition)
– start-page: 110
  year: 2021
  ident: JPCS_2493_1_012010bib5
  article-title: Engineering Students’ Noncognitive and Affective Factors: Group Differen-ces from Cluster Analysis
– volume: 42
  start-page: 8
  year: 2022
  ident: JPCS_2493_1_012010bib10
  article-title: Density peak clustering algorithm based on adaptive reachable distance
  publication-title: Computers Appl
SSID ssj0033337
Score 2.3282123
Snippet With the advantages of few parameters and the ability to deal with clusters of arbitrary shape, the density peak clustering algorithm has attracted wide...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12010
SubjectTerms Algorithms
Clustering
Complexity
Data points
Datasets
Density
Physics
Search algorithms
Spatial data
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA46FXzxLs4bAX20rm2aLHkcwyE-TEHFvYU0Fx3OrXSb4L_3ZOmQISKCfcrDSXv4mpxLci4InSfGJplicZQzf1oFSi7Km7mOODNUaxFrlYZmE81ul_d6YiEXZlRUov8ShqFQcICwCojjDbCh04hRwRrgOpBG0vD5nz7LaoWA7vH182_J01waE3iaISnST-J8HuP184sWNNQycPFNTM90T2fzP7jeQhuV5YlbYcY2WrLDHbQ2iwDV413UaRlVeNmHjY9pn3zgwqpXrAdTX0oBFBxWg-dR2Z-8vGFYpeBQW4P9KS4GmVSOLQ57Zg89dq4e2tdR1WQh0uCQxpGKKddNa8BwMVblmikKJgpROc10rDJqhMp5HjtKrTMsczpxljtHDHG5SB0n-6g2HA3tAcKcG2U5i5VgIqPEwBAUpNCCGZcaYusongMri1BLQ87uwDmXHh7p4ZEeHpnIAE8dXQCgstpX49_JzxbIb-7a94sUsjCujo7n__OLNOVgCwPbjBz-7ZtHaN23oA9BkMeoNimn9gSt6vdJf1yezhbjJ-hG17I
  priority: 102
  providerName: IOP Publishing
Title Adaptive density peak clustering algorithm combined with sparse search
URI https://iopscience.iop.org/article/10.1088/1742-6596/2493/1/012010
https://www.proquest.com/docview/2813994563
Volume 2493
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6xbCtxaaEPsYWuLLXHRpvEiWOfEEWsAIltRFt124vl-FEQdDfdBCT-fcd5iCIkemhOkTNKHI8938x4xgPwPjI2ShQLg4J5bxWCXFBkhQ44M6nWItQqbotNZLMZn89F3jncqi6sspeJjaA2S-195JOYo64iEO7pXvk78FWj_O5qV0JjAMMoRl0f53Oe_uglMcUraxMi4wCRlvfxXWj0dW2CTdD-oJNo4pNIfRrtX-g0uFiWD0R0gzvT5__b40141mmcZL-dIluwZhcv4GkT-amrlzDdN6r0Mo8YH8te35LSqkuir679EQoIbERd_cTX1ue_CH4XDWlriPfeEpRFq8qSdq28gq_Twy8HR0FXXCHQaIiGgQpTrjNrUGExVhWaqRRVE6qKNNGhSlIjVMGL0KWpdYYlTkfOcueooa4QseP0Nawvlgu7DYRzoyxnoRIMf5cavEVgFFow42JD7QjCflBl2Z6hIZu9b86l54P0fJCeDzKSLR9G8AEHX3brqfo3-bt75Cf5wef7FLI0bgS7PaPuSO-49Obxxzuw4UvNt8GOu7Ber67tW3iib-qLajWG4cfDWX42hsEn-m3cTENsy49P8-9_AHmX3w4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dT9swED_xsYm9DLaBKCvDEtvboiZx49oPE0JAxWdVaUxCezH-BAS0WVOY-k_tb9w5aQRo0vbEw_IUxadI5zvf786-8wF8TKxL2orFkWZhtwpBLtIdbSLObGaMiI1Kq2YTnV6Pn52J_gz8qmthQlplbRNLQ22HJuyRt1KOvopAuKdb-Y8odI0Kp6t1C41KLY7c5CeGbMWXg12U76c07e6d7uxH064CkcEILI5UnHHTcRaR2jqlDVMZYjJVOmubWLUzK5TmOvZZ5rxlbW8S77j31FKvReo5xf_OwnzZugvXTz_7Xlt-ik-nKsBMI0R2XueTYZA5_SZYC-Md2kpaoWg1lO0-QsPZq2H-BySUONdd_N9maAleTz1qsl0tgTcw4wZv4WWZ2WqKd9DdtioPNp3YkKs_npDcqWtibu7CFREI3ETdXCAb48tbgnxq9LotCbvTBG3tqHCkYmkZvj0LEyswNxgO3CoQzq1ynMVKMJxeavEVgV8YwaxPLXUNiGshyry6I0SWZ_ucyyB3GeQug9xlIiu5N-AzCltO7UXxb_LNJ-SH_Z2vTylkbn0DmrViPJA-aMXa34c3YGH_9ORYHh_0jt7DqxSduSqxswlz49GdW4cX5n58VYw-lEpP4Py5deg3qYA7Yg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dTxQxEJ8AfoQXBcFwgNAEH123u9322keCbhTIcYkSeWu6_VAi3m3uDhP_e6fXPcyFGEPiPvVhujv57XQ-2pkpwOvC-aIygmaNiLtVaOSypt_YTArHrVXUmjJdNtEfDOTVlRquQH1XCzNuO9X_FoepUXCCsEuIkzn60GUmuBI5hg4sL_JY_1nQvHVhFR5xhj48yvUF-7LQyAyffiqMjBOlXOR5_f1lS1ZqFTm5p6rn9qd-_r8434BnnQdKjtOsTVjxoxfwZJ4JaqdbUB8700YdSFzMbZ_9Iq0334m9uY0tFdDQEXPzdTy5nn37QVBaMbD2jsTdXIK6aTL1JK2dbbis338--ZB1ly1kFgNTmhnKpe17hw6M86axwnB0VZhpeGWpqbhTppENDZz74EQVbBG8DIE5FhpVBslewtpoPPI7QKR0xktBjRKq4szhEA2lskq4UDrme0AX4Oo29dTQ87NwKXWESEeIdIRIFzpB1IM3CKru1tf03-RHS-Snw5NPyxQaMe_B_uKf_iEtJfrEyLZguw_75iE8Hb6r9fnHwdkerMdb6VNe5D6szSa3_hU8tj9n19PJwVw2fwOQZt0h
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+density+peak+clustering+algorithm+combined+with+sparse+search&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Ma%2C+Weiyuan&rft.au=Duan%2C+Baobin&rft.au=Wei%2C+Ping&rft.date=2023-05-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2493&rft.issue=1&rft.spage=012010&rft_id=info:doi/10.1088%2F1742-6596%2F2493%2F1%2F012010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon