Adaptive density peak clustering algorithm combined with sparse search
With the advantages of few parameters and the ability to deal with clusters of arbitrary shape, the density peak clustering algorithm has attracted wide attention since it came out. However, the algorithm has problems such as high time complexity, poor clustering effect on complex data sets, and the...
Gespeichert in:
| Veröffentlicht in: | Journal of physics. Conference series Jg. 2493; H. 1; S. 12010 - 12019 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Bristol
IOP Publishing
01.05.2023
|
| Schlagworte: | |
| ISSN: | 1742-6588, 1742-6596 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | With the advantages of few parameters and the ability to deal with clusters of arbitrary shape, the density peak clustering algorithm has attracted wide attention since it came out. However, the algorithm has problems such as high time complexity, poor clustering effect on complex data sets, and the need to manually select cluster centers. Aiming at the above shortcomings, an improved density peak clustering algorithm is proposed. Combined with the sparse search algorithm, the calculation of the similarity between each point and its nearest neighbor is simplified, and the problem of the high time complexity of the algorithm is overcome. A new local density definition method is adopted to make the density of data points better reflect the spatial structure of data distribution and to improve the clustering accuracy of the algorithm. Finally, a strategy for automatically selecting cluster centers is proposed to improve the adaptability of the algorithm. The algorithm is used to compare with the other improved algorithm on artificial data sets and real data sets. The experimental results show that the proposed algorithm can show a better clustering effect and can quickly and accurately identify various complex clusters. |
|---|---|
| AbstractList | With the advantages of few parameters and the ability to deal with clusters of arbitrary shape, the density peak clustering algorithm has attracted wide attention since it came out. However, the algorithm has problems such as high time complexity, poor clustering effect on complex data sets, and the need to manually select cluster centers. Aiming at the above shortcomings, an improved density peak clustering algorithm is proposed. Combined with the sparse search algorithm, the calculation of the similarity between each point and its nearest neighbor is simplified, and the problem of the high time complexity of the algorithm is overcome. A new local density definition method is adopted to make the density of data points better reflect the spatial structure of data distribution and to improve the clustering accuracy of the algorithm. Finally, a strategy for automatically selecting cluster centers is proposed to improve the adaptability of the algorithm. The algorithm is used to compare with the other improved algorithm on artificial data sets and real data sets. The experimental results show that the proposed algorithm can show a better clustering effect and can quickly and accurately identify various complex clusters. |
| Author | Wei, Ping Ma, Weiyuan Duan, Baobin |
| Author_xml | – sequence: 1 givenname: Weiyuan surname: Ma fullname: Ma, Weiyuan organization: School of Artificial Intelligence and Big Data, Hefei University , China – sequence: 2 givenname: Baobin surname: Duan fullname: Duan, Baobin organization: School of Artificial Intelligence and Big Data, Hefei University , China – sequence: 3 givenname: Ping surname: Wei fullname: Wei, Ping organization: School of Artificial Intelligence and Big Data, Hefei University , China |
| BookMark | eNqFkN9LwzAQgINMcE7_BgO-CbVJ07TJ4xjOHwwU1OeQJpetc2tr0in7722pTATBe7k77rs7-E7RqKorQOiCkmtKhIhpniZRxmUWJ6lkMY0JTQglR2h8mIwOtRAn6DSENSGsi3yM5lOrm7b8AGyhCmW7xw3oN2w2u9CCL6sl1ptl7ct2tcWm3hZlBRZ_di0OjfYBcADtzeoMHTu9CXD-nSfodX7zMruLFo-397PpIjJJnpJIEy5MDpYJaUEXJtOcyZzpgqeG6JRbqQtREMc5OJulzlAHwjlmmStk4gSboMvhbuPr9x2EVq3rna-6lyoRlEmZ8ox1VD5QxtcheHCq8eVW-72iRPXSVK9D9WpUL01RNUjrNq-GzbJufk4_PM2ef4Oqsa6D2R_wfy--AMZFfwI |
| Cites_doi | 10.1126/science.1242072 10.1109/TII.2016.2628747 10.1080/01621459.1983.10478008 10.1016/j.ins.2020.11.050 10.1007/978-981-16-5188-5 10.1109/TKDE.2005.198 |
| ContentType | Journal Article |
| Copyright | Published under licence by IOP Publishing Ltd Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1088/1742-6596/2493/1/012010 |
| DatabaseName | Institute of Physics Open Access Journals (Activated by CARLI) IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Central Korea Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journals (Activated by CARLI) url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1742-6596 |
| ExternalDocumentID | 10_1088_1742_6596_2493_1_012010 JPCS_2493_1_012010 |
| GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX AEINN AFFHD CITATION OVT PHGZM PHGZT PQGLB 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c2740-a058c7ed389deabc6a53973ab54c0a45d9ab8b0f55efd64fc1fe8ff3d3fb92f83 |
| IEDL.DBID | P5Z |
| ISSN | 1742-6588 |
| IngestDate | Fri Jul 25 05:30:52 EDT 2025 Sat Nov 29 02:51:38 EST 2025 Wed Aug 21 03:33:43 EDT 2024 Wed May 17 01:26:53 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2740-a058c7ed389deabc6a53973ab54c0a45d9ab8b0f55efd64fc1fe8ff3d3fb92f83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2813994563?pq-origsite=%requestingapplication% |
| PQID | 2813994563 |
| PQPubID | 4998668 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1088_1742_6596_2493_1_012010 proquest_journals_2813994563 iop_journals_10_1088_1742_6596_2493_1_012010 |
| PublicationCentury | 2000 |
| PublicationDate | 20230501 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 20230501 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | Journal of physics. Conference series |
| PublicationTitleAlternate | J. Phys.: Conf. Ser |
| PublicationYear | 2023 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Cover (JPCS_2493_1_012010bib14) 1991 Rodriguez (JPCS_2493_1_012010bib8) 2014; 344 Qiao (JPCS_2493_1_012010bib6) 2020; 28 Zhang (JPCS_2493_1_012010bib10) 2022; 42 Wang (JPCS_2493_1_012010bib1) 2022 Pichler (JPCS_2493_1_012010bib2) 2021 Shen (JPCS_2493_1_012010bib7) 2020; 38 Chen (JPCS_2493_1_012010bib11) 2020; 57 Scheidt (JPCS_2493_1_012010bib5) 2021 Xu (JPCS_2493_1_012010bib13) 2020; 554 Guo (JPCS_2493_1_012010bib3) 2021; 42 Bo (JPCS_2493_1_012010bib9) 2017; 13 Yuan (JPCS_2493_1_012010bib12) 2021; 3 Fowlkes (JPCS_2493_1_012010bib16) 1983; 78 Zhang (JPCS_2493_1_012010bib4) 2021; 1 Cai (JPCS_2493_1_012010bib15) 2005; 17 |
| References_xml | – start-page: 6 year: 2022 ident: JPCS_2493_1_012010bib1 article-title: New Efficient Approach to Solve Big Data Systems Using ParallelGauss–Seidel Algorithms – volume: 344 start-page: 1492 year: 2014 ident: JPCS_2493_1_012010bib8 article-title: Clustering by fast search and find of density peaks publication-title: Science doi: 10.1126/science.1242072 – volume: 57 start-page: 378 year: 2020 ident: JPCS_2493_1_012010bib11 article-title: Summary of Density Peak Clustering Algorithms publication-title: Computer Research and Development – volume: 13 start-page: 1620 year: 2017 ident: JPCS_2493_1_012010bib9 article-title: A fast density and grid-based clustering method for data with arbitrary shapes and noise publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2016.2628747 – volume: 78 start-page: 553 year: 1983 ident: JPCS_2493_1_012010bib16 article-title: A method for comparing two hierarchical clusterings publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1983.10478008 – volume: 38 start-page: 83 year: 2020 ident: JPCS_2493_1_012010bib7 article-title: Cluster Analysis and Geographical Division of Insect Distribution Pattern in the World publication-title: Science and Technology Bulletin – volume: 554 start-page: 61 year: 2020 ident: JPCS_2493_1_012010bib13 article-title: A fast density peaks clustering algorithm with sparse search publication-title: Information Sciences doi: 10.1016/j.ins.2020.11.050 – start-page: 279 year: 1991 ident: JPCS_2493_1_012010bib14 article-title: Information theory and statistics – volume: 28 start-page: 6 year: 2020 ident: JPCS_2493_1_012010bib6 article-title: Cluster analysis of karyotype resemblance-near coefficient of 13 species of Taraxacum L publication-title: Acta Grassland Sinica – volume: 1 year: 2021 ident: JPCS_2493_1_012010bib4 article-title: Neural network in sports cluster analysis publication-title: Neural Computing and Applications doi: 10.1007/978-981-16-5188-5 – volume: 17 start-page: 1624 year: 2005 ident: JPCS_2493_1_012010bib15 article-title: Document clustering using locality preserving indexing publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2005.198 – volume: 3 year: 2021 ident: JPCS_2493_1_012010bib12 article-title: A novel density peaks clustering algorithm based on K nearest neighbors with adaptive merging strategy publication-title: International Journal of Machine Learning and Cybernetics – start-page: 3 year: 2021 ident: JPCS_2493_1_012010bib2 article-title: Distributed Information-Theoretic Clustering – volume: 42 start-page: 524 year: 2021 ident: JPCS_2493_1_012010bib3 article-title: Corn leaf image segmentation based on improved K-means algorithm publication-title: Journal of Central North University (Natural Science Edition) – start-page: 110 year: 2021 ident: JPCS_2493_1_012010bib5 article-title: Engineering Students’ Noncognitive and Affective Factors: Group Differen-ces from Cluster Analysis – volume: 42 start-page: 8 year: 2022 ident: JPCS_2493_1_012010bib10 article-title: Density peak clustering algorithm based on adaptive reachable distance publication-title: Computers Appl |
| SSID | ssj0033337 |
| Score | 2.3282123 |
| Snippet | With the advantages of few parameters and the ability to deal with clusters of arbitrary shape, the density peak clustering algorithm has attracted wide... |
| SourceID | proquest crossref iop |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 12010 |
| SubjectTerms | Algorithms Clustering Complexity Data points Datasets Density Physics Search algorithms Spatial data |
| SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journals (Activated by CARLI) dbid: O3W link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA46FXzxLk6nBPTRurbpJXkcwyEiU_D6FtJcdDi30naC_96TXpAhIoJ9auGkDV-Tc76TnHOC0IlrYs_Thjl2z8oBLZk4YPSoQynzYzeJqSpr6T1cxcMhfXpic7kw07RW_WdwWxUKriCsA-JoFzi070Qhi7rgOpCu17X5nzbLaomA7bH186_JY6ONCVxxlRRpG1HaxHj9_KI5C7UIvfimpkvbM1j_j15voLWaeeJe1WITLejJFlopI0Blvo0GPSVSq_uwsjHtxQdOtXjFcjyzpRTAwGExfp5mo-LlDcMoBYdaK2xXcTHopCzXuJozO-h-cH7Xv3DqQxYcCQ6p6wg3pDLWCoiL0iKRkQiBohCRhIF0RRAqJhKauCYMtVFRYKRnNDWGKGIS5htKdlFrMp3oPYSVlOAeBQkwgiiQxmPgfMEDg9aRcAlrI7cBlqdVLQ1e7oFTyi083MLDLTzc4xU8bXQKgPJ6XuW_ix_PiV_e9G_nJXiqTBt1mv_5JepT4MIM6CTZ_9s3D9CqPYK-CoLsoFaRzfQhWpbvxSjPjsrB-Anq2dah priority: 102 providerName: IOP Publishing |
| Title | Adaptive density peak clustering algorithm combined with sparse search |
| URI | https://iopscience.iop.org/article/10.1088/1742-6596/2493/1/012010 https://www.proquest.com/docview/2813994563 |
| Volume | 2493 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journals (Activated by CARLI) customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: O3W dateStart: 20040101 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: P5Z dateStart: 20040801 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: BENPR dateStart: 20040801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: PIMPY dateStart: 20040801 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6xUCQuLS2gbktXluCItUmch32qKGJVUNlG0PLoxXL8oAjYDZulUv99x3mIIiR6aG5xJnHksb-ZsecBsB24LAytE9SfWVFEyYKi0OOUcxFlQZFxU-fSO_2Sjcf8_Fzk7YZb1bpVdphYA7WZar9HPow46ioCxT37WN5RXzXKn662JTR6sBRGqOvjfM6THx0SM7yyJiAyoihpeeffhUZf2ybSIdofbBgOfRCpD6P9Szr1rqblE4iu5c7o1f_-8Sq8bDVOsttMkdewYCdvYLn2_NTVGox2jSo95hHjfdnnv0lp1TXRN_c-hQIKNqJuLvGz85-3BPtFQ9oa4ndvCWLRrLKkWSvr8H20_23vM22LK1CNhmhAVZBwnVmDCouxqtCpSlA1YapIYh2oODFCFbwIXJJYZ9LY6dBZ7hwzzBUicpxtwOJkOrFvgRit0SyKC9QE0li7UKDRhTcC305VwEQfgm5QZdnk0JD12Tfn0vNBej5IzwcZyoYPfdjBwZfteqr-Tb71iPww3zt5TCFL4_qw2THqgfSBS--ef_weVnyp-cbZcRMW57N7-wFe6F_zq2o2gKVP--P8eAC9r-xsUE9DbMsPjvKLP32c3f0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dTxNBEJ8U0MAL-EUsVN1EfXPT-77dB2JIpQGpTRPREF_W_VQitEevQPin-BudveulEBN94sF7u7u5S2Zndn4zuzM7AG8Cl4ehdZz6PSuKVlJRBD1GGeNRHqicmeosva-DfDhkx8d81IKbphbGp1U2NrEy1Gai_Rp5N2Loq3CE-_h9cU591yi_u9q00KjV4tBeX2HIVu4cfED5vo2i_t5Rb5_OuwpQjRFYQGWQMp1bg0htrFQ6kylicixVmuhAJqnhUjEVuDS1zmSJ06GzzLnYxE7xyLEY_7sEK1XrLpw_o_RbY_ljvPK6ADOiiOysySfDIHP-jGddjHfibtj1Rau-bPcWGi6dTIo_IKHCuf7G_zZCj2B97lGT3XoKPIaWHT-Bh1Vmqy6fQn_XyMLbdGJ8rv7smhRW_iL69MIfEYHATeTpD2Rj9vOMIJ8KvW5D_Oo0QVs7LS2pWXoGX-6FiU1YHk_G9jkQozWGfYlCTydLtAs5BpV4w_HrTAYxb0PQCFEU9RkhotrbZ0x4uQsvd-HlLkJRy70N71DYYm4vyn-Tv75D_nHU-3yXQhTGtaHTKMaCdKEVW39__QpW948-DcTgYHi4DWsROnN1YmcHlmfTC_sCHujL2Uk5fVkpPYHv961DvwFy7TpR |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED8BG4gXxvgQBTYsjUdCnDof9mPVEW0DlUobH2-W4w9AQBu1ZRL_PeckZarQhJDIUyKdE-sX--539t0ZYJ-6LIqsE4HfswpQSxYBGj0ecC7aGS0ybqpaeucnWa_HLy9Ffw7y51yYYdmo_kO8rQsF1xA2AXE8RA7dDtJEpCG6DiyMQp__GdGwNG4ePiQMOTyO61N2MdXIDK-sToz0DTmfxnn9_2UzVmoee_JCVVf2J__0Xj1fhZWGgZJO3eozzNnBGixWkaB6vA55x6jS60BifGz75JGUVt0SfffgSyqgoSPq7mo4uplc3xMcrehYW0P8ai5B3TQaW1LPnQ04y4_-dH8EzWELgUbHlAaKJlxn1iCBMVYVOlUJUhWmiiTWVMWJEargBXVJYp1JY6cjZ7lzzDBXiLbjbBMWBsOB3QJitEY3KS6QGaSxdpFAJwwfBLZOFWWiBXQKrizrmhqy2gvnXHqIpIdIeohkJGuIWnCAoMpmfo1fF_82I_6r3_09KyER8xbsTv_pP9E2R04skFay7bd9cw-W-t9zefKzd7wDy_5U-jouchcWJqMH-wU-6r-Tm_HoazU2nwB_ZtwQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+density+peak+clustering+algorithm+combined+with+sparse+search&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Ma%2C+Weiyuan&rft.au=Duan%2C+Baobin&rft.au=Wei%2C+Ping&rft.date=2023-05-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2493&rft.issue=1&rft.spage=12010&rft_id=info:doi/10.1088%2F1742-6596%2F2493%2F1%2F012010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_2493_1_012010 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |