Dynamic multi-objective evolutionary algorithm based on decomposition with hybrid prediction
The proposed dynamic multi-objective evolutionary algorithm, DMOEA/D-HP, addresses temporal variations in both the Pareto Front (PF) and Pareto Set (PS) for dynamic multi-objective optimization problems (DMOPs). Utilizing a hybrid prediction approach, the algorithm adapts to the dynamic nature of th...
Uloženo v:
| Vydáno v: | Journal of physics. Conference series Ročník 2764; číslo 1; s. 12090 - 12096 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Bristol
IOP Publishing
01.05.2024
|
| Témata: | |
| ISSN: | 1742-6588, 1742-6596 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The proposed dynamic multi-objective evolutionary algorithm, DMOEA/D-HP, addresses temporal variations in both the Pareto Front (PF) and Pareto Set (PS) for dynamic multi-objective optimization problems (DMOPs). Utilizing a hybrid prediction approach, the algorithm adapts to the dynamic nature of the problem. The population is divided into three segments for prediction: individuals with a distance greater than a threshold in PS for central prediction, those with a distance less than a threshold in PS for differential evolutionary prediction, and the remaining individuals for cross-mutation to maintain diversity. To assess DMOEA/D-HP’s effectiveness, it is compared with three advanced algorithms in DMOP by using the DF test set. Experimental results demonstrate that DMOEA/D-HP outperforms in terms of distribution and convergence when solving DMOPs. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1742-6588 1742-6596 |
| DOI: | 10.1088/1742-6596/2764/1/012090 |