A cosine similarity-based token subsampling method for vision transformer in cloud computing

Deploying huge deep learning applications on resource-constrained edge devices is a challenging task. Cloud-based edge computing is a promising solution. Such as model partitioning, a portion of the deep learning model is deployed on the edge device; while, the remaining portion is executed by the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications Jg. 37; H. 4; S. 2627 - 2639
Hauptverfasser: Li, Qi, Kaneko, Hayata, Meng, Lin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.02.2025
Springer Nature B.V
Schlagworte:
ISSN:0941-0643, 1433-3058
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Deploying huge deep learning applications on resource-constrained edge devices is a challenging task. Cloud-based edge computing is a promising solution. Such as model partitioning, a portion of the deep learning model is deployed on the edge device; while, the remaining portion is executed by the cloud. Leveraging the computation power of edge devices, transmission latency is reduced, and bandwidth efficiency is increased. Recently, visual transformer models, supported by large datasets, have dominated in multiple vision tasks. However, model partitioning optimization methods for visual transformers are lacking. Therefore, the paper proposes a cosine similarity-based token subsampling method for visual transformer model partitioning to improve transmission efficiency. Tokens in the same class are subsampled and only the centroid tokens are uploaded. In the cloud, all tokens are reconstructed based on interpolation indexes. Three algorithm implementations are proposed and measured on PC, Jetson NANO and edge CPU Cortex-A53. The experimental results demonstrate that the recommended algorithm implementation can be executed with low-latency of 71.24 ms, and 35.65% transmitted data is reduced with an accuracy drop of 0.46%.
AbstractList Deploying huge deep learning applications on resource-constrained edge devices is a challenging task. Cloud-based edge computing is a promising solution. Such as model partitioning, a portion of the deep learning model is deployed on the edge device; while, the remaining portion is executed by the cloud. Leveraging the computation power of edge devices, transmission latency is reduced, and bandwidth efficiency is increased. Recently, visual transformer models, supported by large datasets, have dominated in multiple vision tasks. However, model partitioning optimization methods for visual transformers are lacking. Therefore, the paper proposes a cosine similarity-based token subsampling method for visual transformer model partitioning to improve transmission efficiency. Tokens in the same class are subsampled and only the centroid tokens are uploaded. In the cloud, all tokens are reconstructed based on interpolation indexes. Three algorithm implementations are proposed and measured on PC, Jetson NANO and edge CPU Cortex-A53. The experimental results demonstrate that the recommended algorithm implementation can be executed with low-latency of 71.24 ms, and 35.65% transmitted data is reduced with an accuracy drop of 0.46%.
Deploying huge deep learning applications on resource-constrained edge devices is a challenging task. Cloud-based edge computing is a promising solution. Such as model partitioning, a portion of the deep learning model is deployed on the edge device; while, the remaining portion is executed by the cloud. Leveraging the computation power of edge devices, transmission latency is reduced, and bandwidth efficiency is increased. Recently, visual transformer models, supported by large datasets, have dominated in multiple vision tasks. However, model partitioning optimization methods for visual transformers are lacking. Therefore, the paper proposes a cosine similarity-based token subsampling method for visual transformer model partitioning to improve transmission efficiency. Tokens in the same class are subsampled and only the centroid tokens are uploaded. In the cloud, all tokens are reconstructed based on interpolation indexes. Three algorithm implementations are proposed and measured on PC, Jetson NANO and edge CPU Cortex-A53. The experimental results demonstrate that the recommended algorithm implementation can be executed with low-latency of 71.24 ms, and 35.65% transmitted data is reduced with an accuracy drop of 0.46%.
Author Meng, Lin
Li, Qi
Kaneko, Hayata
Author_xml – sequence: 1
  givenname: Qi
  surname: Li
  fullname: Li, Qi
  organization: Graduate School of Science and Engineering, Ritsumeikan University
– sequence: 2
  givenname: Hayata
  surname: Kaneko
  fullname: Kaneko, Hayata
  organization: Graduate School of Science and Engineering, Ritsumeikan University
– sequence: 3
  givenname: Lin
  orcidid: 0000-0003-4351-6923
  surname: Meng
  fullname: Meng, Lin
  email: menglin@fc.ritsumei.ac.jp
  organization: College of Science and Engineering, Ritsumeikan University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6uTj_06luIXFLzoTQjZ7GxN7SY12bX03xut4M3TMMzzvgPPjEycd0jIJYNrBlDeRICcswy4zBiUrMr2J2TKpBCZgLyakCnUMp0LKc7ILMYNAMiiyqfkdUGNj9Yhjba3Wx3scMgaHbGlg39HR-PYRN3vttataY_Dm29p5wP9tNF6R4egXUx7j4FaR83Wj20q7HfjkALn5LTT24gXv3NOXu5un5cP2erp_nG5WGWGl2KfFRo7JjSatu4k5pI33DSSaeRQNbwWvMa66XSJXCYIjCzbogAhAYVEY2oxJ1fH3l3wHyPGQW38GFx6qQQrRAGclVWi-JEywccYsFO7YHsdDoqB-raojhZVsqh-LKp9ColjKCbYrTH8Vf-T-gIq8nlv
Cites_doi 10.1186/s40537-021-00444-8
10.1145/216585.216588
10.1007/s00521-024-09910-9
10.1109/83.334991
10.3390/heritage6050230
10.1016/j.neunet.2022.06.038
10.23919/DATE.2017.7927211
10.1109/ICDCS.2017.226
10.1109/ACCESS.2021.3084689
10.1145/3093337.3037698
10.1007/s11263-015-0816-y
10.1109/TIE.2020.2998756
10.1109/TIM.2023.3264039
10.1109/ACCESS.2020.2991734
10.1109/TNET.2020.3042320
10.1109/TNNLS.2023.3240195
10.1145/3373087.3375887
10.1109/HPCA47549.2020.00036
10.1007/s00521-024-10015-6
10.1007/978-3-030-69538-5_4
10.1109/JPROC.2019.2921977
10.1007/978-3-030-89657-7_3
10.1007/3-540-57301-1_5
10.1109/JSTSP.2023.3239189
10.1016/j.eng.2020.01.007
10.1016/j.iot.2023.101047
10.1007/s00521-024-09891-9
10.1145/2809695.2809711
10.1145/3516807.3516820
10.3390/s23146547
10.1038/s41586-020-2649-2
10.1007/s10115-022-01776-4
10.1109/TCAD.2018.2858384
10.1109/ICCV48922.2021.00986
10.1109/TPAMI.2022.3152247
10.1007/s11554-024-01496-8
10.1109/ICCV48922.2021.00060
10.1109/INFOCOM.2018.8485905
10.1007/s00521-024-09938-x
10.1007/s00521-024-09838-0
ContentType Journal Article
Copyright The Author(s) 2024
Copyright Springer Nature B.V. Feb 2025
Copyright_xml – notice: The Author(s) 2024
– notice: Copyright Springer Nature B.V. Feb 2025
DBID C6C
AAYXX
CITATION
DOI 10.1007/s00521-024-10718-w
DatabaseName Springer Nature OA/Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 2639
ExternalDocumentID 10_1007_s00521_024_10718_w
GrantInformation_xml – fundername: KIOXIA Holdings Corporation
  funderid: http://dx.doi.org/10.13039/100019355
– fundername: Ritsumeikan University
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
AFFHD
CITATION
ID FETCH-LOGICAL-c273w-6aef13aecd9f4e542b2cb41ae208b29329e9bfa7e24aec0c47d660340e34ecc93
IEDL.DBID RSV
ISSN 0941-0643
IngestDate Thu Nov 06 12:28:44 EST 2025
Sat Nov 29 04:30:45 EST 2025
Mon Jul 21 06:08:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Model partitioning
Cosine similarity
Vision transformer
Cloud computing
Token clustering
Edge computing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c273w-6aef13aecd9f4e542b2cb41ae208b29329e9bfa7e24aec0c47d660340e34ecc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4351-6923
OpenAccessLink https://link.springer.com/10.1007/s00521-024-10718-w
PQID 3163602178
PQPubID 2043988
PageCount 13
ParticipantIDs proquest_journals_3163602178
crossref_primary_10_1007_s00521_024_10718_w
springer_journals_10_1007_s00521_024_10718_w
PublicationCentury 2000
PublicationDate 20250200
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 2
  year: 2025
  text: 20250200
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References E Schubert (10718_CR27) 2021
Z Li (10718_CR9) 2024
K Cao (10718_CR10) 2020; 8
L Alzubaidi (10718_CR1) 2021; 8
10718_CR19
Z Zhao (10718_CR38) 2018; 37
J Chen (10718_CR11) 2019; 107
J Ren (10718_CR6) 2023; 23
10718_CR17
Q Li (10718_CR2) 2024; 21
10718_CR15
10718_CR37
10718_CR14
Y Chen (10718_CR40) 2020; 6
10718_CR35
Z Li (10718_CR33) 2023; 1
SA Molavi (10718_CR20) 2024
10718_CR31
L Zeng (10718_CR18) 2021; 29
L Wang (10718_CR3) 2024
WA Wulf (10718_CR39) 1995; 23
R Agrawal (10718_CR28) 1993
A Joshi (10718_CR8) 2024
CR Harris (10718_CR47) 2020; 585
RAF Belfor (10718_CR26) 1994; 3
10718_CR4
O Russakovsky (10718_CR42) 2015; 115
H Kaneko (10718_CR7) 2023; 6
10718_CR29
W Xu (10718_CR36) 2023; 17
K Han (10718_CR24) 2023; 45
10718_CR48
10718_CR25
10718_CR46
10718_CR23
10718_CR45
X Liu (10718_CR13) 2023; 72
10718_CR22
10718_CR44
10718_CR21
10718_CR43
N Karunanayake (10718_CR5) 2024
10718_CR41
A Bakhtiarnia (10718_CR12) 2022; 153
E Kilcioglu (10718_CR16) 2021; 9
M Kirişci (10718_CR30) 2023; 65
L Zheng (10718_CR32) 2021; 68
Y Kang (10718_CR34) 2017; 45
References_xml – volume: 8
  start-page: 1
  year: 2021
  ident: 10718_CR1
  publication-title: J Big Data
  doi: 10.1186/s40537-021-00444-8
– volume: 23
  start-page: 20
  issue: 1
  year: 1995
  ident: 10718_CR39
  publication-title: ACM SIGARCH Comput Arch News
  doi: 10.1145/216585.216588
– ident: 10718_CR43
– year: 2024
  ident: 10718_CR5
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-024-09910-9
– ident: 10718_CR45
– volume: 3
  start-page: 492
  issue: 5
  year: 1994
  ident: 10718_CR26
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.334991
– volume: 6
  start-page: 4345
  issue: 5
  year: 2023
  ident: 10718_CR7
  publication-title: Heritage
  doi: 10.3390/heritage6050230
– volume: 153
  start-page: 461
  year: 2022
  ident: 10718_CR12
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2022.06.038
– ident: 10718_CR35
  doi: 10.23919/DATE.2017.7927211
– ident: 10718_CR37
  doi: 10.1109/ICDCS.2017.226
– volume: 9
  start-page: 79611
  year: 2021
  ident: 10718_CR16
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3084689
– volume: 45
  start-page: 615
  issue: 1
  year: 2017
  ident: 10718_CR34
  publication-title: ACM SIGARCH Comput Arch News
  doi: 10.1145/3093337.3037698
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10718_CR42
  publication-title: Int J Comput Vis (IJCV)
  doi: 10.1007/s11263-015-0816-y
– volume: 68
  start-page: 5990
  issue: 7
  year: 2021
  ident: 10718_CR32
  publication-title: IEEE Trans Industr Electron
  doi: 10.1109/TIE.2020.2998756
– volume: 72
  start-page: 1
  year: 2023
  ident: 10718_CR13
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2023.3264039
– volume: 8
  start-page: 85714
  year: 2020
  ident: 10718_CR10
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2991734
– volume: 29
  start-page: 595
  issue: 2
  year: 2021
  ident: 10718_CR18
  publication-title: IEEE/ACM Trans Netw
  doi: 10.1109/TNET.2020.3042320
– volume: 1
  start-page: 15
  year: 2023
  ident: 10718_CR33
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2023.3240195
– ident: 10718_CR48
  doi: 10.1145/3373087.3375887
– ident: 10718_CR17
  doi: 10.1109/HPCA47549.2020.00036
– year: 2024
  ident: 10718_CR20
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-024-10015-6
– ident: 10718_CR29
– ident: 10718_CR31
  doi: 10.1007/978-3-030-69538-5_4
– volume: 107
  start-page: 1655
  issue: 8
  year: 2019
  ident: 10718_CR11
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2019.2921977
– start-page: 32
  volume-title: Similarity search and applications
  year: 2021
  ident: 10718_CR27
  doi: 10.1007/978-3-030-89657-7_3
– start-page: 69
  volume-title: Foundations of data organization and algorithms
  year: 1993
  ident: 10718_CR28
  doi: 10.1007/3-540-57301-1_5
– volume: 17
  start-page: 9
  issue: 1
  year: 2023
  ident: 10718_CR36
  publication-title: IEEE J Sel Top Signal Process
  doi: 10.1109/JSTSP.2023.3239189
– volume: 6
  start-page: 264
  issue: 3
  year: 2020
  ident: 10718_CR40
  publication-title: Engineering
  doi: 10.1016/j.eng.2020.01.007
– ident: 10718_CR4
  doi: 10.1016/j.iot.2023.101047
– year: 2024
  ident: 10718_CR8
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-024-09891-9
– ident: 10718_CR21
– ident: 10718_CR46
– ident: 10718_CR19
– ident: 10718_CR44
– ident: 10718_CR15
  doi: 10.1145/2809695.2809711
– ident: 10718_CR25
  doi: 10.1145/3516807.3516820
– volume: 23
  start-page: 6547
  issue: 14
  year: 2023
  ident: 10718_CR6
  publication-title: Sensors
  doi: 10.3390/s23146547
– volume: 585
  start-page: 357
  issue: 7825
  year: 2020
  ident: 10718_CR47
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 65
  start-page: 855
  issue: 2
  year: 2023
  ident: 10718_CR30
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-022-01776-4
– volume: 37
  start-page: 2348
  issue: 11
  year: 2018
  ident: 10718_CR38
  publication-title: IEEE Trans Comput Aided Des Integr Circuits Syst
  doi: 10.1109/TCAD.2018.2858384
– ident: 10718_CR23
  doi: 10.1109/ICCV48922.2021.00986
– volume: 45
  start-page: 87
  issue: 1
  year: 2023
  ident: 10718_CR24
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2022.3152247
– volume: 21
  start-page: 116
  issue: 4
  year: 2024
  ident: 10718_CR2
  publication-title: J Real-Time Image Proc
  doi: 10.1007/s11554-024-01496-8
– ident: 10718_CR22
  doi: 10.1109/ICCV48922.2021.00060
– ident: 10718_CR14
  doi: 10.1109/INFOCOM.2018.8485905
– year: 2024
  ident: 10718_CR3
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-024-09938-x
– year: 2024
  ident: 10718_CR9
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-024-09838-0
– ident: 10718_CR41
SSID ssj0004685
Score 2.3714094
Snippet Deploying huge deep learning applications on resource-constrained edge devices is a challenging task. Cloud-based edge computing is a promising solution. Such...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 2627
SubjectTerms Algorithms
Artificial Intelligence
Centroids
Cloud computing
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Deep learning
Edge computing
Image Processing and Computer Vision
Original Article
Partitioning
Probability and Statistics in Computer Science
Similarity
Transmission efficiency
Vision
Visual tasks
Title A cosine similarity-based token subsampling method for vision transformer in cloud computing
URI https://link.springer.com/article/10.1007/s00521-024-10718-w
https://www.proquest.com/docview/3163602178
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAc2iJTYrp2MFaJiqhAvdUCKHNtBEZCgJqV_n7OTtIBggDnOOTqf776L7_whdOqr0E8HSntacuOxiKeeFNpyaED8g5yIa5I4sgkxHoeTSXTdNIWVbbV7eyTpPPWi2c3-wYTUlzBwHeBRvfkqWoNwF1rChpvbh0_dkI6IE_IWW9PDaNMq87OMr-FoiTG_HYu6aDPq_u87t9Bmgy7xsDaHbbRi8h3UbZkbcLORd9HjEKvCVrzjMnvNILkFLO7ZgKZxVTybHJfgT6QtNs-fcE0yjQHd4roTHVct2gWZWY7VSzHTWLlZ4IU9dD-6vLu48hqeBU8BeJl7XJo0oNIoHaXMDBhJiEpYIA3xwwTgAIlMlKRSGMJgkK-Y0Jz7lPmGMrCAiO6jTl7k5gDhhIdchowKwy2PiS9TKmRAha9SgJKJ6KGzVt3xW32dRry4ONkpLgbFxU5x8byH-u2KxM3WKmMa2CvOIJMKe-i8XYHl49-lHf5t-BHaIJbr11Vo91Gnms7MMVpX71VWTk-cyX0AqEfStA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MwDLVgIMGF8SkGA3LgBpXaJkvb44SYhoAJwUA7IFVpmqIKaNG6sb-Pk7UbIDjAualTOYn93Nh-AMe29O2kJWMrFlxZLOCJJbxYc2ig_8OYiMduZMgmvF7PHwyCm7IorKiy3asrSWOpZ8Vu-g8mhr4uQ9OBFtWaLMISQ4-lO-bf3j18qoY0RJwYt-icHkbLUpmfZXx1R3OM-e1a1HibTv1_37kOayW6JO3pdtiABZVtQr1ibiDlQd6CxzaRuc54J0X6mmJwi1jc0g4tJqP8WWWkQHsidLJ59kSmJNME0S2ZVqKTUYV2UWaaEfmSj2MizSz4wjbcd877Z12r5FmwJIKXicWFShwqlIyDhKkWcyNXRswRyrX9COGAG6ggSoSnXIaDbMm8mHObMltRhjsgoDtQy_JM7QKJuM-Fz6inuOYxsUVCPeFQz5YJQsnIa8BJpe7wbdpOI5w1TjaKC1FxoVFcOGlAs1qRsDxaRUgd3eIMIym_AafVCswf_y5t72_Dj2Cl27--Cq8uepf7sOpq3l-Trd2E2mg4VgewLN9HaTE8NNvvA5KA1Zg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIMSF8RSDATlwg4quCWl7nIAJBJom8RAHpCpNUjQB7UQ79vdx0nY8BAfEualTOU78ubH9Aey7MnCTY6kcJbh2WMgTR_jKcGig_8OYiCsvtmQTfr8f3N-Hg09V_Dbbvb6SLGsaTJemtDgaqeRoWvhm_mZiGOwxPEbwdHUmszDHTCK9idev7z5VRlpSToxhTH4Po1XZzM8yvrqmD7z57YrUep5e8__fvAxLFeok3dJMVmBGp6vQrBkdSLXB1-ChS2RmMuFJPnwZYtCLGN0xjk6RInvSKcnxnBEmCT19JCX5NEHUS8oKdVLUKBhlDlMin7OxItLOgi-sw23v7Obk3Kn4FxyJoGbicKGTDhVaqjBh-ph5sSdj1hHac4MYYYIX6jBOhK89hoNcyXzFuUuZqylDywjpBjTSLNWbQGIecBEw6mtu-E1ckVBfdKjvygQhZuy34KBWfTQq22xE04bKVnERKi6yiosmLWjXqxNVWy6PaMe0PsMIK2jBYb0aH49_l7b1t-F7sDA47UVXF_3LbVj0DB2wTeJuQ6N4HesdmJdvxTB_3bWW-A6ZYN58
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+cosine+similarity-based+token+subsampling+method+for+vision+transformer+in+cloud+computing&rft.jtitle=Neural+computing+%26+applications&rft.au=Li%2C+Qi&rft.au=Kaneko%2C+Hayata&rft.au=Meng%2C+Lin&rft.date=2025-02-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=4&rft.spage=2627&rft.epage=2639&rft_id=info:doi/10.1007%2Fs00521-024-10718-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_024_10718_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon