Spectra of Boolean Graphs Over Finite Fields of Characteristic Two

With entries of the adjacency matrix of a simple graph being regarded as elements of  $\mathbb{F}_{2}$ , it is proved that a finite commutative ring $R$ with $1\neq 0$ is a Boolean ring if and only if either $R\in \{\mathbb{F}_{2},\mathbb{F}_{2}\times \mathbb{F}_{2}\}$ or the eigenvalues (in the alg...

Full description

Saved in:
Bibliographic Details
Published in:Canadian mathematical bulletin Vol. 63; no. 1; pp. 58 - 65
Main Authors: Dillery, D. Scott, LaGrange, John D.
Format: Journal Article
Language:English
Published: Montreal Cambridge University Press 01.03.2020
Subjects:
ISSN:0008-4395, 1496-4287
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With entries of the adjacency matrix of a simple graph being regarded as elements of  $\mathbb{F}_{2}$ , it is proved that a finite commutative ring $R$ with $1\neq 0$ is a Boolean ring if and only if either $R\in \{\mathbb{F}_{2},\mathbb{F}_{2}\times \mathbb{F}_{2}\}$ or the eigenvalues (in the algebraic closure of  $\mathbb{F}_{2}$ ) corresponding to the zero-divisor graph of $R$ are precisely the elements of $\mathbb{F}_{4}\setminus \{0\}$ . This is achieved by observing a way in which algebraic behavior in a Boolean ring is encoded within Pascal’s triangle so that computations can be carried out by appealing to classical results from number theory.
AbstractList With entries of the adjacency matrix of a simple graph being regarded as elements of \(\mathbb{F}_{2}\), it is proved that a finite commutative ring \(R\) with \(1\neq 0\) is a Boolean ring if and only if either \(R\in \{\mathbb{F}_{2},\mathbb{F}_{2}\times \mathbb{F}_{2}\}\) or the eigenvalues (in the algebraic closure of \(\mathbb{F}_{2}\)) corresponding to the zero-divisor graph of \(R\) are precisely the elements of \(\mathbb{F}_{4}\setminus \{0\}\) . This is achieved by observing a way in which algebraic behavior in a Boolean ring is encoded within Pascal’s triangle so that computations can be carried out by appealing to classical results from number theory.
With entries of the adjacency matrix of a simple graph being regarded as elements of  $\mathbb{F}_{2}$ , it is proved that a finite commutative ring $R$ with $1\neq 0$ is a Boolean ring if and only if either $R\in \{\mathbb{F}_{2},\mathbb{F}_{2}\times \mathbb{F}_{2}\}$ or the eigenvalues (in the algebraic closure of  $\mathbb{F}_{2}$ ) corresponding to the zero-divisor graph of $R$ are precisely the elements of $\mathbb{F}_{4}\setminus \{0\}$ . This is achieved by observing a way in which algebraic behavior in a Boolean ring is encoded within Pascal’s triangle so that computations can be carried out by appealing to classical results from number theory.
Author Dillery, D. Scott
LaGrange, John D.
Author_xml – sequence: 1
  givenname: D. Scott
  surname: Dillery
  fullname: Dillery, D. Scott
– sequence: 2
  givenname: John D.
  surname: LaGrange
  fullname: LaGrange, John D.
BookMark eNp9kMFLwzAYxYNMcJv-Ad4KnqtJkzTN0Q03hcEOm-eSpl9YRm1qkin-96bMk4Kn9-D93vfBm6FJ73pA6Jbge0Y4fdhhjCtGJScyOVryCzQlTJY5KyoxQdMxzsf8Cs1COGJMBBd8iha7AXT0KnMmWzjXgeqztVfDIWTbD_DZyvY2QhLo2jBCy4PySkfwNkSrs_2nu0aXRnUBbn50jl5XT_vlc77Zrl-Wj5tcF4LG3LTQNLTlAhivCMeCUMpMCZqLhhuBiRaM0VaaghMoqOaalCCNKQ0vU6bpHN2d7w7evZ8gxProTr5PL-uCsaoSUkqcKHKmtHcheDD14O2b8l81wfU4Vf1nqtQRvzraRhWt69Mytvun-Q11lmzw
CitedBy_id crossref_primary_10_1080_03081087_2023_2256938
Cites_doi 10.1080/00927870701509156
10.1016/j.laa.2017.04.017
10.2307/2304500
10.1006/jabr.1998.7840
10.1007/978-1-4613-0163-9
10.1080/03081080600792897
10.1016/j.laa.2013.02.009
10.1016/j.laa.2011.05.042
ContentType Journal Article
Copyright Canadian Mathematical Society 2019
Copyright_xml – notice: Canadian Mathematical Society 2019
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8FQ
8FV
ABJCF
ABUWG
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.4153/S0008439519000365
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Canadian Business & Current Affairs Database
ProQuest Canadian Business & Current Affairs Database (CBCA)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
CBCA Complete (Alumni Edition)
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
CBCA Complete
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Engineering Collection
DatabaseTitleList Engineering Database
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1496-4287
EndPage 65
ExternalDocumentID 10_4153_S0008439519000365
GroupedDBID --Z
-~X
09C
09E
0R~
5.9
69Q
6J9
8FQ
AABWE
AAGFV
AANRG
AASVR
AAUKB
AAXMD
AAYEQ
AAYJJ
AAYXX
ABBZL
ABCQX
ABGDZ
ABJCF
ABUFD
ABUWG
ABVKB
ABVZP
ABXAU
ABXHF
ABZCX
ACDLN
ACGFO
ACIPV
ACKIV
ACNCT
ACYZP
ACZWT
ADDNB
ADIYS
ADKIL
ADOVH
ADVJH
AEBAK
AENCP
AETEA
AFFHD
AFKQG
AFKRA
AFLVW
AFZFC
AGABE
AGBYD
AGJUD
AHRGI
AI.
AIDBO
AIOIP
AJCYY
AJPFC
AKMAY
ALMA_UNASSIGNED_HOLDINGS
AMVHM
AQJOH
ARZZG
ATUCA
AYIQA
BBLKV
BCGOX
BENPR
BESQT
BGLVJ
BLZWO
CCPQU
CCQAD
CCUQV
CFBFF
CGQII
CHEAL
CITATION
CJCSC
DOHLZ
DWQXO
EBS
EGQIC
EJD
HCIFZ
HF~
IH6
IOO
JHPGK
KCGVB
KFECR
L7B
LW7
M7S
MVM
NZEOI
OHT
OK1
P2P
PHGZM
PHGZT
PQGLB
PTHSS
RCA
RCD
ROL
S10
TR2
UPT
VH1
WFFJZ
WH7
ZCG
ZMEZD
3V.
7XB
8FE
8FG
8FK
L6V
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
ID FETCH-LOGICAL-c273t-fdebb3d57e45815071334f6ec57b5f701c7443d9f251e23c5c16e9ff6f561c7c3
IEDL.DBID M7S
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000512324000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0008-4395
IngestDate Fri Jul 25 11:48:33 EDT 2025
Sat Nov 29 05:31:02 EST 2025
Tue Nov 18 22:27:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c273t-fdebb3d57e45815071334f6ec57b5f701c7443d9f251e23c5c16e9ff6f561c7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2448879990
PQPubID 4573633
PageCount 8
ParticipantIDs proquest_journals_2448879990
crossref_primary_10_4153_S0008439519000365
crossref_citationtrail_10_4153_S0008439519000365
PublicationCentury 2000
PublicationDate 2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-00
PublicationDecade 2020
PublicationPlace Montreal
PublicationPlace_xml – name: Montreal
PublicationTitle Canadian mathematical bulletin
PublicationYear 2020
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S0008439519000365_r1
Atiyah (S0008439519000365_r2) 1969
Carlitz (S0008439519000365_r4) 1965; 3
S0008439519000365_r9
S0008439519000365_r7
Cvetković (S0008439519000365_r5) 1979
S0008439519000365_r11
S0008439519000365_r8
S0008439519000365_r12
S0008439519000365_r6
LaGrange (S0008439519000365_r10) 2013; 13
S0008439519000365_r3
References_xml – ident: S0008439519000365_r11
  doi: 10.1080/00927870701509156
– volume: 13
  start-page: 109
  year: 2013
  ident: S0008439519000365_r10
  article-title: Eigenvalues of Boolean graphs and Pascal-type matrices
  publication-title: Int. Electron. J. Algebra
– ident: S0008439519000365_r12
  doi: 10.1016/j.laa.2017.04.017
– ident: S0008439519000365_r6
  doi: 10.2307/2304500
– volume-title: Introduction to commutative algebra
  year: 1969
  ident: S0008439519000365_r2
– ident: S0008439519000365_r1
  doi: 10.1006/jabr.1998.7840
– ident: S0008439519000365_r7
  doi: 10.1007/978-1-4613-0163-9
– ident: S0008439519000365_r3
  doi: 10.1080/03081080600792897
– ident: S0008439519000365_r8
  doi: 10.1016/j.laa.2013.02.009
– ident: S0008439519000365_r9
  doi: 10.1016/j.laa.2011.05.042
– volume: 3
  start-page: 81
  year: 1965
  ident: S0008439519000365_r4
  article-title: The characteristic polynomial of a certain matrix of binomial coefficients
  publication-title: Fibonacci Quart.
– volume-title: Spectra of graphs
  year: 1979
  ident: S0008439519000365_r5
SSID ssj0017575
Score 2.1549048
Snippet With entries of the adjacency matrix of a simple graph being regarded as elements of  $\mathbb{F}_{2}$ , it is proved that a finite commutative ring $R$ with...
With entries of the adjacency matrix of a simple graph being regarded as elements of \(\mathbb{F}_{2}\), it is proved that a finite commutative ring \(R\) with...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 58
SubjectTerms Algebra
Boolean
Boolean algebra
Commutativity
Eigenvalues
Fields (mathematics)
Mathematics
Number theory
Rings (mathematics)
Title Spectra of Boolean Graphs Over Finite Fields of Characteristic Two
URI https://www.proquest.com/docview/2448879990
Volume 63
WOSCitedRecordID wos000512324000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Canadian Business & Current Affairs Database
  customDbUrl:
  eissn: 1496-4287
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0017575
  issn: 0008-4395
  databaseCode: 8FQ
  dateStart: 20190301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/cbcacomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1496-4287
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0017575
  issn: 0008-4395
  databaseCode: M7S
  dateStart: 20190301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1496-4287
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0017575
  issn: 0008-4395
  databaseCode: BENPR
  dateStart: 20190301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB209aAHv8VqLTl4EhaTbja7OYktjV6sVSv0FrJfUChJbaL-fXeTtFKEXjwFkg2EndmZNzub9wCu3QQzyT2NpKkFkK-FQAxLhShJXMI9KbRyS7EJOhyyySQc1RtueX2schkTy0AtM2H3yG9NGjLrwcAZ927-gaxqlO2u1hIa29C0LAleeXTvbdVFoIRWCgYuQybxkqqraVIWtn8Iu8ze88KSk4Ws56X1sFzmmujgv195CPs1ynTuK7c4gi2VHsPe04qiNT-BnlWeLxaJk2mnl2UzlaTOg2Wvzp1n495ONLVo1FzUTOZ2UH-N2tkZf2en8B4Nxv1HVAsqIGFQSoG0VJxjSajyCSuRIMa-DpQglBNNXU9Q38cy1Ab0qC4WRHiBCrUOtEFZggp8Bo00S9U5OILzxFc89BTVvgpkSBSRlJhUxwVOEtYCdzmdsajZxq3oxSw2VYe1QPzHAi24Wb0yr6g2Ng1uLw0Q16suj39n_2Lz40vY7dq6uTxL1oZGsfhUV7AjvoppvujANoteOtDsDYaj107pUj-Mzs8U
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58gXrwLb7NQS9CsG2aTXsQ8bUq6qq4grfaJBMQlq1uV8U_5W80abcri-DNg6dCmxaabzLfJPMC2PJSFmnpG6rtXoCGRikaMY1U8NTj0tfKoFc0mxCNRvTwEN8MwWeVC-PCKiudWChqnSl3Rr5raciuB2vOePvPL9R1jXLe1aqFRikWF_jxbrds-d75scV3OwjqJ82jM9rrKkCVpeouNRqlZJoLDHlUmEOMhaaGigvJjfB8JcKQ6dhY5seAKa78GsbG1Iw1NZRQzH53GEZDFggXQhjVb_teC8FF2THBi6glel56US1FMpeR7EXunh8XNWD4IA8O0kDBbfXp_zYrMzDVs6LJQSn2szCE7TmYvOqXoM3n4fDO5ZB2UpIZcphlLUzb5NRV587JtV2-pP7krG17wZbO3aCjgdLVpPmeLcD9n_zEIoy0szYuAVFSpiHK2EdhQqzpmCPXglsql4qlabQMXgVfonrV1F1Tj1Zid1UO8eQH4suw03_luSwl8tvgtQrwpKdV8uQb7ZXfH2_C-Fnz6jK5PG9crMJE4M4Iiri5NRjpdl5xHcbUW_cp72wUAkzg8a9l4wv9byla
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9swFH7q2mkah_2ATWNjzAd2mWSR1HGdHBBagbKqo6sGSNxCbD9LSFUDTTe0f42_juf86FRN4sZhp0iJEyl-z_6-52d_D2AnyERsdei4pViAR84YHguLXMkskDq0xmFQFptQ43F8cZFMWnDXnIXx2yqbObGcqG1u_Br5LsEQjQeiM8Guq7dFTA4H-9c33FeQ8pnWppxG5SIj_HNL4VuxNzwkW3_udgdHZwffeF1hgBuC7QV3FrUWViqMZFxSIyEi10MjlZZOBaFRUSRs4ogFYFcYacIeJs71HNEOo4yg7z6BjiKSEbWh0z8aT34ucxhKqqp-QhBzgn1Z5VQJMIU_nxzE_l6YlIowchUVV0GhRLrBy_-5j17Bi5pfs6_VgHgNLZytw9rJUpy22ID-qT9dOs9Y7lg_z6eYzdix1-0u2A8a2Gxw5Xk4XXBqC9_oYEXUmp3d5m_g_FF-4i20Z_kM3wEzWmcR6iRE5SLs2USitEoSyGsjsizehKAxZWpqnXVf7mOaUrzlrZ_-Y_1N-LJ85boSGXmo8VZj_LSeb4r0r-XfP_z4Ezwjl0i_D8ejD_C86xcPyg11W9BezH_hR3hqfi-uivl27c0MLh_bOe4BYLgzcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectra+of+Boolean+Graphs+Over+Finite+Fields+of+Characteristic+Two&rft.jtitle=Canadian+mathematical+bulletin&rft.au=Dillery%2C+D+Scott&rft.au=LaGrange%2C+John+D&rft.date=2020-03-01&rft.pub=Cambridge+University+Press&rft.issn=0008-4395&rft.volume=63&rft.issue=1&rft.spage=58&rft.epage=65&rft_id=info:doi/10.4153%2FS0008439519000365&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4395&client=summon