PIN(2)-monopole Floer homology and the Rokhlin invariant

We show that the bar version of the $\text{Pin}(2)$ -monopole Floer homology of a three-manifold $Y$ equipped with a self-conjugate spin $^{c}$ structure $\mathfrak{s}$ is determined by the triple cup product of $Y$ together with the Rokhlin invariants of the spin structures inducing $\mathfrak{s}$...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica Jg. 154; H. 12; S. 2681 - 2700
1. Verfasser: Lin, Francesco
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Cambridge University Press 01.12.2018
Schlagworte:
ISSN:0010-437X, 1570-5846
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the bar version of the $\text{Pin}(2)$ -monopole Floer homology of a three-manifold $Y$ equipped with a self-conjugate spin $^{c}$ structure $\mathfrak{s}$ is determined by the triple cup product of $Y$ together with the Rokhlin invariants of the spin structures inducing $\mathfrak{s}$ . This is a manifestation of mod  $2$ index theory and can be interpreted as a three-dimensional counterpart of Atiyah’s classical results regarding spin structures on Riemann surfaces.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X18007510