PIN(2)-monopole Floer homology and the Rokhlin invariant

We show that the bar version of the $\text{Pin}(2)$ -monopole Floer homology of a three-manifold $Y$ equipped with a self-conjugate spin $^{c}$ structure $\mathfrak{s}$ is determined by the triple cup product of $Y$ together with the Rokhlin invariants of the spin structures inducing $\mathfrak{s}$...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Compositio mathematica Ročník 154; číslo 12; s. 2681 - 2700
Hlavní autor: Lin, Francesco
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Cambridge University Press 01.12.2018
Témata:
ISSN:0010-437X, 1570-5846
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We show that the bar version of the $\text{Pin}(2)$ -monopole Floer homology of a three-manifold $Y$ equipped with a self-conjugate spin $^{c}$ structure $\mathfrak{s}$ is determined by the triple cup product of $Y$ together with the Rokhlin invariants of the spin structures inducing $\mathfrak{s}$ . This is a manifestation of mod  $2$ index theory and can be interpreted as a three-dimensional counterpart of Atiyah’s classical results regarding spin structures on Riemann surfaces.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X18007510