3-D Object Detection for Multiframe 4-D Automotive Millimeter-Wave Radar Point Cloud

Object detection is a crucial task in autonomous driving. Currently, object-detection methods for autonomous driving systems are primarily based on information from cameras and light detection and ranging (LiDAR), which may experience interference from complex lighting or poor weather. At present, t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal Vol. 23; no. 11; pp. 11125 - 11138
Main Authors: Tan, Bin, Ma, Zhixiong, Zhu, Xichan, Li, Sen, Zheng, Lianqing, Chen, Sihan, Huang, Libo, Bai, Jie
Format: Journal Article
Language:English
Published: New York The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 01.06.2023
Subjects:
ISSN:1530-437X, 1558-1748
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Object detection is a crucial task in autonomous driving. Currently, object-detection methods for autonomous driving systems are primarily based on information from cameras and light detection and ranging (LiDAR), which may experience interference from complex lighting or poor weather. At present, the 4-D ([Formula Omitted], [Formula Omitted], [Formula Omitted], [Formula Omitted] millimeter-wave radar can provide a denser point cloud to achieve 3-D object-detection tasks that are difficult to complete with traditional millimeter-wave radar. Existing 3-D object point-cloud-detection algorithms are mostly based on 3-D LiDAR; these methods are not necessarily applicable to millimeter-wave radars, which have sparser data and more noise and include velocity information. This study proposes a 3-D object-detection framework based on a multiframe 4-D millimeter-wave radar point cloud. First, the ego vehicle velocity information is estimated by the millimeter-wave radar, and the relative velocity information of the millimeter-wave radar point cloud is compensated for the absolute velocity. Second, by matching between millimeter-wave radar frames, the multiframe millimeter-wave radar point cloud is matched to the last frame. Finally, the object is detected by the proposed multiframe millimeter-wave radar point-cloud-detection network. Experiments are performed using our newly recorded TJ4DRadSet dataset in a complex traffic environment. The results showed that the proposed object-detection framework outperformed the comparison methods based on the 3-D mean average precision. The experimental results and methods can be used as the baseline for other multiframe 4-D millimeter-wave radar-detection algorithms.
AbstractList Object detection is a crucial task in autonomous driving. Currently, object-detection methods for autonomous driving systems are primarily based on information from cameras and light detection and ranging (LiDAR), which may experience interference from complex lighting or poor weather. At present, the 4-D ([Formula Omitted], [Formula Omitted], [Formula Omitted], [Formula Omitted] millimeter-wave radar can provide a denser point cloud to achieve 3-D object-detection tasks that are difficult to complete with traditional millimeter-wave radar. Existing 3-D object point-cloud-detection algorithms are mostly based on 3-D LiDAR; these methods are not necessarily applicable to millimeter-wave radars, which have sparser data and more noise and include velocity information. This study proposes a 3-D object-detection framework based on a multiframe 4-D millimeter-wave radar point cloud. First, the ego vehicle velocity information is estimated by the millimeter-wave radar, and the relative velocity information of the millimeter-wave radar point cloud is compensated for the absolute velocity. Second, by matching between millimeter-wave radar frames, the multiframe millimeter-wave radar point cloud is matched to the last frame. Finally, the object is detected by the proposed multiframe millimeter-wave radar point-cloud-detection network. Experiments are performed using our newly recorded TJ4DRadSet dataset in a complex traffic environment. The results showed that the proposed object-detection framework outperformed the comparison methods based on the 3-D mean average precision. The experimental results and methods can be used as the baseline for other multiframe 4-D millimeter-wave radar-detection algorithms.
Author Zhu, Xichan
Li, Sen
Ma, Zhixiong
Zheng, Lianqing
Bai, Jie
Huang, Libo
Chen, Sihan
Tan, Bin
Author_xml – sequence: 1
  givenname: Bin
  surname: Tan
  fullname: Tan, Bin
  organization: School of Automotive Studies, Tongji University, Shanghai, China
– sequence: 2
  givenname: Zhixiong
  orcidid: 0000-0002-6060-5592
  surname: Ma
  fullname: Ma, Zhixiong
  organization: School of Automotive Studies, Tongji University, Shanghai, China
– sequence: 3
  givenname: Xichan
  surname: Zhu
  fullname: Zhu, Xichan
  organization: School of Automotive Studies, Tongji University, Shanghai, China
– sequence: 4
  givenname: Sen
  surname: Li
  fullname: Li, Sen
  organization: School of Automotive Studies, Tongji University, Shanghai, China
– sequence: 5
  givenname: Lianqing
  orcidid: 0000-0002-7186-4055
  surname: Zheng
  fullname: Zheng, Lianqing
  organization: School of Automotive Studies, Tongji University, Shanghai, China
– sequence: 6
  givenname: Sihan
  orcidid: 0000-0002-8394-9232
  surname: Chen
  fullname: Chen, Sihan
  organization: School of Automotive Studies, Tongji University, Shanghai, China
– sequence: 7
  givenname: Libo
  surname: Huang
  fullname: Huang, Libo
  organization: School of Information and Electricity, Zhejiang University City College, Hangzhou, Zhejiang, China
– sequence: 8
  givenname: Jie
  surname: Bai
  fullname: Bai, Jie
  organization: School of Information and Electricity, Zhejiang University City College, Hangzhou, Zhejiang, China
BookMark eNp9kMtKAzEUhoNUsK0-gLuA66m5TJLJsrT1RmtFK7oLaSYDKdNJzWQE394M7cqFq3Ph-8-BbwQGjW8sANcYTTBG8vbpbfE8IYiQCSVY8pyegSFmrMiwyItB31OU5VR8XoBR2-4QwlIwMQQbms3heruzJsK5jak438DKB7jq6uiqoPcW5omZdtHvfXTfFq5cXbt9gkP2odP8qksd4It3TYSz2nflJTivdN3aq1Mdg_e7xWb2kC3X94-z6TIzRNCYWSxzai2jRaVZSQ3VgmjBLOdGS0MwZogbXuZpha3c2hILJjkptrTkVGJLx-DmePcQ_Fdn26h2vgtNeqlIQTDihURFovCRMsG3bbCVOgS31-FHYaR6eaqXp3p56iQvZcSfjHFR925i0K7-J_kLigJ0Fw
CitedBy_id crossref_primary_10_1016_j_eswa_2025_127515
crossref_primary_10_1016_j_measurement_2024_116568
crossref_primary_10_1109_JSEN_2024_3382669
crossref_primary_10_1109_JSEN_2024_3465019
crossref_primary_10_1109_JSEN_2025_3540660
crossref_primary_10_1109_TAES_2024_3484391
crossref_primary_10_1109_TIV_2024_3424942
crossref_primary_10_1109_JIOT_2025_3579892
crossref_primary_10_1109_TIM_2025_3562250
crossref_primary_10_1109_TIV_2024_3380244
crossref_primary_10_3390_s23239429
crossref_primary_10_1109_TITS_2025_3554781
crossref_primary_10_3390_rs16142640
crossref_primary_10_1016_j_cja_2025_103560
crossref_primary_10_1109_TITS_2025_3554313
crossref_primary_10_1016_j_neucom_2024_127635
crossref_primary_10_1109_JSEN_2024_3479214
crossref_primary_10_1109_JSEN_2025_3564825
crossref_primary_10_1109_JSEN_2024_3471650
crossref_primary_10_1109_JSEN_2025_3528986
crossref_primary_10_1016_j_engappai_2025_110747
crossref_primary_10_1109_JSEN_2024_3393030
crossref_primary_10_1109_JSEN_2024_3459468
crossref_primary_10_1016_j_compeleceng_2025_110696
crossref_primary_10_1109_TIV_2023_3319546
crossref_primary_10_1109_COMST_2024_3409556
crossref_primary_10_1109_LSENS_2024_3456840
crossref_primary_10_1109_LRA_2025_3536840
crossref_primary_10_1038_s41597_025_04698_2
crossref_primary_10_1109_JSEN_2024_3410271
crossref_primary_10_1109_JSEN_2024_3516786
crossref_primary_10_1109_TIV_2023_3307157
crossref_primary_10_1109_JSEN_2023_3347893
crossref_primary_10_3390_rs16203907
crossref_primary_10_1109_JSEN_2024_3421671
crossref_primary_10_1109_JSEN_2023_3260193
crossref_primary_10_3390_s25185857
crossref_primary_10_1109_JSEN_2025_3556518
crossref_primary_10_3390_rs16020366
crossref_primary_10_1007_s11370_024_00563_0
crossref_primary_10_3390_rs16234508
Cites_doi 10.1109/ITSC.2016.7795967
10.1109/CVPR.2018.00472
10.1109/ICCV48922.2021.00274
10.1109/ITSC55140.2022.9922539
10.1109/IM.2001.924423
10.1109/ICMIM.2017.7918863
10.1109/ITSC48978.2021.9564754
10.1007/978-3-030-58523-5_16
10.1109/CVPR42600.2020.01151
10.1109/LRA.2022.3147324
10.23919/ICIF.2018.8455344
10.1016/j.sna.2021.112566
10.1109/CVPR.2019.00086
10.1109/ICRA.2019.8794264
10.1109/ITSC.2013.6728341
10.3390/s18103337
10.1109/CVPR42600.2020.01054
10.1109/IVS.2018.8500607
10.1109/ICCV.2019.00204
10.1109/CVPR42600.2020.01140
10.1609/aaai.v34i07.6837
10.1109/JSEN.2020.3023243
10.1016/j.neucom.2021.08.155
10.1007/978-3-030-58523-5_29
10.1016/j.inffus.2020.11.002
10.1109/ITSC.2019.8917000
10.1109/ICIP40778.2020.9191134
10.1109/CVPR46437.2021.01161
10.1109/CVPR42600.2020.01105
10.1109/ACCESS.2020.3032034
10.1109/IVS.2019.8813841
10.1109/CVPR.2019.01298
10.1109/SDF.2017.8126350
10.1109/ICMIM.2016.7533931
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2022.3219643
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 11138
ExternalDocumentID 10_1109_JSEN_2022_3219643
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
AAWTH
AAYXX
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
7SP
7U5
8FD
AARMG
ABAZT
L7M
ID FETCH-LOGICAL-c273t-e1943ee538fa5d3c3a72a75e66ca9c211506c6d475e1e9bed1759628b3d6391e3
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001003468000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 08:29:30 EDT 2025
Tue Nov 18 22:14:45 EST 2025
Sat Nov 29 06:39:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c273t-e1943ee538fa5d3c3a72a75e66ca9c211506c6d475e1e9bed1759628b3d6391e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7186-4055
0000-0002-6060-5592
0000-0002-8394-9232
PQID 2821068908
PQPubID 75733
PageCount 14
ParticipantIDs proquest_journals_2821068908
crossref_primary_10_1109_JSEN_2022_3219643
crossref_citationtrail_10_1109_JSEN_2022_3219643
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationYear 2023
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
meyer (ref7) 2019
ref30
ref11
ref33
meyer (ref9) 2019
ref10
derpanis (ref32) 2010; 4
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref4
ref3
ref6
ref5
References_xml – ident: ref30
  doi: 10.1109/ITSC.2016.7795967
– ident: ref14
  doi: 10.1109/CVPR.2018.00472
– ident: ref36
  doi: 10.1109/ICCV48922.2021.00274
– ident: ref11
  doi: 10.1109/ITSC55140.2022.9922539
– ident: ref33
  doi: 10.1109/IM.2001.924423
– start-page: 129
  year: 2019
  ident: ref7
  article-title: Automotive radar dataset for deep learning based 3D object detection
  publication-title: Proc Eur Radar Conf (EuRAD)
– ident: ref3
  doi: 10.1109/ICMIM.2017.7918863
– ident: ref10
  doi: 10.1109/ITSC48978.2021.9564754
– ident: ref21
  doi: 10.1007/978-3-030-58523-5_16
– ident: ref23
  doi: 10.1109/CVPR42600.2020.01151
– ident: ref8
  doi: 10.1109/LRA.2022.3147324
– ident: ref6
  doi: 10.23919/ICIF.2018.8455344
– ident: ref1
  doi: 10.1016/j.sna.2021.112566
– ident: ref19
  doi: 10.1109/CVPR.2019.00086
– ident: ref22
  doi: 10.1109/ICRA.2019.8794264
– ident: ref27
  doi: 10.1109/ITSC.2013.6728341
– volume: 4
  start-page: 2
  year: 2010
  ident: ref32
  publication-title: Overview of the RANSAC Algorithm
– start-page: 133
  year: 2019
  ident: ref9
  article-title: Deep learning based 3D object detection for automotive radar and camera
  publication-title: Proc Eur Radar Conf (EuRAD)
– ident: ref15
  doi: 10.3390/s18103337
– ident: ref17
  doi: 10.1109/CVPR42600.2020.01054
– ident: ref4
  doi: 10.1109/IVS.2018.8500607
– ident: ref20
  doi: 10.1109/ICCV.2019.00204
– ident: ref24
  doi: 10.1109/CVPR42600.2020.01140
– ident: ref35
  doi: 10.1609/aaai.v34i07.6837
– ident: ref28
  doi: 10.1109/JSEN.2020.3023243
– ident: ref12
  doi: 10.1016/j.neucom.2021.08.155
– ident: ref31
  doi: 10.1007/978-3-030-58523-5_29
– ident: ref13
  doi: 10.1016/j.inffus.2020.11.002
– ident: ref5
  doi: 10.1109/ITSC.2019.8917000
– ident: ref37
  doi: 10.1109/ICIP40778.2020.9191134
– ident: ref34
  doi: 10.1109/CVPR46437.2021.01161
– ident: ref18
  doi: 10.1109/CVPR42600.2020.01105
– ident: ref26
  doi: 10.1109/ACCESS.2020.3032034
– ident: ref29
  doi: 10.1109/IVS.2019.8813841
– ident: ref16
  doi: 10.1109/CVPR.2019.01298
– ident: ref2
  doi: 10.1109/SDF.2017.8126350
– ident: ref25
  doi: 10.1109/ICMIM.2016.7533931
SSID ssj0019757
Score 2.561813
Snippet Object detection is a crucial task in autonomous driving. Currently, object-detection methods for autonomous driving systems are primarily based on information...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 11125
SubjectTerms Algorithms
Driving
Lidar
Millimeter waves
Object recognition
Radar detection
Three dimensional models
Velocity
Title 3-D Object Detection for Multiframe 4-D Automotive Millimeter-Wave Radar Point Cloud
URI https://www.proquest.com/docview/2821068908
Volume 23
WOSCitedRecordID wos001003468000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKQGIcEAzQBgP5wIkoENtJbB-nMUAIysSKqLhEieOwSl06tenU_2H_9J4_krSbQOzAJWqf0ien75f3Yb8PhF4XvIpUTFQomVBhnBMJ71wpQvAeZFTIIuWVbZn_hQ-HYjyWx4PBZVsLczHldS1WK3n-X0UNNBC2KZ29hbg7pkCAzyB0uILY4fpPgmfh--BbYbZXQJk0WnXJhLbWtjLJWEEM9xwsG5uJZ6YPmU2XM5MYE_4004i-52U-D45nk7oJDqez5cYwTxMeBguIfs2YnvUV2fjfTX-fdJD7ap3TX6eTFSzjd79NvTTkscnZ73OCbGLBia9N8zsRlPUZU53yjMKY8bGzLZ6WQJTKXTfNVuO6CuMWWWRNf4LmdXXQ3hjDd9f85aamt41SP58cDSHIp_Qto7a1WG_W2qP8a9auy0G00U8kM8MiMywyz-IOukt5IokrBuyOpCS3bWO7h_RH5MDi3Y1VbDo5mzbeOi6jR-ihjzjwgUPKYzTQ9Q56sNaHcgfd_6h95_InaAT4wQ4_uMMPBvzgHj8Y8IN7_OBr-MEWP9jiB1v8PEU_PhyNDj-FfvRGqMCfbUJNZMy0BmtY5UnJFMs5zXmi01TlUlETRqQqLWMgES0LXYIXKlMqClaCy0s0e4a26lmtdxGuIirzqEoqoqo4lUqUFXjxUuRlIsB9LvdQ1P5XmfJ96c14lGn2RwntoTfdT85dU5a_3bzfCiDzL8Uio4KSKBUyEs9vw-sF2u6Bv4-2mvlSv0T31EUzWcxfWbxcAW3Yhd0
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3-D+Object+Detection+for+Multiframe+4-D+Automotive+Millimeter-Wave+Radar+Point+Cloud&rft.jtitle=IEEE+sensors+journal&rft.au=Tan%2C+Bin&rft.au=Ma%2C+Zhixiong&rft.au=Zhu%2C+Xichan&rft.au=Li%2C+Sen&rft.date=2023-06-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=23&rft.issue=11&rft.spage=11125&rft.epage=11138&rft_id=info:doi/10.1109%2FJSEN.2022.3219643&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2022_3219643
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon