3-D Object Detection for Multiframe 4-D Automotive Millimeter-Wave Radar Point Cloud
Object detection is a crucial task in autonomous driving. Currently, object-detection methods for autonomous driving systems are primarily based on information from cameras and light detection and ranging (LiDAR), which may experience interference from complex lighting or poor weather. At present, t...
Saved in:
| Published in: | IEEE sensors journal Vol. 23; no. 11; pp. 11125 - 11138 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
01.06.2023
|
| Subjects: | |
| ISSN: | 1530-437X, 1558-1748 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Object detection is a crucial task in autonomous driving. Currently, object-detection methods for autonomous driving systems are primarily based on information from cameras and light detection and ranging (LiDAR), which may experience interference from complex lighting or poor weather. At present, the 4-D ([Formula Omitted], [Formula Omitted], [Formula Omitted], [Formula Omitted] millimeter-wave radar can provide a denser point cloud to achieve 3-D object-detection tasks that are difficult to complete with traditional millimeter-wave radar. Existing 3-D object point-cloud-detection algorithms are mostly based on 3-D LiDAR; these methods are not necessarily applicable to millimeter-wave radars, which have sparser data and more noise and include velocity information. This study proposes a 3-D object-detection framework based on a multiframe 4-D millimeter-wave radar point cloud. First, the ego vehicle velocity information is estimated by the millimeter-wave radar, and the relative velocity information of the millimeter-wave radar point cloud is compensated for the absolute velocity. Second, by matching between millimeter-wave radar frames, the multiframe millimeter-wave radar point cloud is matched to the last frame. Finally, the object is detected by the proposed multiframe millimeter-wave radar point-cloud-detection network. Experiments are performed using our newly recorded TJ4DRadSet dataset in a complex traffic environment. The results showed that the proposed object-detection framework outperformed the comparison methods based on the 3-D mean average precision. The experimental results and methods can be used as the baseline for other multiframe 4-D millimeter-wave radar-detection algorithms. |
|---|---|
| AbstractList | Object detection is a crucial task in autonomous driving. Currently, object-detection methods for autonomous driving systems are primarily based on information from cameras and light detection and ranging (LiDAR), which may experience interference from complex lighting or poor weather. At present, the 4-D ([Formula Omitted], [Formula Omitted], [Formula Omitted], [Formula Omitted] millimeter-wave radar can provide a denser point cloud to achieve 3-D object-detection tasks that are difficult to complete with traditional millimeter-wave radar. Existing 3-D object point-cloud-detection algorithms are mostly based on 3-D LiDAR; these methods are not necessarily applicable to millimeter-wave radars, which have sparser data and more noise and include velocity information. This study proposes a 3-D object-detection framework based on a multiframe 4-D millimeter-wave radar point cloud. First, the ego vehicle velocity information is estimated by the millimeter-wave radar, and the relative velocity information of the millimeter-wave radar point cloud is compensated for the absolute velocity. Second, by matching between millimeter-wave radar frames, the multiframe millimeter-wave radar point cloud is matched to the last frame. Finally, the object is detected by the proposed multiframe millimeter-wave radar point-cloud-detection network. Experiments are performed using our newly recorded TJ4DRadSet dataset in a complex traffic environment. The results showed that the proposed object-detection framework outperformed the comparison methods based on the 3-D mean average precision. The experimental results and methods can be used as the baseline for other multiframe 4-D millimeter-wave radar-detection algorithms. |
| Author | Zhu, Xichan Li, Sen Ma, Zhixiong Zheng, Lianqing Bai, Jie Huang, Libo Chen, Sihan Tan, Bin |
| Author_xml | – sequence: 1 givenname: Bin surname: Tan fullname: Tan, Bin organization: School of Automotive Studies, Tongji University, Shanghai, China – sequence: 2 givenname: Zhixiong orcidid: 0000-0002-6060-5592 surname: Ma fullname: Ma, Zhixiong organization: School of Automotive Studies, Tongji University, Shanghai, China – sequence: 3 givenname: Xichan surname: Zhu fullname: Zhu, Xichan organization: School of Automotive Studies, Tongji University, Shanghai, China – sequence: 4 givenname: Sen surname: Li fullname: Li, Sen organization: School of Automotive Studies, Tongji University, Shanghai, China – sequence: 5 givenname: Lianqing orcidid: 0000-0002-7186-4055 surname: Zheng fullname: Zheng, Lianqing organization: School of Automotive Studies, Tongji University, Shanghai, China – sequence: 6 givenname: Sihan orcidid: 0000-0002-8394-9232 surname: Chen fullname: Chen, Sihan organization: School of Automotive Studies, Tongji University, Shanghai, China – sequence: 7 givenname: Libo surname: Huang fullname: Huang, Libo organization: School of Information and Electricity, Zhejiang University City College, Hangzhou, Zhejiang, China – sequence: 8 givenname: Jie surname: Bai fullname: Bai, Jie organization: School of Information and Electricity, Zhejiang University City College, Hangzhou, Zhejiang, China |
| BookMark | eNp9kMtKAzEUhoNUsK0-gLuA66m5TJLJsrT1RmtFK7oLaSYDKdNJzWQE394M7cqFq3Ph-8-BbwQGjW8sANcYTTBG8vbpbfE8IYiQCSVY8pyegSFmrMiwyItB31OU5VR8XoBR2-4QwlIwMQQbms3heruzJsK5jak438DKB7jq6uiqoPcW5omZdtHvfXTfFq5cXbt9gkP2odP8qksd4It3TYSz2nflJTivdN3aq1Mdg_e7xWb2kC3X94-z6TIzRNCYWSxzai2jRaVZSQ3VgmjBLOdGS0MwZogbXuZpha3c2hILJjkptrTkVGJLx-DmePcQ_Fdn26h2vgtNeqlIQTDihURFovCRMsG3bbCVOgS31-FHYaR6eaqXp3p56iQvZcSfjHFR925i0K7-J_kLigJ0Fw |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_127515 crossref_primary_10_1016_j_measurement_2024_116568 crossref_primary_10_1109_JSEN_2024_3382669 crossref_primary_10_1109_JSEN_2024_3465019 crossref_primary_10_1109_JSEN_2025_3540660 crossref_primary_10_1109_TAES_2024_3484391 crossref_primary_10_1109_TIV_2024_3424942 crossref_primary_10_1109_JIOT_2025_3579892 crossref_primary_10_1109_TIM_2025_3562250 crossref_primary_10_1109_TIV_2024_3380244 crossref_primary_10_3390_s23239429 crossref_primary_10_1109_TITS_2025_3554781 crossref_primary_10_3390_rs16142640 crossref_primary_10_1016_j_cja_2025_103560 crossref_primary_10_1109_TITS_2025_3554313 crossref_primary_10_1016_j_neucom_2024_127635 crossref_primary_10_1109_JSEN_2024_3479214 crossref_primary_10_1109_JSEN_2025_3564825 crossref_primary_10_1109_JSEN_2024_3471650 crossref_primary_10_1109_JSEN_2025_3528986 crossref_primary_10_1016_j_engappai_2025_110747 crossref_primary_10_1109_JSEN_2024_3393030 crossref_primary_10_1109_JSEN_2024_3459468 crossref_primary_10_1016_j_compeleceng_2025_110696 crossref_primary_10_1109_TIV_2023_3319546 crossref_primary_10_1109_COMST_2024_3409556 crossref_primary_10_1109_LSENS_2024_3456840 crossref_primary_10_1109_LRA_2025_3536840 crossref_primary_10_1038_s41597_025_04698_2 crossref_primary_10_1109_JSEN_2024_3410271 crossref_primary_10_1109_JSEN_2024_3516786 crossref_primary_10_1109_TIV_2023_3307157 crossref_primary_10_1109_JSEN_2023_3347893 crossref_primary_10_3390_rs16203907 crossref_primary_10_1109_JSEN_2024_3421671 crossref_primary_10_1109_JSEN_2023_3260193 crossref_primary_10_3390_s25185857 crossref_primary_10_1109_JSEN_2025_3556518 crossref_primary_10_3390_rs16020366 crossref_primary_10_1007_s11370_024_00563_0 crossref_primary_10_3390_rs16234508 |
| Cites_doi | 10.1109/ITSC.2016.7795967 10.1109/CVPR.2018.00472 10.1109/ICCV48922.2021.00274 10.1109/ITSC55140.2022.9922539 10.1109/IM.2001.924423 10.1109/ICMIM.2017.7918863 10.1109/ITSC48978.2021.9564754 10.1007/978-3-030-58523-5_16 10.1109/CVPR42600.2020.01151 10.1109/LRA.2022.3147324 10.23919/ICIF.2018.8455344 10.1016/j.sna.2021.112566 10.1109/CVPR.2019.00086 10.1109/ICRA.2019.8794264 10.1109/ITSC.2013.6728341 10.3390/s18103337 10.1109/CVPR42600.2020.01054 10.1109/IVS.2018.8500607 10.1109/ICCV.2019.00204 10.1109/CVPR42600.2020.01140 10.1609/aaai.v34i07.6837 10.1109/JSEN.2020.3023243 10.1016/j.neucom.2021.08.155 10.1007/978-3-030-58523-5_29 10.1016/j.inffus.2020.11.002 10.1109/ITSC.2019.8917000 10.1109/ICIP40778.2020.9191134 10.1109/CVPR46437.2021.01161 10.1109/CVPR42600.2020.01105 10.1109/ACCESS.2020.3032034 10.1109/IVS.2019.8813841 10.1109/CVPR.2019.01298 10.1109/SDF.2017.8126350 10.1109/ICMIM.2016.7533931 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2022.3219643 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 11138 |
| ExternalDocumentID | 10_1109_JSEN_2022_3219643 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AASAJ AAWTH AAYXX ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CITATION CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ 7SP 7U5 8FD AARMG ABAZT L7M |
| ID | FETCH-LOGICAL-c273t-e1943ee538fa5d3c3a72a75e66ca9c211506c6d475e1e9bed1759628b3d6391e3 |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001003468000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 08:29:30 EDT 2025 Tue Nov 18 22:14:45 EST 2025 Sat Nov 29 06:39:24 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c273t-e1943ee538fa5d3c3a72a75e66ca9c211506c6d475e1e9bed1759628b3d6391e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7186-4055 0000-0002-6060-5592 0000-0002-8394-9232 |
| PQID | 2821068908 |
| PQPubID | 75733 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2821068908 crossref_primary_10_1109_JSEN_2022_3219643 crossref_citationtrail_10_1109_JSEN_2022_3219643 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationYear | 2023 |
| Publisher | The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 meyer (ref7) 2019 ref30 ref11 ref33 meyer (ref9) 2019 ref10 derpanis (ref32) 2010; 4 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref30 doi: 10.1109/ITSC.2016.7795967 – ident: ref14 doi: 10.1109/CVPR.2018.00472 – ident: ref36 doi: 10.1109/ICCV48922.2021.00274 – ident: ref11 doi: 10.1109/ITSC55140.2022.9922539 – ident: ref33 doi: 10.1109/IM.2001.924423 – start-page: 129 year: 2019 ident: ref7 article-title: Automotive radar dataset for deep learning based 3D object detection publication-title: Proc Eur Radar Conf (EuRAD) – ident: ref3 doi: 10.1109/ICMIM.2017.7918863 – ident: ref10 doi: 10.1109/ITSC48978.2021.9564754 – ident: ref21 doi: 10.1007/978-3-030-58523-5_16 – ident: ref23 doi: 10.1109/CVPR42600.2020.01151 – ident: ref8 doi: 10.1109/LRA.2022.3147324 – ident: ref6 doi: 10.23919/ICIF.2018.8455344 – ident: ref1 doi: 10.1016/j.sna.2021.112566 – ident: ref19 doi: 10.1109/CVPR.2019.00086 – ident: ref22 doi: 10.1109/ICRA.2019.8794264 – ident: ref27 doi: 10.1109/ITSC.2013.6728341 – volume: 4 start-page: 2 year: 2010 ident: ref32 publication-title: Overview of the RANSAC Algorithm – start-page: 133 year: 2019 ident: ref9 article-title: Deep learning based 3D object detection for automotive radar and camera publication-title: Proc Eur Radar Conf (EuRAD) – ident: ref15 doi: 10.3390/s18103337 – ident: ref17 doi: 10.1109/CVPR42600.2020.01054 – ident: ref4 doi: 10.1109/IVS.2018.8500607 – ident: ref20 doi: 10.1109/ICCV.2019.00204 – ident: ref24 doi: 10.1109/CVPR42600.2020.01140 – ident: ref35 doi: 10.1609/aaai.v34i07.6837 – ident: ref28 doi: 10.1109/JSEN.2020.3023243 – ident: ref12 doi: 10.1016/j.neucom.2021.08.155 – ident: ref31 doi: 10.1007/978-3-030-58523-5_29 – ident: ref13 doi: 10.1016/j.inffus.2020.11.002 – ident: ref5 doi: 10.1109/ITSC.2019.8917000 – ident: ref37 doi: 10.1109/ICIP40778.2020.9191134 – ident: ref34 doi: 10.1109/CVPR46437.2021.01161 – ident: ref18 doi: 10.1109/CVPR42600.2020.01105 – ident: ref26 doi: 10.1109/ACCESS.2020.3032034 – ident: ref29 doi: 10.1109/IVS.2019.8813841 – ident: ref16 doi: 10.1109/CVPR.2019.01298 – ident: ref2 doi: 10.1109/SDF.2017.8126350 – ident: ref25 doi: 10.1109/ICMIM.2016.7533931 |
| SSID | ssj0019757 |
| Score | 2.561813 |
| Snippet | Object detection is a crucial task in autonomous driving. Currently, object-detection methods for autonomous driving systems are primarily based on information... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 11125 |
| SubjectTerms | Algorithms Driving Lidar Millimeter waves Object recognition Radar detection Three dimensional models Velocity |
| Title | 3-D Object Detection for Multiframe 4-D Automotive Millimeter-Wave Radar Point Cloud |
| URI | https://www.proquest.com/docview/2821068908 |
| Volume | 23 |
| WOSCitedRecordID | wos001003468000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKQGIcEAzQBgP5wIkoENtJbB-nMUAIysSKqLhEieOwSl06tenU_2H_9J4_krSbQOzAJWqf0ien75f3Yb8PhF4XvIpUTFQomVBhnBMJ71wpQvAeZFTIIuWVbZn_hQ-HYjyWx4PBZVsLczHldS1WK3n-X0UNNBC2KZ29hbg7pkCAzyB0uILY4fpPgmfh--BbYbZXQJk0WnXJhLbWtjLJWEEM9xwsG5uJZ6YPmU2XM5MYE_4004i-52U-D45nk7oJDqez5cYwTxMeBguIfs2YnvUV2fjfTX-fdJD7ap3TX6eTFSzjd79NvTTkscnZ73OCbGLBia9N8zsRlPUZU53yjMKY8bGzLZ6WQJTKXTfNVuO6CuMWWWRNf4LmdXXQ3hjDd9f85aamt41SP58cDSHIp_Qto7a1WG_W2qP8a9auy0G00U8kM8MiMywyz-IOukt5IokrBuyOpCS3bWO7h_RH5MDi3Y1VbDo5mzbeOi6jR-ihjzjwgUPKYzTQ9Q56sNaHcgfd_6h95_InaAT4wQ4_uMMPBvzgHj8Y8IN7_OBr-MEWP9jiB1v8PEU_PhyNDj-FfvRGqMCfbUJNZMy0BmtY5UnJFMs5zXmi01TlUlETRqQqLWMgES0LXYIXKlMqClaCy0s0e4a26lmtdxGuIirzqEoqoqo4lUqUFXjxUuRlIsB9LvdQ1P5XmfJ96c14lGn2RwntoTfdT85dU5a_3bzfCiDzL8Uio4KSKBUyEs9vw-sF2u6Bv4-2mvlSv0T31EUzWcxfWbxcAW3Yhd0 |
| linkProvider | IEEE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3-D+Object+Detection+for+Multiframe+4-D+Automotive+Millimeter-Wave+Radar+Point+Cloud&rft.jtitle=IEEE+sensors+journal&rft.au=Tan%2C+Bin&rft.au=Ma%2C+Zhixiong&rft.au=Zhu%2C+Xichan&rft.au=Li%2C+Sen&rft.date=2023-06-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=23&rft.issue=11&rft.spage=11125&rft.epage=11138&rft_id=info:doi/10.1109%2FJSEN.2022.3219643&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2022_3219643 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |