A symbolic-numerical algorithm for the computation of matrix elements in the parametric eigenvalue problem

A symbolic-numerical algorithm for the computation of the matrix elements in the parametric eigenvalue problem to a prescribed accuracy is presented. A procedure for calculating the oblate angular spheroidal functions that depend on a parameter is discussed. This procedure also yields the correspond...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Programming and computer software Ročník 33; číslo 2; s. 105 - 116
Hlavní autoři: Vinitsky, S. I., Gerdt, V. P., Gusev, A. A., Kaschiev, M. S., Rostovtsev, V. A., Samoilov, V. N., Tyupikova, T. V., Chuluunbaatar, O.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer Nature B.V 01.03.2007
Témata:
ISSN:0361-7688, 1608-3261
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A symbolic-numerical algorithm for the computation of the matrix elements in the parametric eigenvalue problem to a prescribed accuracy is presented. A procedure for calculating the oblate angular spheroidal functions that depend on a parameter is discussed. This procedure also yields the corresponding eigenvalues and the matrix elements (integrals of the eigenfunctions multiplied by their derivatives with respect to the parameter). The efficiency of the algorithm is confirmed by the computation of the eigenvalues, eigenfunctions, and the matrix elements and by the comparison with the known data and the asymptotic expansions for small and large values of the parameter. The algorithm is implemented as a package of programs in Maple-Fortran and is used for the reduction of a singular two-dimensional boundary value problem for the elliptic second-order partial differential equation to a regular boundary value problem for a system of second-order ordinary differential equations using the Kantorovich method.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0361-7688
1608-3261
DOI:10.1134/S0361768807020089