Segmentation Is Not the End of Road Extraction: An All-Visible Denoising Autoencoder for Connected and Smooth Road Reconstruction

With a plethora of remote sensing (RS) images, deep neural network-based semantic segmentation model (SegModel) achieves commendable road extraction performance. However, the occlusions caused by vehicles, roadside objects, and shadows cannot be directly identified as road pixels, especially on high...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on geoscience and remote sensing Ročník 61; s. 1 - 18
Hlavní autoři: Han, Lingyi, Hou, Lu, Zheng, Xiangxiang, Ding, Ziyue, Yang, Haojun, Zheng, Kan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Témata:
ISSN:0196-2892, 1558-0644
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With a plethora of remote sensing (RS) images, deep neural network-based semantic segmentation model (SegModel) achieves commendable road extraction performance. However, the occlusions caused by vehicles, roadside objects, and shadows cannot be directly identified as road pixels, especially on high-resolution RS images. Therefore, relying only on a single SegModel to guarantee road connectivity and boundary smoothness in road extraction tasks is extremely difficult. To address this issue, this article puts forward a “segmentation-with-reconstruction” framework, which comprises a SegModel to generate the binary road labels from RS images and a reconstruction model to refine the road labels. Specifically, the former can be compatible with arbitrary existing SegModels, while the latter is built by our proposed model named all-visible denoising autoencoder (AV-DAE). The AV-DAE is designed to be an encoder–decoder architecture that takes topology-corruption road labels as inputs and true road labels as outputs. To better train the AV-DAE, we further present three noise-adding strategies to corrupt road labels for diverse patterns and train the AV-DAE to reconstruct them. Being RS-image-agnostic, the AV-DAE pays more attention to the spatial features rather than the spectral features, which enables it to recover the road topology by improving the connectivity and boundary smoothness. Finally, elaborate simulation results demonstrate that the proposed framework can significantly improve the connectivity and boundary smoothness of the extracted roads while achieving a competitive road extraction performance and high generalization ability compared to the benchmarks.
AbstractList With a plethora of remote sensing (RS) images, deep neural network-based semantic segmentation model (SegModel) achieves commendable road extraction performance. However, the occlusions caused by vehicles, roadside objects, and shadows cannot be directly identified as road pixels, especially on high-resolution RS images. Therefore, relying only on a single SegModel to guarantee road connectivity and boundary smoothness in road extraction tasks is extremely difficult. To address this issue, this article puts forward a “segmentation-with-reconstruction” framework, which comprises a SegModel to generate the binary road labels from RS images and a reconstruction model to refine the road labels. Specifically, the former can be compatible with arbitrary existing SegModels, while the latter is built by our proposed model named all-visible denoising autoencoder (AV-DAE). The AV-DAE is designed to be an encoder–decoder architecture that takes topology-corruption road labels as inputs and true road labels as outputs. To better train the AV-DAE, we further present three noise-adding strategies to corrupt road labels for diverse patterns and train the AV-DAE to reconstruct them. Being RS-image-agnostic, the AV-DAE pays more attention to the spatial features rather than the spectral features, which enables it to recover the road topology by improving the connectivity and boundary smoothness. Finally, elaborate simulation results demonstrate that the proposed framework can significantly improve the connectivity and boundary smoothness of the extracted roads while achieving a competitive road extraction performance and high generalization ability compared to the benchmarks.
Author Zheng, Xiangxiang
Ding, Ziyue
Han, Lingyi
Hou, Lu
Zheng, Kan
Yang, Haojun
Author_xml – sequence: 1
  givenname: Lingyi
  orcidid: 0000-0003-4202-6260
  surname: Han
  fullname: Han, Lingyi
  organization: Big Data Center, China Aero Geophysical Survey and Remote Sensing Center for Natural Resources (AGRS), Beijing, China
– sequence: 2
  givenname: Lu
  orcidid: 0000-0003-3085-9353
  surname: Hou
  fullname: Hou, Lu
  organization: Intelligent Computing and Communications (IC2) Laboratory, Wireless Signal Processing and Network (WSPN) Laboratory, Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 3
  givenname: Xiangxiang
  surname: Zheng
  fullname: Zheng, Xiangxiang
  organization: Big Data Center, China Aero Geophysical Survey and Remote Sensing Center for Natural Resources (AGRS), Beijing, China
– sequence: 4
  givenname: Ziyue
  surname: Ding
  fullname: Ding, Ziyue
  organization: Big Data Center, China Aero Geophysical Survey and Remote Sensing Center for Natural Resources (AGRS), Beijing, China
– sequence: 5
  givenname: Haojun
  orcidid: 0000-0001-7404-5007
  surname: Yang
  fullname: Yang, Haojun
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 6
  givenname: Kan
  orcidid: 0000-0002-8531-6762
  surname: Zheng
  fullname: Zheng, Kan
  organization: College of Electrical Engineering and Computer Sciences, Ningbo University, Ningbo, China
BookMark eNp9kDtPwzAUhS0EEuXxA9gsMaf4ETsxW1UKVKpAagtr5Dg3EJTaYDsSjPxzXNqJgenc4ZzvSt8JOrTOAkIXlIwpJepqfbdcjRlhfMxZIYWiB2hEhSgzIvP8EI0IVTJjpWLH6CSEN0JoLmgxQt8reNmAjTp2zuJ5wA8u4vgKeGYb7Fq8dLrBs8_otdk2rvHE4knfZ89d6Ooe8A1Yl077gidDdGCNa8Dj1nk8ddaCidBgnVCrjXPxdYdbgnE2RD_8Is_QUav7AOf7PEVPt7P19D5bPN7Np5NFZljBY2Z4XdQ8b4hiNdMKuCStLBjjUBAhFBdlSsIVE0xLIrSWjJKayxqUoNKU_BRd7rjv3n0MEGL15gZv08uKlakry2QvtYpdy3gXgoe2Mt1OTlLQ9RUl1dZ3tfVdbX1Xe99pSf8s33230f7rn80P7w2D7g
CitedBy_id crossref_primary_10_1016_j_rsase_2024_101160
crossref_primary_10_1117_1_JRS_18_024504
crossref_primary_10_3390_s24051708
crossref_primary_10_1109_TIM_2025_3541813
Cites_doi 10.1016/j.jtte.2016.05.005
10.3390/rs10091461
10.1109/CVPR.2016.278
10.1109/TGRS.2019.2926397
10.1109/36.992826
10.1109/36.763290
10.1109/WACV45572.2020.9093593
10.1109/TGRS.2022.3165817
10.1109/CVPRW.2018.00035
10.3390/ijgi10050329
10.1109/VCIP.2017.8305148
10.1016/j.neucom.2016.03.095
10.1109/ICCV.2019.00502
10.1109/TGRS.2021.3104032
10.1109/TGRS.2021.3128033
10.1109/ICPR48806.2021.9412054
10.3390/rs11091015
10.1109/LGRS.2020.2985774
10.1109/JSTARS.2020.3042816
10.3390/s20072064
10.1007/s12524-017-0702-x
10.1117/12.754563
10.1109/CVPRW.2018.00031
10.1109/LGRS.2017.2704120
10.1109/TGRS.2021.3073923
10.1109/KESE.2009.60
10.1109/TGRS.2010.2041783
10.1109/TGRS.2019.2912301
10.1109/TGRS.2012.2190078
10.1109/JSTARS.2021.3053603
10.1155/2015/784504
10.1109/LGRS.2018.2802944
10.1109/TIP.2021.3117076
10.1080/10798587.2008.10643306
10.1109/TGRS.2020.2964675
10.1109/TGRS.2018.2870871
10.1109/TGRS.2016.2626378
10.1109/TGRS.2022.3197546
10.1109/IGARSS.2011.6049176
10.1109/TGRS.2020.2991733
10.1109/CVPRW.2018.00034
10.1109/JSTARS.2012.2189099
10.1016/j.asoc.2018.05.018
10.3390/rs12193175
10.1109/TGRS.2011.2136381
10.1007/s12524-017-0678-6
10.1109/JSTARS.2020.3036602
10.12677/GST.2015.32005
10.3390/rs11050552
10.1038/nature14539
10.1109/CVPR.2015.7298965
10.3390/rs11060696
10.1109/ICIIP.2011.6108839
10.1109/CVPRW.2018.00036
10.3390/rs12182866
10.1109/TGRS.2020.3016086
10.1109/TGRS.2022.3143855
10.1109/CGiV.2016.27
10.1016/j.isprsjprs.2021.03.016
10.1007/s10462-020-09854-1
10.1155/2019/2373798
10.1109/TGRS.2017.2669341
10.1109/IGARSS.2016.7729406
10.1109/CVPR.2018.00331
10.1109/TGRS.2004.841395
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2023.3276591
DatabaseName CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 18
ExternalDocumentID 10_1109_TGRS_2023_3276591
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
AAYXX
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
7UA
8FD
AARMG
ABAZT
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c273t-c3b7b34d092b2a9e360f67223e70559358705039252a605aa6210b36be9516c83
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001000313600025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 07:52:30 EDT 2025
Tue Nov 18 21:28:58 EST 2025
Sat Nov 29 03:32:22 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c273t-c3b7b34d092b2a9e360f67223e70559358705039252a605aa6210b36be9516c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7404-5007
0000-0003-4202-6260
0000-0002-8531-6762
0000-0003-3085-9353
PQID 2821068023
PQPubID 85465
PageCount 18
ParticipantIDs proquest_journals_2821068023
crossref_citationtrail_10_1109_TGRS_2023_3276591
crossref_primary_10_1109_TGRS_2023_3276591
PublicationCentury 2000
PublicationDate 2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationYear 2023
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref55
ref10
ref54
ref17
ref16
ref19
ref18
garcia-garcia (ref4) 2017
ref51
ref50
ref45
ref48
ref47
ref42
ref41
ref43
ref49
vaswani (ref70) 2017
ref7
cai (ref24) 2013; 25
ref9
van etten (ref75) 2018
he (ref11) 2021
ref6
ref5
devlin (ref8) 2018
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref74
ref33
ref32
ref2
ref1
ref39
ref38
ronneberger (ref44) 2015
lecun (ref3) 2015; 521
ref73
ref72
ref68
chen (ref69) 2018
ref23
ref67
ref26
ref25
ref20
ref64
ref63
ref22
ref66
ref21
ref65
saxe (ref71) 2013
ref28
ref27
ref29
mnih (ref46) 2013
ref60
ref62
ref61
References_xml – ident: ref2
  doi: 10.1016/j.jtte.2016.05.005
– ident: ref34
  doi: 10.3390/rs10091461
– ident: ref9
  doi: 10.1109/CVPR.2016.278
– ident: ref36
  doi: 10.1109/TGRS.2019.2926397
– ident: ref15
  doi: 10.1109/36.992826
– ident: ref47
  doi: 10.1109/36.763290
– ident: ref42
  doi: 10.1109/WACV45572.2020.9093593
– year: 2018
  ident: ref75
  article-title: SpaceNet: A remote sensing dataset and challenge series
  publication-title: arXiv 1807 01232
– ident: ref64
  doi: 10.1109/TGRS.2022.3165817
– ident: ref39
  doi: 10.1109/CVPRW.2018.00035
– ident: ref58
  doi: 10.3390/ijgi10050329
– ident: ref45
  doi: 10.1109/VCIP.2017.8305148
– ident: ref1
  doi: 10.1016/j.neucom.2016.03.095
– ident: ref72
  doi: 10.1109/ICCV.2019.00502
– ident: ref61
  doi: 10.1109/TGRS.2021.3104032
– ident: ref67
  doi: 10.1109/TGRS.2021.3128033
– ident: ref66
  doi: 10.1109/ICPR48806.2021.9412054
– ident: ref52
  doi: 10.3390/rs11091015
– ident: ref38
  doi: 10.1109/LGRS.2020.2985774
– ident: ref53
  doi: 10.1109/JSTARS.2020.3042816
– year: 2021
  ident: ref11
  article-title: Masked autoencoders are scalable vision learners
  publication-title: arXiv 2111 06377
– ident: ref68
  doi: 10.3390/s20072064
– ident: ref21
  doi: 10.1007/s12524-017-0702-x
– ident: ref23
  doi: 10.1117/12.754563
– ident: ref73
  doi: 10.1109/CVPRW.2018.00031
– ident: ref26
  doi: 10.1109/LGRS.2017.2704120
– ident: ref57
  doi: 10.1109/TGRS.2021.3073923
– ident: ref13
  doi: 10.1109/KESE.2009.60
– ident: ref17
  doi: 10.1109/TGRS.2010.2041783
– ident: ref35
  doi: 10.1109/TGRS.2019.2912301
– ident: ref12
  doi: 10.1109/TGRS.2012.2190078
– ident: ref37
  doi: 10.1109/JSTARS.2021.3053603
– start-page: 6000
  year: 2017
  ident: ref70
  article-title: Attention is all you need
  publication-title: Proc 31st Int Conf Neural Inf Process Syst
– start-page: 801
  year: 2018
  ident: ref69
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref29
  doi: 10.1155/2015/784504
– ident: ref33
  doi: 10.1109/LGRS.2018.2802944
– ident: ref56
  doi: 10.1109/TIP.2021.3117076
– ident: ref16
  doi: 10.1080/10798587.2008.10643306
– ident: ref6
  doi: 10.1109/TGRS.2020.2964675
– year: 2013
  ident: ref71
  article-title: Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
  publication-title: arXiv 1312 6120
– ident: ref31
  doi: 10.1109/TGRS.2018.2870871
– ident: ref18
  doi: 10.1109/TGRS.2016.2626378
– ident: ref59
  doi: 10.1109/TGRS.2022.3197546
– ident: ref20
  doi: 10.1109/IGARSS.2011.6049176
– ident: ref63
  doi: 10.1109/TGRS.2020.2991733
– ident: ref50
  doi: 10.1109/CVPRW.2018.00034
– ident: ref48
  doi: 10.1109/JSTARS.2012.2189099
– start-page: 234
  year: 2015
  ident: ref44
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref5
  doi: 10.1016/j.asoc.2018.05.018
– ident: ref54
  doi: 10.3390/rs12193175
– ident: ref19
  doi: 10.1109/TGRS.2011.2136381
– ident: ref27
  doi: 10.1007/s12524-017-0678-6
– ident: ref10
  doi: 10.1109/JSTARS.2020.3036602
– year: 2013
  ident: ref46
  article-title: Machine learning for aerial image labeling
– year: 2017
  ident: ref4
  article-title: A review on deep learning techniques applied to semantic segmentation
  publication-title: arXiv 1704 06857
– ident: ref25
  doi: 10.12677/GST.2015.32005
– ident: ref65
  doi: 10.3390/rs11050552
– volume: 521
  start-page: 436
  year: 2015
  ident: ref3
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref43
  doi: 10.1109/CVPR.2015.7298965
– ident: ref41
  doi: 10.3390/rs11060696
– ident: ref28
  doi: 10.1109/ICIIP.2011.6108839
– ident: ref40
  doi: 10.1109/CVPRW.2018.00036
– ident: ref55
  doi: 10.3390/rs12182866
– ident: ref60
  doi: 10.1109/TGRS.2020.3016086
– ident: ref49
  doi: 10.1109/TGRS.2022.3143855
– ident: ref14
  doi: 10.1109/CGiV.2016.27
– ident: ref74
  doi: 10.1016/j.isprsjprs.2021.03.016
– year: 2018
  ident: ref8
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
  publication-title: arXiv 1810 04805
– ident: ref7
  doi: 10.1007/s10462-020-09854-1
– ident: ref51
  doi: 10.1155/2019/2373798
– ident: ref62
  doi: 10.1109/TGRS.2017.2669341
– ident: ref30
  doi: 10.1109/IGARSS.2016.7729406
– volume: 25
  start-page: 25
  year: 2013
  ident: ref24
  article-title: Optimized method for road extraction from high resolution remote sensing image based on watershed algorithm
  publication-title: Remote Sens Land Resour
– ident: ref32
  doi: 10.1109/CVPR.2018.00331
– ident: ref22
  doi: 10.1109/TGRS.2004.841395
SSID ssj0014517
Score 2.4499092
Snippet With a plethora of remote sensing (RS) images, deep neural network-based semantic segmentation model (SegModel) achieves commendable road extraction...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Artificial neural networks
Benchmarks
Coders
Connectivity
Corruption
Image processing
Image reconstruction
Image resolution
Image segmentation
Labels
Neural networks
Noise reduction
Remote sensing
Roads & highways
Roadsides
Semantic segmentation
Smoothness
Topology
Title Segmentation Is Not the End of Road Extraction: An All-Visible Denoising Autoencoder for Connected and Smooth Road Reconstruction
URI https://www.proquest.com/docview/2821068023
Volume 61
WOSCitedRecordID wos001000313600025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbKAIk9IBggBgP5gSeqjPx0Yt4qVGASmhArU8VL5DhOFSlLpqWdusf9c_xd3NlOmjKB2AMvVmu1lzT39Xx3vvtMyBsIcAJfFJ5TCFk4YS6YkzDJnUAJJvPAlYUu-T_9Eh8fJ_M5_zoa_ex6YS6ruK6T9Zqf_1dVwxwoG1tnb6HuXihMwGtQOoygdhj_SfEnanFmG4rq8RGYsUa3K46nda6ZRxqRj6fr5YXpaLCJwUlVOacl_D0qrCOqm1KnECarZYNEl8g3geWIuipGoo-qCz7PGlCzEYhR7IaLdujxYjSJB1F0p5Lr7YmFarp-Il3frgAwatxiMb1dSbVRrG3WYHFV9pPNSk-uNhlvZczVHIC-WOPQO-f2vJYf5dVKDdMbpve4y3Vy5kA8aIy1svY5ShzwosKhATds7tYCe4Ol3Fj2m4uE5lidffp2cohXPAz8mEXc26yIXRXAbwtlX76oAyeXpygiRRGpFXGH3PXjiCemj7DfzQojz7btmx9kd9dBxLsbd7HtH227B9rnmT0iD22wQicGZI_JSNV7ZHdAYblH7usSYtk-IddD4NGjlgLwKACPAvBoU1DECd0A7z2d1HQAO9rDjg5gRwF2tIcdBbBQAzsjbht2T8n3j9PZh8-OPeDDkeA1Lx0ZZHEWhLnL_cwXXAXMLVgMDqtCjifcoY-Rroj7kS8g7BaC-Z6bBSxTEBcwmQTPyE7d1Oo5oUkU-nnoZS7PsjASXqIit4hEwaJCCjdj-8TtHmsqLfs9HsJSpX9U5j5523_l3FC__O3DB52uUmsM2tRP4H4ZUiy-uI2sl-QBvjWJvgOyA09RvSL35OWybC9ea2j9AvjYr-k
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+Is+Not+the+End+of+Road+Extraction%3A+An+All-Visible+Denoising+Autoencoder+for+Connected+and+Smooth+Road+Reconstruction&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Han%2C+Lingyi&rft.au=Hou%2C+Lu&rft.au=Zheng%2C+Xiangxiang&rft.au=Ding%2C+Ziyue&rft.date=2023&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=61&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1109%2FTGRS.2023.3276591&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2023_3276591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon