CNN-LSTM-Based Fault Diagnosis and Adaptive Multichannel Fusion Calibration of Filament Current Sensor for Mass Spectrometer

The mass spectrometer filament current sensor reflects the health status of the filament by detecting real-time variation in filament current, providing an ideal means to monitor the safe use of the filament. However, the complex and changing environment inside and outside the sensor often affects t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal Jg. 24; H. 2; S. 2255 - 2269
Hauptverfasser: Li, Xinshuo, Li, Pinghua, Zhang, Zhen, Yin, Jiancheng, Sheng, Yunlong, Zhang, Luoxuan, Zhou, Wenxing, Zhuang, Xuye
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 15.01.2024
Schlagworte:
ISSN:1530-437X, 1558-1748
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The mass spectrometer filament current sensor reflects the health status of the filament by detecting real-time variation in filament current, providing an ideal means to monitor the safe use of the filament. However, the complex and changing environment inside and outside the sensor often affects the sensor, so it is important to perform fault diagnosis and calibration of the sensor. To address the problems of low fault identification accuracy and high calibration error of a single sensor due to insufficient fault samples, a convolutional neural network and long and short-term memory network (CNN-LSTM)-based fault diagnosis and adaptive multichannel fusion calibration of filament current sensors for mass spectrometers is proposed. First, two valid sensor fault datasets are generated by numerical simulation of on-orbit historical data collected by a spacecraft through the convolutional variational autoencoder (CVAE) model. Second, the fault identification of the dataset is performed by the CNN-LSTM model, and the designed weighted fusion loss function leads to the improved accuracy of the model. Finally, an adaptive multichannel calibration model is constructed, and a method for adaptively selecting calibration channels based on the characteristics of the fault samples themselves is proposed, which significantly reduces the calibration error compared with a single calibration model. The experimental results show that the method can improve the fault identification rate and reduce the calibration fault error compared with other fault diagnosis and calibration methods. It provides an effective sensor fault solution for mass spectrometer filament current sensors.
AbstractList The mass spectrometer filament current sensor reflects the health status of the filament by detecting real-time variation in filament current, providing an ideal means to monitor the safe use of the filament. However, the complex and changing environment inside and outside the sensor often affects the sensor, so it is important to perform fault diagnosis and calibration of the sensor. To address the problems of low fault identification accuracy and high calibration error of a single sensor due to insufficient fault samples, a convolutional neural network and long and short-term memory network (CNN-LSTM)-based fault diagnosis and adaptive multichannel fusion calibration of filament current sensors for mass spectrometers is proposed. First, two valid sensor fault datasets are generated by numerical simulation of on-orbit historical data collected by a spacecraft through the convolutional variational autoencoder (CVAE) model. Second, the fault identification of the dataset is performed by the CNN-LSTM model, and the designed weighted fusion loss function leads to the improved accuracy of the model. Finally, an adaptive multichannel calibration model is constructed, and a method for adaptively selecting calibration channels based on the characteristics of the fault samples themselves is proposed, which significantly reduces the calibration error compared with a single calibration model. The experimental results show that the method can improve the fault identification rate and reduce the calibration fault error compared with other fault diagnosis and calibration methods. It provides an effective sensor fault solution for mass spectrometer filament current sensors.
Author Zhuang, Xuye
Zhang, Luoxuan
Sheng, Yunlong
Zhang, Zhen
Yin, Jiancheng
Li, Xinshuo
Li, Pinghua
Zhou, Wenxing
Author_xml – sequence: 1
  givenname: Xinshuo
  orcidid: 0009-0004-0989-0596
  surname: Li
  fullname: Li, Xinshuo
  organization: School of Mechanical Engineering, Shandong University of Technology, Zibo, China
– sequence: 2
  givenname: Pinghua
  orcidid: 0009-0006-0785-8220
  surname: Li
  fullname: Li, Pinghua
  organization: School of Mechanical Engineering, Shandong University of Technology, Zibo, China
– sequence: 3
  givenname: Zhen
  orcidid: 0000-0003-0988-8993
  surname: Zhang
  fullname: Zhang, Zhen
  organization: China Astronaut Research and Training Center, Beijing, China
– sequence: 4
  givenname: Jiancheng
  orcidid: 0000-0003-0844-4418
  surname: Yin
  fullname: Yin, Jiancheng
  organization: School of Mechanical Engineering, Shandong University of Technology, Zibo, China
– sequence: 5
  givenname: Yunlong
  orcidid: 0000-0003-4794-0107
  surname: Sheng
  fullname: Sheng, Yunlong
  organization: School of Mechanical Engineering, Shandong University of Technology, Zibo, China
– sequence: 6
  givenname: Luoxuan
  orcidid: 0009-0007-9634-6258
  surname: Zhang
  fullname: Zhang, Luoxuan
  organization: School of Mechanical Engineering, Shandong University of Technology, Zibo, China
– sequence: 7
  givenname: Wenxing
  surname: Zhou
  fullname: Zhou, Wenxing
  organization: China Astronaut Research and Training Center, Beijing, China
– sequence: 8
  givenname: Xuye
  orcidid: 0009-0002-8476-4552
  surname: Zhuang
  fullname: Zhuang, Xuye
  organization: School of Mechanical Engineering, Shandong University of Technology, Zibo, China
BookMark eNp9kE1LAzEQhoMo2FZ_gLeA56352mb3WNeuH7T10ArelnSTaMo2qUlWEPzx7tqePDgwzAsz7wzzDMGpdVYBcIXRGGOU3zytZssxQYSOKaWM0_wEDHCaZgnmLDvtNUUJo_z1HAxD2CKEc57yAfgulstkvlovklsRlISlaJsI74x4sy6YAIWVcCrFPppPBRddz9TvwlrVwLINxllYiMZsvIi9dhqWphE7ZSMsWu_7ulI2OA91lwsRAlztVR2926mo_AU406IJ6vJYR-ClnK2Lh2T-fP9YTOdJTTiNSYqJ7r5Cm4zlLJWYsAmhmzTDTLJay0lWZ1oKRSTRk43mSE8U6kJnQhIhWU5H4Pqwd-_dR6tCrLau9bY7WZEcp5wylmbdFD5M1d6F4JWu9t7shP-qMKp6yFUPueohV0fInYf_8dQm_sKIXpjmH-cP2RuDsQ
CitedBy_id crossref_primary_10_3390_math12172634
crossref_primary_10_1109_TPEL_2025_3550582
crossref_primary_10_1109_JSEN_2024_3516092
crossref_primary_10_3390_electronics13142788
crossref_primary_10_1016_j_engappai_2024_109443
crossref_primary_10_1109_JSEN_2024_3458028
crossref_primary_10_1109_TR_2024_3510387
crossref_primary_10_3390_s25051413
crossref_primary_10_1109_JSEN_2025_3566226
crossref_primary_10_1088_2631_8695_adebe5
crossref_primary_10_3390_electronics14142897
Cites_doi 10.1016/j.dcan.2022.03.023
10.1109/JSEN.2021.3131588
10.1016/j.psep.2022.03.052
10.1016/j.sna.2020.111990
10.3390/aerospace9050236
10.1109/ICOCN53177.2021.9563630
10.1109/TMECH.2021.3132459
10.1016/j.csite.2021.101750
10.1109/TASE.2020.3035620
10.1109/TIM.2022.3180416
10.1109/JSEN.2021.3137992
10.1016/j.isatra.2021.04.037
10.3390/s23020854
10.1109/TII.2021.3084615
10.1016/j.ymssp.2022.109736
10.1109/TII.2020.2968370
10.1007/s13762-018-1970-x
10.3390/polym15010233
10.1007/s10845-020-01600-2
10.1145/1525856.1525863
10.1016/j.ins.2020.08.068
10.1016/j.ces.2020.116233
10.1109/JSEN.2022.3221282
10.1109/JSEN.2022.3149409
10.1016/j.jaerosci.2021.105809
10.1016/j.advengsoft.2022.103315
10.1109/ACCESS.2020.2992231
10.1007/s13762-021-03392-1
10.3390/s21020617
10.1016/j.talanta.2023.124390
10.1016/j.engappai.2023.105961
10.1016/j.ymssp.2021.108723
10.1016/j.solener.2019.01.037
10.3390/s22031093
10.1016/j.csite.2023.103055
10.1109/TVT.2023.3246022
10.1016/j.csite.2021.101671
10.1016/j.seta.2021.101783
10.3390/s19163445
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2023.3334739
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 2269
ExternalDocumentID 10_1109_JSEN_2023_3334739
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
AAWTH
AAYXX
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
7SP
7U5
8FD
AARMG
ABAZT
L7M
ID FETCH-LOGICAL-c273t-512f3330b84945d124623b5814d4cfd68c8fdae2d2f6bf70f6e0000f8ad2ad493
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001166991700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 08:40:33 EDT 2025
Sat Nov 29 06:39:48 EST 2025
Tue Nov 18 22:42:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c273t-512f3330b84945d124623b5814d4cfd68c8fdae2d2f6bf70f6e0000f8ad2ad493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0002-8476-4552
0000-0003-0844-4418
0000-0003-0988-8993
0000-0003-4794-0107
0009-0007-9634-6258
0009-0004-0989-0596
0009-0006-0785-8220
PQID 2915734458
PQPubID 75733
PageCount 15
ParticipantIDs proquest_journals_2915734458
crossref_primary_10_1109_JSEN_2023_3334739
crossref_citationtrail_10_1109_JSEN_2023_3334739
PublicationCentury 2000
PublicationDate 2024-01-15
PublicationDateYYYYMMDD 2024-01-15
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationYear 2024
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref37
  doi: 10.1016/j.dcan.2022.03.023
– ident: ref3
  doi: 10.1109/JSEN.2021.3131588
– ident: ref9
  doi: 10.1016/j.psep.2022.03.052
– ident: ref1
  doi: 10.1016/j.sna.2020.111990
– ident: ref18
  doi: 10.3390/aerospace9050236
– ident: ref30
  doi: 10.1109/ICOCN53177.2021.9563630
– ident: ref12
  doi: 10.1109/TMECH.2021.3132459
– ident: ref15
  doi: 10.1016/j.csite.2021.101750
– ident: ref11
  doi: 10.1109/TASE.2020.3035620
– ident: ref13
  doi: 10.1109/TIM.2022.3180416
– ident: ref27
  doi: 10.1109/JSEN.2021.3137992
– ident: ref35
  doi: 10.1016/j.isatra.2021.04.037
– ident: ref23
  doi: 10.3390/s23020854
– ident: ref8
  doi: 10.1109/TII.2021.3084615
– ident: ref28
  doi: 10.1016/j.ymssp.2022.109736
– ident: ref10
  doi: 10.1109/TII.2020.2968370
– ident: ref6
  doi: 10.1007/s13762-018-1970-x
– ident: ref29
  doi: 10.3390/polym15010233
– ident: ref7
  doi: 10.1007/s10845-020-01600-2
– ident: ref25
  doi: 10.1145/1525856.1525863
– ident: ref36
  doi: 10.1016/j.ins.2020.08.068
– ident: ref16
  doi: 10.1016/j.ces.2020.116233
– ident: ref2
  doi: 10.1109/JSEN.2022.3221282
– ident: ref34
  doi: 10.1109/JSEN.2022.3149409
– ident: ref20
  doi: 10.1016/j.jaerosci.2021.105809
– ident: ref38
  doi: 10.1016/j.advengsoft.2022.103315
– ident: ref17
  doi: 10.1109/ACCESS.2020.2992231
– ident: ref33
  doi: 10.1007/s13762-021-03392-1
– ident: ref24
  doi: 10.3390/s21020617
– ident: ref4
  doi: 10.1016/j.talanta.2023.124390
– ident: ref19
  doi: 10.1016/j.engappai.2023.105961
– ident: ref26
  doi: 10.1016/j.ymssp.2021.108723
– ident: ref5
  doi: 10.1016/j.solener.2019.01.037
– ident: ref21
  doi: 10.3390/s22031093
– ident: ref22
  doi: 10.1016/j.csite.2023.103055
– ident: ref32
  doi: 10.1109/TVT.2023.3246022
– ident: ref31
  doi: 10.1016/j.csite.2021.101671
– ident: ref39
  doi: 10.1016/j.seta.2021.101783
– ident: ref14
  doi: 10.3390/s19163445
SSID ssj0019757
Score 2.4577613
Snippet The mass spectrometer filament current sensor reflects the health status of the filament by detecting real-time variation in filament current, providing an...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2255
SubjectTerms Artificial neural networks
Calibration
Changing environments
Datasets
Fault diagnosis
Mass spectrometers
Mathematical models
Model accuracy
Sensors
Title CNN-LSTM-Based Fault Diagnosis and Adaptive Multichannel Fusion Calibration of Filament Current Sensor for Mass Spectrometer
URI https://www.proquest.com/docview/2915734458
Volume 24
WOSCitedRecordID wos001166991700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FggQcEBQQhYL2wIloix-7Xu-xVA0IUatSghS4WLbX20SKnCiOqx74Y_w7Zh92bV6iBy5WtHJGtufzzrfrmW8Qeu0H-uuWUKTMC0EoVz7JfVEQ3RFFcaaorzzTbIInSTyfi_PR6HtbC3O54lUVX12JzX91NYyBs3Xp7A3c3RmFAfgNTocjuB2O_-T4kyQhn6azM_IOApQcT7JmtYOZzWTULa0i87HMNiZlyJTf6trfqlyNJ43eOTPVWvm2Y5KTJWBGJwy0Sk5TWPiutyY98QyYt-lgv9OiB22ir6O6ehk5rs3J9bh_5Tr9x-QQzJdVvWjWw8FziKWLpgsW3Yb218V10doX10JMb8jA8EV_6yLQ6S7EFm92s61HaMjnNhi5MQbLWm7lN9sp2pZZOygG_fk2sCK_LnYDlxS_jwtGVvXj9DQ50v3ij8IwpNyqKA01uH-KjV3GolkreSLVJlJtInUmbqHbAWdC2NLB7gOW4EZktrtD90EdTLz95SqGlGjICAzNmT1ED9z6BB9bXD1Co7LaR_d7qpX76O770umcP0bfhmjDBm24QxsGtOEWbbiPNmzRhntow2uFW7RhhzZs0YYBbVijDffR9gR9npzOTj4Q19CDFMCSdwTIpYJ79vKYCsokUEsg3zmLfSppoWQUF7GSWRnIQEW54p6KSs2nVJzJIJNUhE_RXrWuymcI52HJmJKxVEw3hPDjTEQ0j7IsZ2EWMv8Aee0zTQundq-brqzSP3ryAL3p_rKxUi9_O_mwdVTqXqE6DYTPeEgpi5_fxNYLdO_67ThEe7ttU75Ed4rL3bLevjK4-gHs9ahY
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN-LSTM-Based+Fault+Diagnosis+and+Adaptive+Multichannel+Fusion+Calibration+of+Filament+Current+Sensor+for+Mass+Spectrometer&rft.jtitle=IEEE+sensors+journal&rft.au=Li%2C+Xinshuo&rft.au=Li%2C+Pinghua&rft.au=Zhang%2C+Zhen&rft.au=Yin%2C+Jiancheng&rft.date=2024-01-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=2&rft.spage=2255&rft.epage=2269&rft_id=info:doi/10.1109%2FJSEN.2023.3334739&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2023_3334739
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon