CNN-LSTM-Based Fault Diagnosis and Adaptive Multichannel Fusion Calibration of Filament Current Sensor for Mass Spectrometer
The mass spectrometer filament current sensor reflects the health status of the filament by detecting real-time variation in filament current, providing an ideal means to monitor the safe use of the filament. However, the complex and changing environment inside and outside the sensor often affects t...
Gespeichert in:
| Veröffentlicht in: | IEEE sensors journal Jg. 24; H. 2; S. 2255 - 2269 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
15.01.2024
|
| Schlagworte: | |
| ISSN: | 1530-437X, 1558-1748 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The mass spectrometer filament current sensor reflects the health status of the filament by detecting real-time variation in filament current, providing an ideal means to monitor the safe use of the filament. However, the complex and changing environment inside and outside the sensor often affects the sensor, so it is important to perform fault diagnosis and calibration of the sensor. To address the problems of low fault identification accuracy and high calibration error of a single sensor due to insufficient fault samples, a convolutional neural network and long and short-term memory network (CNN-LSTM)-based fault diagnosis and adaptive multichannel fusion calibration of filament current sensors for mass spectrometers is proposed. First, two valid sensor fault datasets are generated by numerical simulation of on-orbit historical data collected by a spacecraft through the convolutional variational autoencoder (CVAE) model. Second, the fault identification of the dataset is performed by the CNN-LSTM model, and the designed weighted fusion loss function leads to the improved accuracy of the model. Finally, an adaptive multichannel calibration model is constructed, and a method for adaptively selecting calibration channels based on the characteristics of the fault samples themselves is proposed, which significantly reduces the calibration error compared with a single calibration model. The experimental results show that the method can improve the fault identification rate and reduce the calibration fault error compared with other fault diagnosis and calibration methods. It provides an effective sensor fault solution for mass spectrometer filament current sensors. |
|---|---|
| AbstractList | The mass spectrometer filament current sensor reflects the health status of the filament by detecting real-time variation in filament current, providing an ideal means to monitor the safe use of the filament. However, the complex and changing environment inside and outside the sensor often affects the sensor, so it is important to perform fault diagnosis and calibration of the sensor. To address the problems of low fault identification accuracy and high calibration error of a single sensor due to insufficient fault samples, a convolutional neural network and long and short-term memory network (CNN-LSTM)-based fault diagnosis and adaptive multichannel fusion calibration of filament current sensors for mass spectrometers is proposed. First, two valid sensor fault datasets are generated by numerical simulation of on-orbit historical data collected by a spacecraft through the convolutional variational autoencoder (CVAE) model. Second, the fault identification of the dataset is performed by the CNN-LSTM model, and the designed weighted fusion loss function leads to the improved accuracy of the model. Finally, an adaptive multichannel calibration model is constructed, and a method for adaptively selecting calibration channels based on the characteristics of the fault samples themselves is proposed, which significantly reduces the calibration error compared with a single calibration model. The experimental results show that the method can improve the fault identification rate and reduce the calibration fault error compared with other fault diagnosis and calibration methods. It provides an effective sensor fault solution for mass spectrometer filament current sensors. |
| Author | Zhuang, Xuye Zhang, Luoxuan Sheng, Yunlong Zhang, Zhen Yin, Jiancheng Li, Xinshuo Li, Pinghua Zhou, Wenxing |
| Author_xml | – sequence: 1 givenname: Xinshuo orcidid: 0009-0004-0989-0596 surname: Li fullname: Li, Xinshuo organization: School of Mechanical Engineering, Shandong University of Technology, Zibo, China – sequence: 2 givenname: Pinghua orcidid: 0009-0006-0785-8220 surname: Li fullname: Li, Pinghua organization: School of Mechanical Engineering, Shandong University of Technology, Zibo, China – sequence: 3 givenname: Zhen orcidid: 0000-0003-0988-8993 surname: Zhang fullname: Zhang, Zhen organization: China Astronaut Research and Training Center, Beijing, China – sequence: 4 givenname: Jiancheng orcidid: 0000-0003-0844-4418 surname: Yin fullname: Yin, Jiancheng organization: School of Mechanical Engineering, Shandong University of Technology, Zibo, China – sequence: 5 givenname: Yunlong orcidid: 0000-0003-4794-0107 surname: Sheng fullname: Sheng, Yunlong organization: School of Mechanical Engineering, Shandong University of Technology, Zibo, China – sequence: 6 givenname: Luoxuan orcidid: 0009-0007-9634-6258 surname: Zhang fullname: Zhang, Luoxuan organization: School of Mechanical Engineering, Shandong University of Technology, Zibo, China – sequence: 7 givenname: Wenxing surname: Zhou fullname: Zhou, Wenxing organization: China Astronaut Research and Training Center, Beijing, China – sequence: 8 givenname: Xuye orcidid: 0009-0002-8476-4552 surname: Zhuang fullname: Zhuang, Xuye organization: School of Mechanical Engineering, Shandong University of Technology, Zibo, China |
| BookMark | eNp9kE1LAzEQhoMo2FZ_gLeA56352mb3WNeuH7T10ArelnSTaMo2qUlWEPzx7tqePDgwzAsz7wzzDMGpdVYBcIXRGGOU3zytZssxQYSOKaWM0_wEDHCaZgnmLDvtNUUJo_z1HAxD2CKEc57yAfgulstkvlovklsRlISlaJsI74x4sy6YAIWVcCrFPppPBRddz9TvwlrVwLINxllYiMZsvIi9dhqWphE7ZSMsWu_7ulI2OA91lwsRAlztVR2926mo_AU406IJ6vJYR-ClnK2Lh2T-fP9YTOdJTTiNSYqJ7r5Cm4zlLJWYsAmhmzTDTLJay0lWZ1oKRSTRk43mSE8U6kJnQhIhWU5H4Pqwd-_dR6tCrLau9bY7WZEcp5wylmbdFD5M1d6F4JWu9t7shP-qMKp6yFUPueohV0fInYf_8dQm_sKIXpjmH-cP2RuDsQ |
| CitedBy_id | crossref_primary_10_3390_math12172634 crossref_primary_10_1109_TPEL_2025_3550582 crossref_primary_10_1109_JSEN_2024_3516092 crossref_primary_10_3390_electronics13142788 crossref_primary_10_1016_j_engappai_2024_109443 crossref_primary_10_1109_JSEN_2024_3458028 crossref_primary_10_1109_TR_2024_3510387 crossref_primary_10_3390_s25051413 crossref_primary_10_1109_JSEN_2025_3566226 crossref_primary_10_1088_2631_8695_adebe5 crossref_primary_10_3390_electronics14142897 |
| Cites_doi | 10.1016/j.dcan.2022.03.023 10.1109/JSEN.2021.3131588 10.1016/j.psep.2022.03.052 10.1016/j.sna.2020.111990 10.3390/aerospace9050236 10.1109/ICOCN53177.2021.9563630 10.1109/TMECH.2021.3132459 10.1016/j.csite.2021.101750 10.1109/TASE.2020.3035620 10.1109/TIM.2022.3180416 10.1109/JSEN.2021.3137992 10.1016/j.isatra.2021.04.037 10.3390/s23020854 10.1109/TII.2021.3084615 10.1016/j.ymssp.2022.109736 10.1109/TII.2020.2968370 10.1007/s13762-018-1970-x 10.3390/polym15010233 10.1007/s10845-020-01600-2 10.1145/1525856.1525863 10.1016/j.ins.2020.08.068 10.1016/j.ces.2020.116233 10.1109/JSEN.2022.3221282 10.1109/JSEN.2022.3149409 10.1016/j.jaerosci.2021.105809 10.1016/j.advengsoft.2022.103315 10.1109/ACCESS.2020.2992231 10.1007/s13762-021-03392-1 10.3390/s21020617 10.1016/j.talanta.2023.124390 10.1016/j.engappai.2023.105961 10.1016/j.ymssp.2021.108723 10.1016/j.solener.2019.01.037 10.3390/s22031093 10.1016/j.csite.2023.103055 10.1109/TVT.2023.3246022 10.1016/j.csite.2021.101671 10.1016/j.seta.2021.101783 10.3390/s19163445 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2023.3334739 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 2269 |
| ExternalDocumentID | 10_1109_JSEN_2023_3334739 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AASAJ AAWTH AAYXX ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CITATION CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ 7SP 7U5 8FD AARMG ABAZT L7M |
| ID | FETCH-LOGICAL-c273t-512f3330b84945d124623b5814d4cfd68c8fdae2d2f6bf70f6e0000f8ad2ad493 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001166991700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 08:40:33 EDT 2025 Sat Nov 29 06:39:48 EST 2025 Tue Nov 18 22:42:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c273t-512f3330b84945d124623b5814d4cfd68c8fdae2d2f6bf70f6e0000f8ad2ad493 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0002-8476-4552 0000-0003-0844-4418 0000-0003-0988-8993 0000-0003-4794-0107 0009-0007-9634-6258 0009-0004-0989-0596 0009-0006-0785-8220 |
| PQID | 2915734458 |
| PQPubID | 75733 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2915734458 crossref_primary_10_1109_JSEN_2023_3334739 crossref_citationtrail_10_1109_JSEN_2023_3334739 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-15 |
| PublicationDateYYYYMMDD | 2024-01-15 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationYear | 2024 |
| Publisher | The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref37 doi: 10.1016/j.dcan.2022.03.023 – ident: ref3 doi: 10.1109/JSEN.2021.3131588 – ident: ref9 doi: 10.1016/j.psep.2022.03.052 – ident: ref1 doi: 10.1016/j.sna.2020.111990 – ident: ref18 doi: 10.3390/aerospace9050236 – ident: ref30 doi: 10.1109/ICOCN53177.2021.9563630 – ident: ref12 doi: 10.1109/TMECH.2021.3132459 – ident: ref15 doi: 10.1016/j.csite.2021.101750 – ident: ref11 doi: 10.1109/TASE.2020.3035620 – ident: ref13 doi: 10.1109/TIM.2022.3180416 – ident: ref27 doi: 10.1109/JSEN.2021.3137992 – ident: ref35 doi: 10.1016/j.isatra.2021.04.037 – ident: ref23 doi: 10.3390/s23020854 – ident: ref8 doi: 10.1109/TII.2021.3084615 – ident: ref28 doi: 10.1016/j.ymssp.2022.109736 – ident: ref10 doi: 10.1109/TII.2020.2968370 – ident: ref6 doi: 10.1007/s13762-018-1970-x – ident: ref29 doi: 10.3390/polym15010233 – ident: ref7 doi: 10.1007/s10845-020-01600-2 – ident: ref25 doi: 10.1145/1525856.1525863 – ident: ref36 doi: 10.1016/j.ins.2020.08.068 – ident: ref16 doi: 10.1016/j.ces.2020.116233 – ident: ref2 doi: 10.1109/JSEN.2022.3221282 – ident: ref34 doi: 10.1109/JSEN.2022.3149409 – ident: ref20 doi: 10.1016/j.jaerosci.2021.105809 – ident: ref38 doi: 10.1016/j.advengsoft.2022.103315 – ident: ref17 doi: 10.1109/ACCESS.2020.2992231 – ident: ref33 doi: 10.1007/s13762-021-03392-1 – ident: ref24 doi: 10.3390/s21020617 – ident: ref4 doi: 10.1016/j.talanta.2023.124390 – ident: ref19 doi: 10.1016/j.engappai.2023.105961 – ident: ref26 doi: 10.1016/j.ymssp.2021.108723 – ident: ref5 doi: 10.1016/j.solener.2019.01.037 – ident: ref21 doi: 10.3390/s22031093 – ident: ref22 doi: 10.1016/j.csite.2023.103055 – ident: ref32 doi: 10.1109/TVT.2023.3246022 – ident: ref31 doi: 10.1016/j.csite.2021.101671 – ident: ref39 doi: 10.1016/j.seta.2021.101783 – ident: ref14 doi: 10.3390/s19163445 |
| SSID | ssj0019757 |
| Score | 2.4577613 |
| Snippet | The mass spectrometer filament current sensor reflects the health status of the filament by detecting real-time variation in filament current, providing an... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 2255 |
| SubjectTerms | Artificial neural networks Calibration Changing environments Datasets Fault diagnosis Mass spectrometers Mathematical models Model accuracy Sensors |
| Title | CNN-LSTM-Based Fault Diagnosis and Adaptive Multichannel Fusion Calibration of Filament Current Sensor for Mass Spectrometer |
| URI | https://www.proquest.com/docview/2915734458 |
| Volume | 24 |
| WOSCitedRecordID | wos001166991700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FggQcEBQQhYL2wIloix-7Xu-xVA0IUatSghS4WLbX20SKnCiOqx74Y_w7Zh92bV6iBy5WtHJGtufzzrfrmW8Qeu0H-uuWUKTMC0EoVz7JfVEQ3RFFcaaorzzTbIInSTyfi_PR6HtbC3O54lUVX12JzX91NYyBs3Xp7A3c3RmFAfgNTocjuB2O_-T4kyQhn6azM_IOApQcT7JmtYOZzWTULa0i87HMNiZlyJTf6trfqlyNJ43eOTPVWvm2Y5KTJWBGJwy0Sk5TWPiutyY98QyYt-lgv9OiB22ir6O6ehk5rs3J9bh_5Tr9x-QQzJdVvWjWw8FziKWLpgsW3Yb218V10doX10JMb8jA8EV_6yLQ6S7EFm92s61HaMjnNhi5MQbLWm7lN9sp2pZZOygG_fk2sCK_LnYDlxS_jwtGVvXj9DQ50v3ij8IwpNyqKA01uH-KjV3GolkreSLVJlJtInUmbqHbAWdC2NLB7gOW4EZktrtD90EdTLz95SqGlGjICAzNmT1ED9z6BB9bXD1Co7LaR_d7qpX76O770umcP0bfhmjDBm24QxsGtOEWbbiPNmzRhntow2uFW7RhhzZs0YYBbVijDffR9gR9npzOTj4Q19CDFMCSdwTIpYJ79vKYCsokUEsg3zmLfSppoWQUF7GSWRnIQEW54p6KSs2nVJzJIJNUhE_RXrWuymcI52HJmJKxVEw3hPDjTEQ0j7IsZ2EWMv8Aee0zTQundq-brqzSP3ryAL3p_rKxUi9_O_mwdVTqXqE6DYTPeEgpi5_fxNYLdO_67ThEe7ttU75Ed4rL3bLevjK4-gHs9ahY |
| linkProvider | IEEE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN-LSTM-Based+Fault+Diagnosis+and+Adaptive+Multichannel+Fusion+Calibration+of+Filament+Current+Sensor+for+Mass+Spectrometer&rft.jtitle=IEEE+sensors+journal&rft.au=Li%2C+Xinshuo&rft.au=Li%2C+Pinghua&rft.au=Zhang%2C+Zhen&rft.au=Yin%2C+Jiancheng&rft.date=2024-01-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=2&rft.spage=2255&rft.epage=2269&rft_id=info:doi/10.1109%2FJSEN.2023.3334739&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2023_3334739 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |