A new method for short-term load forecasting based on weighted fusion of base models
•Expanding economic and climate features as inputs to enhance the model’s ability to capture load changes.•Introducing singular value decomposition technology to remove noise from load data, while preserving key features and trends, to improve data quality.•Select multiple typical models as sub mode...
Uložené v:
| Vydané v: | Applied thermal engineering Ročník 280; s. 128313 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.12.2025
|
| Predmet: | |
| ISSN: | 1359-4311 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Expanding economic and climate features as inputs to enhance the model’s ability to capture load changes.•Introducing singular value decomposition technology to remove noise from load data, while preserving key features and trends, to improve data quality.•Select multiple typical models as sub model samples through the system, and choose the three with the best performance as the research focus.•Using the SFOA optimization algorithm to optimize the weights of the combined model and achieve higher prediction accuracy.
In recent years, integrated energy systems have developed rapidly, integrating electricity, heat, cooling, and other energy sources into cross-energy coupling systems for efficient energy optimization. The setting and dynamic adjustment of their operating parameters depend heavily on power load forecasting, so improving forecasting accuracy is key to optimizing system operation. However, the load data is affected by interference from non-stationary signals and the introduction of a significant amount of noise. The traditional single-model approach struggles to handle complex and variable forecasting tasks, failing to meet the high-precision load forecasting demands. Given such problems, this research proposes a combined forecasting model utilizing SVD denoising preprocessing and multi-base model fusion to address the limitations of single-model approaches and enhance load forecasting precision. We used one year of load data from an Indian power plant to verify our proposed model. Firstly, SVD preprocesses the original data to remove noise and abnormal fluctuations. Unlike common modal decomposition methods that are prone to causing modal aliasing, SVD has stronger universality for nonlinear and non-stationary power load data and avoids such defects. Secondly, a weighted combination model integrating three base models is constructed, with SFOA searching for the minimum error weight to determine the optimal combination weight. The results showed that the MSE of the single BP model is 2.3709 MW, while the combined model proposed is just 1.2764 MW, which is 46 % lower. This intuitively proves the advantages of the combined model, providing data support for integrated energy system development and optimal resource allocation. |
|---|---|
| AbstractList | •Expanding economic and climate features as inputs to enhance the model’s ability to capture load changes.•Introducing singular value decomposition technology to remove noise from load data, while preserving key features and trends, to improve data quality.•Select multiple typical models as sub model samples through the system, and choose the three with the best performance as the research focus.•Using the SFOA optimization algorithm to optimize the weights of the combined model and achieve higher prediction accuracy.
In recent years, integrated energy systems have developed rapidly, integrating electricity, heat, cooling, and other energy sources into cross-energy coupling systems for efficient energy optimization. The setting and dynamic adjustment of their operating parameters depend heavily on power load forecasting, so improving forecasting accuracy is key to optimizing system operation. However, the load data is affected by interference from non-stationary signals and the introduction of a significant amount of noise. The traditional single-model approach struggles to handle complex and variable forecasting tasks, failing to meet the high-precision load forecasting demands. Given such problems, this research proposes a combined forecasting model utilizing SVD denoising preprocessing and multi-base model fusion to address the limitations of single-model approaches and enhance load forecasting precision. We used one year of load data from an Indian power plant to verify our proposed model. Firstly, SVD preprocesses the original data to remove noise and abnormal fluctuations. Unlike common modal decomposition methods that are prone to causing modal aliasing, SVD has stronger universality for nonlinear and non-stationary power load data and avoids such defects. Secondly, a weighted combination model integrating three base models is constructed, with SFOA searching for the minimum error weight to determine the optimal combination weight. The results showed that the MSE of the single BP model is 2.3709 MW, while the combined model proposed is just 1.2764 MW, which is 46 % lower. This intuitively proves the advantages of the combined model, providing data support for integrated energy system development and optimal resource allocation. |
| ArticleNumber | 128313 |
| Author | Xu, Jing Bian, Kai Wang, Haohao Ding, Junfeng |
| Author_xml | – sequence: 1 givenname: Kai surname: Bian fullname: Bian, Kai organization: State Key Laboratory of Digital Intelligent Technology for Unmanned Coal Mining, Anhui University of Science and Technology, Huainan 232001 Anhui, China – sequence: 2 givenname: Jing orcidid: 0009-0003-1489-966X surname: Xu fullname: Xu, Jing email: xuj053024@163.com organization: State Key Laboratory of Digital Intelligent Technology for Unmanned Coal Mining, Anhui University of Science and Technology, Huainan 232001 Anhui, China – sequence: 3 givenname: Haohao surname: Wang fullname: Wang, Haohao organization: State Key Laboratory of Digital Intelligent Technology for Unmanned Coal Mining, Anhui University of Science and Technology, Huainan 232001 Anhui, China – sequence: 4 givenname: Junfeng surname: Ding fullname: Ding, Junfeng organization: State Key Laboratory of Digital Intelligent Technology for Unmanned Coal Mining, Anhui University of Science and Technology, Huainan 232001 Anhui, China |
| BookMark | eNqNkDtPwzAUhT0UibbwHzywJviRlyWWqqKAVImlzJZj3zSukriyDRX_HrdlYWO6j6NzdO-3QLPJTYDQAyU5JbR6POTqeBxiD35UA0z7nBFW5pQ1nPIZmlNeiqzglN6iRQgHQpJSF3O0W-EJTniE2DuDO-dx6J2PWUw5eHDqsgOtQrTTHrcqgMFuwiew-z6mvvsMNs2uu2h4dAaGcIduOjUEuP-tS_Sxed6tX7Pt-8vberXNNKt5zArGKaOKtoUgApqWlZS1HS2hVm2tuDJC8KYQja4IEU3XsLZipqyJYEy3pdF8iZ6uudq7EDx08ujtqPy3pESeqciD_EtFnqnIK5Vk31zt6WT4suBl0BYmDcaml6M0zv4v6Ac--3fg |
| Cites_doi | 10.1016/j.applthermaleng.2025.125799 10.1016/j.jhydrol.2022.128463 10.70470/EDRAAK/2024/005 10.1016/j.engappai.2024.108375 10.1016/j.egyr.2022.09.188 10.1016/j.apenergy.2022.119269 10.1016/j.cie.2024.110114 10.1016/j.rineng.2024.103560 10.1016/j.energy.2025.134757 10.1016/j.enbuild.2022.111908 10.1007/s00521-024-10694-1 10.1016/j.apenergy.2024.124166 10.1016/j.eswa.2023.122012 10.1016/j.cma.2024.117718 10.1016/j.enconman.2020.112534 10.1016/j.applthermaleng.2025.127031 10.1016/j.apenergy.2022.118801 10.1016/j.energy.2023.128274 10.1016/j.enbuild.2023.113396 10.1016/j.asoc.2019.105548 10.1109/TNNLS.2023.3259149 10.3390/app12136647 10.1016/j.enbuild.2022.112666 10.1016/j.applthermaleng.2024.125224 10.1007/s00521-021-05958-z 10.1016/j.egyr.2023.05.048 10.1162/neco_a_01199 10.58496/BJAI/2024/010 10.1016/j.ref.2023.04.010 10.1007/s11063-024-11622-z 10.1016/j.apenergy.2021.118197 10.1016/j.energy.2022.124041 10.1007/s11042-022-13462-2 10.3390/su14127307 10.1016/j.enbuild.2024.114698 10.1080/15325008.2023.2181883 10.1016/j.engappai.2023.106773 10.1109/TDEI.2023.3269725 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.applthermaleng.2025.128313 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_applthermaleng_2025_128313 S1359431125029059 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNUV ACDAQ ACGFS ACIWK ACLOT ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFKBS EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- ~HD 9DU AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FGOYB HZ~ R2- |
| ID | FETCH-LOGICAL-c273t-423121a1b4909e8b2512bf15e7ab7a3ad9938498c60098f82b62d570922cb5dc3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001573266800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1359-4311 |
| IngestDate | Sat Nov 29 06:51:16 EST 2025 Wed Dec 10 14:23:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Combined model Feature selection Data denoising Short-term load forecasting Parameter optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c273t-423121a1b4909e8b2512bf15e7ab7a3ad9938498c60098f82b62d570922cb5dc3 |
| ORCID | 0009-0003-1489-966X |
| ParticipantIDs | crossref_primary_10_1016_j_applthermaleng_2025_128313 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2025_128313 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-01 2025-12-00 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied thermal engineering |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Li, Huang, Hu, Li (b0060) 2023; 279 Wang, Wang, Xu (b0100) 2019; 82 Tang (b0040) 2022; 252 Zhou (b0065) 2024; 321 Fan, Han, Li, Peng, Yeh, Hong (b0140) 2024; 238 Liu (b0130) 2025; 262 Sadeghi, Golshanfard, Eslami, Rahbar, Kari (b0160) 2023; 45 Li, Huang, Zhu (b0005) 2020; 207 Karijadi, Chou (b0135) 2022; 259 Kuyumani, Hasan, Shongwe (b0075) 2023; 51 Smyl, Dudek, Pełka (b0035) 2023; 35 Niu, Yu, Sun, Gao, Wang (b0010) 2022; 313 Cao, Wang, Xia (b0125) 2024; 132 Gong, Qu, Zhu, Xu, Yang (b0185) 2025; 318 Iqbal, Adnan, Mohamed, Tariq (b0115) 2024; 24 Lang, Gao (b0205) 2025; 436 Fan, Zhang, Huang, Zhu, Chen (b0080) 2023; 35 Balasubramani, Natarajan (b0145) 2024; 2024 Aderyani, Mousavi, Jafari (b0170) 2022; 614 Yang, Shi, Li, Song, Zhang, Chen (b0190) 2022; 307 Ziyu, Zeyu, Huiwei, Guo, Kun (b0090) 2023; 144 Poongadan, Lineesh (b0150) 2024; 56 Hong, Chan (b0095) 2023; 126 Lu, Wang (b0175) 2023; 82 Zulfiqar, Kamran, Rasheed, Alquthami, Milyani (b0045) 2022; 8 Yu, Si, Hu, Zhang (b0070) 2019; 31 Kachalla, Ghiaus, Baseer (b0030) 2025; 267 Yang, Peng, Zhu, Liang, Qi, Ben (b0110) 2025 Yan, Lu, Liu, He, Zhang, Guo (b0025) 2023; 297 Xu, Pan, Sun, Yuan (b0050) 2022 Zhong, Li, Meng, Li, Yildiz, Mirjalili (b0195) 2025; 37 Zhu, Dong, Zheng, Li, Huang, Xi (b0015) 2022; 321 Chen, Huang, Zheng, Yang (b0105) 2024; 375 Lei, Wang, Li (b0155) 2023; 30 Chen, Zhu, Hu, Wang, Sun, Yang (b0165) 2023; 9 Gu, Wang, Liu (b0120) 2024; 191 Nyangaresi (b0200) 2024; 2024 Kim, Tak, Lee (b0020) 2025 Wan, Chang, Khalil, He (b0085) 2023; 282 Wang, Cui, Niu (b0055) 2022; 14 Cai, Li, Su, Zhu, He (b0180) 2022; 12 Balasubramani (10.1016/j.applthermaleng.2025.128313_b0145) 2024; 2024 Lei (10.1016/j.applthermaleng.2025.128313_b0155) 2023; 30 Aderyani (10.1016/j.applthermaleng.2025.128313_b0170) 2022; 614 Yang (10.1016/j.applthermaleng.2025.128313_b0190) 2022; 307 Lang (10.1016/j.applthermaleng.2025.128313_b0205) 2025; 436 Poongadan (10.1016/j.applthermaleng.2025.128313_b0150) 2024; 56 Kachalla (10.1016/j.applthermaleng.2025.128313_b0030) 2025; 267 Hong (10.1016/j.applthermaleng.2025.128313_b0095) 2023; 126 Gu (10.1016/j.applthermaleng.2025.128313_b0120) 2024; 191 Gong (10.1016/j.applthermaleng.2025.128313_b0185) 2025; 318 Zhou (10.1016/j.applthermaleng.2025.128313_b0065) 2024; 321 Wan (10.1016/j.applthermaleng.2025.128313_b0085) 2023; 282 Lu (10.1016/j.applthermaleng.2025.128313_b0175) 2023; 82 Yu (10.1016/j.applthermaleng.2025.128313_b0070) 2019; 31 Wang (10.1016/j.applthermaleng.2025.128313_b0055) 2022; 14 Fan (10.1016/j.applthermaleng.2025.128313_b0080) 2023; 35 Yan (10.1016/j.applthermaleng.2025.128313_b0025) 2023; 297 Kuyumani (10.1016/j.applthermaleng.2025.128313_b0075) 2023; 51 Niu (10.1016/j.applthermaleng.2025.128313_b0010) 2022; 313 Cai (10.1016/j.applthermaleng.2025.128313_b0180) 2022; 12 Li (10.1016/j.applthermaleng.2025.128313_b0005) 2020; 207 Iqbal (10.1016/j.applthermaleng.2025.128313_b0115) 2024; 24 Liu (10.1016/j.applthermaleng.2025.128313_b0130) 2025; 262 Xu (10.1016/j.applthermaleng.2025.128313_b0050) 2022 Tang (10.1016/j.applthermaleng.2025.128313_b0040) 2022; 252 Zhu (10.1016/j.applthermaleng.2025.128313_b0015) 2022; 321 Smyl (10.1016/j.applthermaleng.2025.128313_b0035) 2023; 35 Ziyu (10.1016/j.applthermaleng.2025.128313_b0090) 2023; 144 Nyangaresi (10.1016/j.applthermaleng.2025.128313_b0200) 2024; 2024 Yang (10.1016/j.applthermaleng.2025.128313_b0110) 2025 Cao (10.1016/j.applthermaleng.2025.128313_b0125) 2024; 132 Zhong (10.1016/j.applthermaleng.2025.128313_b0195) 2025; 37 Chen (10.1016/j.applthermaleng.2025.128313_b0105) 2024; 375 Zulfiqar (10.1016/j.applthermaleng.2025.128313_b0045) 2022; 8 Wang (10.1016/j.applthermaleng.2025.128313_b0100) 2019; 82 Chen (10.1016/j.applthermaleng.2025.128313_b0165) 2023; 9 Sadeghi (10.1016/j.applthermaleng.2025.128313_b0160) 2023; 45 Fan (10.1016/j.applthermaleng.2025.128313_b0140) 2024; 238 Kim (10.1016/j.applthermaleng.2025.128313_b0020) 2025 Karijadi (10.1016/j.applthermaleng.2025.128313_b0135) 2022; 259 Li (10.1016/j.applthermaleng.2025.128313_b0060) 2023; 279 |
| References_xml | – volume: 14 start-page: 7307 year: 2022 ident: b0055 article-title: Wind power forecasting based on LSTM improved by EMD-PCA-RF publication-title: Sustainability – volume: 238 year: 2024 ident: b0140 article-title: A hybrid model for deep learning short-term power load forecasting based on feature extraction statistics techniques publication-title: Expert Syst. Appl. – volume: 45 start-page: 242 year: 2023 end-page: 258 ident: b0160 article-title: Improving PV power plant forecast accuracy: a hybrid deep learning approach compared across short, medium, and long-term horizons publication-title: Renewable Energy Focus – volume: 9 start-page: 1022 year: 2023 end-page: 1031 ident: b0165 article-title: Research on short-term load forecasting of new-type power system based on GCN-LSTM considering multiple influencing factors publication-title: Energy Rep. – volume: 375 year: 2024 ident: b0105 article-title: A load forecasting approach for integrated energy systems based on aggregation hybrid modal decomposition and combined model publication-title: Appl. Energy – volume: 2024 start-page: 73 year: 2024 end-page: 82 ident: b0145 article-title: Improving bus passenger flow prediction using Bi-LSTM fusion model and SMO algorithm publication-title: Babylonian J. Artificial Intelligence – volume: 30 start-page: 2107 year: 2023 end-page: 2116 ident: b0155 article-title: A denoising method of partial discharge signal based on improved SVD-VMD publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 614 year: 2022 ident: b0170 article-title: Short-term rainfall forecasting using machine learning-based approaches of PSO-SVR, LSTM and CNN publication-title: J. Hydrol. – volume: 2024 start-page: 32 year: 2024 end-page: 38 ident: b0200 article-title: AI-driven energy forecasting enhancing smart grid efficiency with LSTM networks publication-title: EDRAAK J. – volume: 279 year: 2023 ident: b0060 article-title: Ultra-short term power load forecasting based on CEEMDAN-SE and LSTM neural network publication-title: Energ. Buildings – volume: 282 year: 2023 ident: b0085 article-title: Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism publication-title: Energy – volume: 8 start-page: 13333 year: 2022 end-page: 13352 ident: b0045 article-title: Hyperparameter optimization of support vector machine using adaptive differential evolution for electricity load forecasting publication-title: Energy Rep. – volume: 191 year: 2024 ident: b0120 article-title: A combined system based on data preprocessing and optimization algorithm for electricity load forecasting publication-title: Comput. Ind. Eng. – volume: 56 start-page: 164 year: 2024 ident: b0150 article-title: Non-linear time series prediction using improved CEEMDAN, SVD and LSTM publication-title: Neural Process. Lett. – volume: 24 year: 2024 ident: b0115 article-title: A hybrid deep learning framework for short-term load forecasting with improved data cleansing and preprocessing techniques publication-title: Results Eng. – volume: 51 start-page: 746 year: 2023 end-page: 760 ident: b0075 article-title: A hybrid model based on CNN-LSTM to detect and forecast harmonics: a case study of an eskom substation in South Africa publication-title: Electric Power Components and Systems – volume: 262 year: 2025 ident: b0130 article-title: Proposing an innovative model for solar irradiance and wind speed forecasting publication-title: Appl. Therm. Eng. – volume: 267 year: 2025 ident: b0030 article-title: Comparative analysis of machine learning models for prediction and forecasting of electric water boilers energy consumption publication-title: Appl. Therm. Eng. – volume: 318 year: 2025 ident: b0185 article-title: Ensemble models of TCN-LSTM-LightGBM based on ensemble learning methods for short-term electrical load forecasting publication-title: Energy – start-page: 1353 year: 2022 end-page: 1356 ident: b0050 article-title: Short-term load forecasting of power system based on genetic algorithm improved BP neural network algorithm publication-title: 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA) – volume: 12 start-page: 6647 year: 2022 ident: b0180 article-title: Short-term electrical load forecasting based on VMD and GRU-TCN hybrid network publication-title: Appl. Sci. – year: 2025 ident: b0020 article-title: Empirical analysis of the demand-based heat supply system in district heating buildings publication-title: Appl. Therm. Eng. – volume: 82 year: 2019 ident: b0100 article-title: A novel combined model based on hybrid optimization algorithm for electrical load forecasting publication-title: Appl. Soft Comput. – volume: 31 start-page: 1235 year: 2019 end-page: 1270 ident: b0070 article-title: A review of recurrent neural networks: LSTM cells and network architectures publication-title: Neural Comput. – volume: 207 year: 2020 ident: b0005 article-title: Gradient descent iterative method for energy flow of integrated energy system considering multiple modes of compressors publication-title: Energ. Conver. Manage. – volume: 313 year: 2022 ident: b0010 article-title: Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism publication-title: Appl. Energy – volume: 436 year: 2025 ident: b0205 article-title: Dream Optimization Algorithm (DOA): a novel metaheuristic optimization algorithm inspired by human dreams and its applications to real-world engineering problems publication-title: Comput. Methods Appl. Mech. Eng. – volume: 132 year: 2024 ident: b0125 article-title: Combined electricity load-forecasting system based on weighted fuzzy time series and deep neural networks publication-title: Eng. Appl. Artif. Intel. – volume: 35 start-page: 13109 year: 2023 end-page: 13118 ident: b0080 article-title: Parallel spatio-temporal attention-based TCN for multivariate time series prediction publication-title: Neural Comput. & Applic. – volume: 321 year: 2022 ident: b0015 article-title: Review and prospect of data-driven techniques for load forecasting in integrated energy systems publication-title: Appl. Energy – volume: 35 start-page: 11346 year: 2023 end-page: 11358 ident: b0035 article-title: ES-dRNN: a hybrid exponential smoothing and dilated recurrent neural network model for short-term load forecasting publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 126 year: 2023 ident: b0095 article-title: Short-term electric load forecasting using particle swarm optimization-based convolutional neural network publication-title: Eng. Appl. Artif. Intel. – volume: 37 start-page: 3641 year: 2025 end-page: 3683 ident: b0195 article-title: Starfish optimization algorithm (SFOA): a bio-inspired metaheuristic algorithm for global optimization compared with 100 optimizers publication-title: Neural Comput. & Applic. – year: 2025 ident: b0110 article-title: Building heat load forecasting considering mechanism data fusion: a stacking ensemble approach for district heating systems publication-title: Appl. Therm. Eng. – volume: 82 start-page: 9939 year: 2023 end-page: 9959 ident: b0175 article-title: A load forecasting model based on support vector regression with whale optimization algorithm publication-title: Multimed. Tools Appl. – volume: 252 year: 2022 ident: b0040 article-title: GM (1, 1) based improved seasonal index model for monthly electricity consumption forecasting publication-title: Energy – volume: 297 year: 2023 ident: b0025 article-title: An improved feature-time Transformer encoder-Bi-LSTM for short-term forecasting of user-level integrated energy loads publication-title: Energ. Buildings – volume: 307 year: 2022 ident: b0190 article-title: A combined deep learning load forecasting model of single household resident user considering multi-time scale electricity consumption behavior publication-title: Appl. Energy – volume: 321 year: 2024 ident: b0065 article-title: ISSA-LSTM: a new data-driven method of heat load forecasting for building air conditioning publication-title: Energ. Buildings – volume: 144 year: 2023 ident: b0090 article-title: Residual LSTM based short-term load forecasting publication-title: Appl. Soft Comput. J. – volume: 259 year: 2022 ident: b0135 article-title: A hybrid RF-LSTM based on CEEMDAN for improving the accuracy of building energy consumption prediction publication-title: Energ. Buildings – volume: 267 year: 2025 ident: 10.1016/j.applthermaleng.2025.128313_b0030 article-title: Comparative analysis of machine learning models for prediction and forecasting of electric water boilers energy consumption publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2025.125799 – volume: 614 year: 2022 ident: 10.1016/j.applthermaleng.2025.128313_b0170 article-title: Short-term rainfall forecasting using machine learning-based approaches of PSO-SVR, LSTM and CNN publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.128463 – volume: 2024 start-page: 32 year: 2024 ident: 10.1016/j.applthermaleng.2025.128313_b0200 article-title: AI-driven energy forecasting enhancing smart grid efficiency with LSTM networks publication-title: EDRAAK J. doi: 10.70470/EDRAAK/2024/005 – volume: 132 year: 2024 ident: 10.1016/j.applthermaleng.2025.128313_b0125 article-title: Combined electricity load-forecasting system based on weighted fuzzy time series and deep neural networks publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2024.108375 – volume: 8 start-page: 13333 year: 2022 ident: 10.1016/j.applthermaleng.2025.128313_b0045 article-title: Hyperparameter optimization of support vector machine using adaptive differential evolution for electricity load forecasting publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.09.188 – volume: 321 year: 2022 ident: 10.1016/j.applthermaleng.2025.128313_b0015 article-title: Review and prospect of data-driven techniques for load forecasting in integrated energy systems publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119269 – volume: 191 year: 2024 ident: 10.1016/j.applthermaleng.2025.128313_b0120 article-title: A combined system based on data preprocessing and optimization algorithm for electricity load forecasting publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2024.110114 – volume: 24 year: 2024 ident: 10.1016/j.applthermaleng.2025.128313_b0115 article-title: A hybrid deep learning framework for short-term load forecasting with improved data cleansing and preprocessing techniques publication-title: Results Eng. doi: 10.1016/j.rineng.2024.103560 – volume: 318 year: 2025 ident: 10.1016/j.applthermaleng.2025.128313_b0185 article-title: Ensemble models of TCN-LSTM-LightGBM based on ensemble learning methods for short-term electrical load forecasting publication-title: Energy doi: 10.1016/j.energy.2025.134757 – volume: 259 year: 2022 ident: 10.1016/j.applthermaleng.2025.128313_b0135 article-title: A hybrid RF-LSTM based on CEEMDAN for improving the accuracy of building energy consumption prediction publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2022.111908 – volume: 144 year: 2023 ident: 10.1016/j.applthermaleng.2025.128313_b0090 article-title: Residual LSTM based short-term load forecasting publication-title: Appl. Soft Comput. J. – volume: 37 start-page: 3641 issue: 5 year: 2025 ident: 10.1016/j.applthermaleng.2025.128313_b0195 article-title: Starfish optimization algorithm (SFOA): a bio-inspired metaheuristic algorithm for global optimization compared with 100 optimizers publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-024-10694-1 – volume: 375 year: 2024 ident: 10.1016/j.applthermaleng.2025.128313_b0105 article-title: A load forecasting approach for integrated energy systems based on aggregation hybrid modal decomposition and combined model publication-title: Appl. Energy doi: 10.1016/j.apenergy.2024.124166 – volume: 238 year: 2024 ident: 10.1016/j.applthermaleng.2025.128313_b0140 article-title: A hybrid model for deep learning short-term power load forecasting based on feature extraction statistics techniques publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122012 – volume: 436 year: 2025 ident: 10.1016/j.applthermaleng.2025.128313_b0205 article-title: Dream Optimization Algorithm (DOA): a novel metaheuristic optimization algorithm inspired by human dreams and its applications to real-world engineering problems publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2024.117718 – start-page: 1353 year: 2022 ident: 10.1016/j.applthermaleng.2025.128313_b0050 article-title: Short-term load forecasting of power system based on genetic algorithm improved BP neural network algorithm – volume: 207 year: 2020 ident: 10.1016/j.applthermaleng.2025.128313_b0005 article-title: Gradient descent iterative method for energy flow of integrated energy system considering multiple modes of compressors publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2020.112534 – year: 2025 ident: 10.1016/j.applthermaleng.2025.128313_b0020 article-title: Empirical analysis of the demand-based heat supply system in district heating buildings publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2025.127031 – volume: 313 year: 2022 ident: 10.1016/j.applthermaleng.2025.128313_b0010 article-title: Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118801 – volume: 282 year: 2023 ident: 10.1016/j.applthermaleng.2025.128313_b0085 article-title: Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism publication-title: Energy doi: 10.1016/j.energy.2023.128274 – volume: 297 year: 2023 ident: 10.1016/j.applthermaleng.2025.128313_b0025 article-title: An improved feature-time Transformer encoder-Bi-LSTM for short-term forecasting of user-level integrated energy loads publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2023.113396 – volume: 82 year: 2019 ident: 10.1016/j.applthermaleng.2025.128313_b0100 article-title: A novel combined model based on hybrid optimization algorithm for electrical load forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105548 – volume: 35 start-page: 11346 issue: 8 year: 2023 ident: 10.1016/j.applthermaleng.2025.128313_b0035 article-title: ES-dRNN: a hybrid exponential smoothing and dilated recurrent neural network model for short-term load forecasting publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2023.3259149 – volume: 12 start-page: 6647 issue: 13 year: 2022 ident: 10.1016/j.applthermaleng.2025.128313_b0180 article-title: Short-term electrical load forecasting based on VMD and GRU-TCN hybrid network publication-title: Appl. Sci. doi: 10.3390/app12136647 – volume: 279 year: 2023 ident: 10.1016/j.applthermaleng.2025.128313_b0060 article-title: Ultra-short term power load forecasting based on CEEMDAN-SE and LSTM neural network publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2022.112666 – volume: 262 year: 2025 ident: 10.1016/j.applthermaleng.2025.128313_b0130 article-title: Proposing an innovative model for solar irradiance and wind speed forecasting publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2024.125224 – volume: 35 start-page: 13109 issue: 18 year: 2023 ident: 10.1016/j.applthermaleng.2025.128313_b0080 article-title: Parallel spatio-temporal attention-based TCN for multivariate time series prediction publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-021-05958-z – volume: 9 start-page: 1022 year: 2023 ident: 10.1016/j.applthermaleng.2025.128313_b0165 article-title: Research on short-term load forecasting of new-type power system based on GCN-LSTM considering multiple influencing factors publication-title: Energy Rep. doi: 10.1016/j.egyr.2023.05.048 – volume: 31 start-page: 1235 issue: 7 year: 2019 ident: 10.1016/j.applthermaleng.2025.128313_b0070 article-title: A review of recurrent neural networks: LSTM cells and network architectures publication-title: Neural Comput. doi: 10.1162/neco_a_01199 – volume: 2024 start-page: 73 year: 2024 ident: 10.1016/j.applthermaleng.2025.128313_b0145 article-title: Improving bus passenger flow prediction using Bi-LSTM fusion model and SMO algorithm publication-title: Babylonian J. Artificial Intelligence doi: 10.58496/BJAI/2024/010 – volume: 45 start-page: 242 year: 2023 ident: 10.1016/j.applthermaleng.2025.128313_b0160 article-title: Improving PV power plant forecast accuracy: a hybrid deep learning approach compared across short, medium, and long-term horizons publication-title: Renewable Energy Focus doi: 10.1016/j.ref.2023.04.010 – volume: 56 start-page: 164 issue: 3 year: 2024 ident: 10.1016/j.applthermaleng.2025.128313_b0150 article-title: Non-linear time series prediction using improved CEEMDAN, SVD and LSTM publication-title: Neural Process. Lett. doi: 10.1007/s11063-024-11622-z – volume: 307 year: 2022 ident: 10.1016/j.applthermaleng.2025.128313_b0190 article-title: A combined deep learning load forecasting model of single household resident user considering multi-time scale electricity consumption behavior publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.118197 – year: 2025 ident: 10.1016/j.applthermaleng.2025.128313_b0110 article-title: Building heat load forecasting considering mechanism data fusion: a stacking ensemble approach for district heating systems publication-title: Appl. Therm. Eng. – volume: 252 year: 2022 ident: 10.1016/j.applthermaleng.2025.128313_b0040 article-title: GM (1, 1) based improved seasonal index model for monthly electricity consumption forecasting publication-title: Energy doi: 10.1016/j.energy.2022.124041 – volume: 82 start-page: 9939 issue: 7 year: 2023 ident: 10.1016/j.applthermaleng.2025.128313_b0175 article-title: A load forecasting model based on support vector regression with whale optimization algorithm publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-13462-2 – volume: 14 start-page: 7307 issue: 12 year: 2022 ident: 10.1016/j.applthermaleng.2025.128313_b0055 article-title: Wind power forecasting based on LSTM improved by EMD-PCA-RF publication-title: Sustainability doi: 10.3390/su14127307 – volume: 321 year: 2024 ident: 10.1016/j.applthermaleng.2025.128313_b0065 article-title: ISSA-LSTM: a new data-driven method of heat load forecasting for building air conditioning publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2024.114698 – volume: 51 start-page: 746 issue: 8 year: 2023 ident: 10.1016/j.applthermaleng.2025.128313_b0075 article-title: A hybrid model based on CNN-LSTM to detect and forecast harmonics: a case study of an eskom substation in South Africa publication-title: Electric Power Components and Systems doi: 10.1080/15325008.2023.2181883 – volume: 126 year: 2023 ident: 10.1016/j.applthermaleng.2025.128313_b0095 article-title: Short-term electric load forecasting using particle swarm optimization-based convolutional neural network publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2023.106773 – volume: 30 start-page: 2107 issue: 5 year: 2023 ident: 10.1016/j.applthermaleng.2025.128313_b0155 article-title: A denoising method of partial discharge signal based on improved SVD-VMD publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2023.3269725 |
| SSID | ssj0012874 |
| Score | 2.4699326 |
| Snippet | •Expanding economic and climate features as inputs to enhance the model’s ability to capture load changes.•Introducing singular value decomposition technology... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 128313 |
| SubjectTerms | Combined model Data denoising Feature selection Parameter optimization Short-term load forecasting |
| Title | A new method for short-term load forecasting based on weighted fusion of base models |
| URI | https://dx.doi.org/10.1016/j.applthermaleng.2025.128313 |
| Volume | 280 |
| WOSCitedRecordID | wos001573266800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1359-4311 databaseCode: AIEXJ dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0012874 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RparKoaIPVKBFPnCrsiJ2HNunaoWoKEgIqVt1b5GTOAIECSK7wM_v-JFNoK1EVfUSZZ3Ik_V8tj-PxzMAuzkz0hjsgAInB1yglEmEv0VU0JLHTOMUWCYu2YQ4OZGzmToN4Qlal05A1LW8v1fX_1XVWIbKtkdn_0Ldy0qxAO9R6XhFteP1SYqf2CzhITO0cyJsz5BiR3YI_nTZaFdmCt06f2c7iZV2w-DOmUjxvlq0gUPaZz5TTjuksB1vtczxChVs-oiGvcXdm1WP9XlXNFs4vAxe-hEs1Ye6OdPNklCHHCtHi7oy4eVglKD8kYPH8rRM75pkB1fGVYSEJR6OvtQncvplJPdGhYux3ccPfwiljq2wMc6pzJ9gfRQr-5sVYSUgsaMKmeMzWKWCKzmC1cnXg9nRcoPJhvl3a_HwSS9gt3f9-7PM37OXASOZrsOrsJQgEw-B17Bi6jewNggw-RamE4JgIB4MBBVPejAQCwYyAANxYCBNTTowEA8G0lTuGfFgeAffvxxM9w-jkEcDe5xg8wgZc0xjHeeJ2lNG5pbS5lXMjdC50EyXyFFlomSR2uiylaR5ij1V7ClKi5yXBduAUd3U5j0QIyoVJzo1TKdJWSQ5T1Jd8IoaRpVMzSbwrn2yax8uJev8CC-yh-2a2XbNfLtuwueuMbNA_TylyxAPT6ph659r2IaXPZQ_wGh-szAf4XlxOz9vb3YCgH4C56-ILw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+method+for+short-term+load+forecasting+based+on+weighted+fusion+of+base+models&rft.jtitle=Applied+thermal+engineering&rft.au=Bian%2C+Kai&rft.au=Xu%2C+Jing&rft.au=Wang%2C+Haohao&rft.au=Ding%2C+Junfeng&rft.date=2025-12-01&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=280&rft_id=info:doi/10.1016%2Fj.applthermaleng.2025.128313&rft.externalDocID=S1359431125029059 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |