Solution of the Skyrme–Hartree–Fock–Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis
We describe the new version (v2.49t) of the code hfodd which solves the nuclear Skyrme–Hartree–Fock (HF) or Skyrme–Hartree–Fock–Bogolyubov (HFB) problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following physics features: (i) the isospin...
Gespeichert in:
| Veröffentlicht in: | Computer physics communications Jg. 183; H. 1; S. 166 - 192 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
2012
|
| Schlagworte: | |
| ISSN: | 0010-4655, 1879-2944 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We describe the new version (v2.49t) of the code
hfodd which solves the nuclear Skyrme–Hartree–Fock (HF) or Skyrme–Hartree–Fock–Bogolyubov (HFB) problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following physics features: (i) the isospin mixing and projection, (ii) the finite-temperature formalism for the HFB and HF
+
BCS methods, (iii) the Lipkin translational energy correction method, (iv) the calculation of the shell correction. A number of specific numerical methods have also been implemented in order to deal with large-scale multi-constraint calculations and hardware limitations: (i) the two-basis method for the HFB method, (ii) the Augmented Lagrangian Method (ALM) for multi-constraint calculations, (iii) the linear constraint method based on the approximation of the RPA matrix for multi-constraint calculations, (iv) an interface with the axial and parity-conserving Skyrme–HFB code
hfbtho, (v) the mixing of the HF or HFB matrix elements instead of the HF fields. Special care has been paid to using the code on massively parallel leadership class computers. For this purpose, the following features are now available with this version: (i) the Message Passing Interface (MPI) framework, (ii) scalable input data routines, (iii) multi-threading via OpenMP pragmas, (iv) parallel diagonalization of the HFB matrix in the simplex-breaking case using the ScaLAPACK library. Finally, several little significant errors of the previous published version were corrected.
Program title:
hfodd (v2.49t)
Catalogue identifier: ADFL_v3_0
Program summary URL:
http://cpc.cs.qub.ac.uk/summaries/ADFL_v3_0.html
Program obtainable from: CPC Program Library, Queenʼs University, Belfast, N. Ireland
Licensing provisions: GNU General Public Licence v3
No. of lines in distributed program, including test data, etc.: 190 614
No. of bytes in distributed program, including test data, etc.: 985 898
Distribution format: tar.gz
Programming language: FORTRAN-90
Computer: Intel Pentium-III, Intel Xeon, AMD-Athlon, AMD-Opteron, Cray XT4, Cray XT5
Operating system: UNIX, LINUX, Windows XP
Has the code been vectorized or parallelized?: Yes, parallelized using MPI
RAM: 10 Mwords
Word size: The code is written in single-precision for the use on a 64-bit processor. The compiler option -r8 or +autodblpad (or equivalent) has to be used to promote all real and complex single-precision floating-point items to double precision when the code is used on a 32-bit machine.
Classification: 17.22
Catalogue identifier of previous version: ADFL_v2_2
Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2361
External routines: The user must have access to
1.
the NAGLIB subroutine f02axe, or LAPACK subroutines zhpev, zhpevx, zheevr, or zheevd, which diagonalize complex hermitian matrices,
2.
the LAPACK subroutines dgetri and dgetrf which invert arbitrary real matrices,
3.
the LAPACK subroutines dsyevd, dsytrf and dsytri which compute eigenvalues and eigenfunctions of real symmetric matrices,
4.
the LINPACK subroutines zgedi and zgeco, which invert arbitrary complex matrices and calculate determinants,
5.
the BLAS routines dcopy, dscal, dgeem and dgemv for double-precision linear algebra and zcopy, zdscal, zgeem and zgemv for complex linear algebra, or provide another set of subroutines that can perform such tasks.
The BLAS and LAPACK subroutines can be obtained from the Netlib Repository at the University of Tennessee, Knoxville:
http://netlib2.cs.utk.edu/.
Does the new version supersede the previous version?: Yes
Nature of problem: The nuclear mean field and an analysis of its symmetries in realistic cases are the main ingredients of a description of nuclear states. Within the Local Density Approximation, or for a zero-range velocity-dependent Skyrme interaction, the nuclear mean field is local and velocity dependent. The locality allows for an effective and fast solution of the self-consistent Hartree–Fock equations, even for heavy nuclei, and for various nucleonic (
n-particle–
n-hole) configurations, deformations, excitation energies, or angular momenta. Similarly, Local Density Approximation in the particle–particle channel, which is equivalent to using a zero-range interaction, allows for a simple implementation of pairing effects within the Hartree–Fock–Bogolyubov method.
Solution method: The program uses the Cartesian harmonic oscillator basis to expand single-particle or single-quasiparticle wave functions of neutrons and protons interacting by means of the Skyrme effective interaction and zero-range pairing interaction. The expansion coefficients are determined by the iterative diagonalization of the mean-field Hamiltonians or Routhians which depend non-linearly on the local neutron and proton densities. Suitable constraints are used to obtain states corresponding to a given configuration, deformation or angular momentum. The method of solution has been presented in: [J. Dobaczewski, J. Dudek, Comput. Phys. Commun. 102 (1997) 166].
Reasons for new version: Version 2.49s of HFODD provides a number of new options such as the isospin mixing and projection of the Skyrme functional, the finite-temperature HF and HFB formalism and optimized methods to perform multi-constrained calculations. It is also the first version of HFODD to contain threading and parallel capabilities.
Summary of revisions:
1.
Isospin mixing and projection of the HF states has been implemented.
2.
The finite-temperature formalism for the HFB equations has been implemented.
3.
The Lipkin translational energy correction method has been implemented.
4.
Calculation of the shell correction has been implemented.
5.
The two-basis method for the solution to the HFB equations has been implemented.
6.
The Augmented Lagrangian Method (ALM) for calculations with multiple constraints has been implemented.
7.
The linear constraint method based on the cranking approximation of the RPA matrix has been implemented.
8.
An interface between HFODD and the axially-symmetric and parity-conserving code HFBTHO has been implemented.
9.
The mixing of the matrix elements of the HF or HFB matrix has been implemented.
10.
A parallel interface using the MPI library has been implemented.
11.
A scalable model for reading input data has been implemented.
12.
OpenMP pragmas have been implemented in three subroutines.
13.
The diagonalization of the HFB matrix in the simplex-breaking case has been parallelized using the ScaLAPACK library.
14.
Several little significant errors of the previous published version were corrected.
Running time: In serial mode, running 6 HFB iterations for
152Dy for conserved parity and signature symmetries in a full spherical basis of
N
=
14
shells takes approximately 8 min on an AMD Opteron processor at 2.6 GHz, assuming standard BLAS and LAPACK libraries. As a rule of thumb, runtime for HFB calculations for parity and signature conserved symmetries roughly increases as
N
7
, where
N is the number of full HO shells. Using custom-built optimized BLAS and LAPACK libraries (such as in the ATLAS implementation) can bring down the execution time by 60%. Using the threaded version of the code with 12 threads and threaded BLAS libraries can bring an additional factor 2 speed-up, so that the same 6 HFB iterations now take of the order of 2 min 30 s.
► This is version 249t of the code HFODD. ► This version contains new physics capabilities. ► Built-in parallel model (MPI and OpenMP) is now available. ► Portability and scalability has been improved. |
|---|---|
| AbstractList | We describe the new version (v2.49t) of the code
hfodd which solves the nuclear Skyrme–Hartree–Fock (HF) or Skyrme–Hartree–Fock–Bogolyubov (HFB) problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following physics features: (i) the isospin mixing and projection, (ii) the finite-temperature formalism for the HFB and HF
+
BCS methods, (iii) the Lipkin translational energy correction method, (iv) the calculation of the shell correction. A number of specific numerical methods have also been implemented in order to deal with large-scale multi-constraint calculations and hardware limitations: (i) the two-basis method for the HFB method, (ii) the Augmented Lagrangian Method (ALM) for multi-constraint calculations, (iii) the linear constraint method based on the approximation of the RPA matrix for multi-constraint calculations, (iv) an interface with the axial and parity-conserving Skyrme–HFB code
hfbtho, (v) the mixing of the HF or HFB matrix elements instead of the HF fields. Special care has been paid to using the code on massively parallel leadership class computers. For this purpose, the following features are now available with this version: (i) the Message Passing Interface (MPI) framework, (ii) scalable input data routines, (iii) multi-threading via OpenMP pragmas, (iv) parallel diagonalization of the HFB matrix in the simplex-breaking case using the ScaLAPACK library. Finally, several little significant errors of the previous published version were corrected.
Program title:
hfodd (v2.49t)
Catalogue identifier: ADFL_v3_0
Program summary URL:
http://cpc.cs.qub.ac.uk/summaries/ADFL_v3_0.html
Program obtainable from: CPC Program Library, Queenʼs University, Belfast, N. Ireland
Licensing provisions: GNU General Public Licence v3
No. of lines in distributed program, including test data, etc.: 190 614
No. of bytes in distributed program, including test data, etc.: 985 898
Distribution format: tar.gz
Programming language: FORTRAN-90
Computer: Intel Pentium-III, Intel Xeon, AMD-Athlon, AMD-Opteron, Cray XT4, Cray XT5
Operating system: UNIX, LINUX, Windows XP
Has the code been vectorized or parallelized?: Yes, parallelized using MPI
RAM: 10 Mwords
Word size: The code is written in single-precision for the use on a 64-bit processor. The compiler option -r8 or +autodblpad (or equivalent) has to be used to promote all real and complex single-precision floating-point items to double precision when the code is used on a 32-bit machine.
Classification: 17.22
Catalogue identifier of previous version: ADFL_v2_2
Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2361
External routines: The user must have access to
1.
the NAGLIB subroutine f02axe, or LAPACK subroutines zhpev, zhpevx, zheevr, or zheevd, which diagonalize complex hermitian matrices,
2.
the LAPACK subroutines dgetri and dgetrf which invert arbitrary real matrices,
3.
the LAPACK subroutines dsyevd, dsytrf and dsytri which compute eigenvalues and eigenfunctions of real symmetric matrices,
4.
the LINPACK subroutines zgedi and zgeco, which invert arbitrary complex matrices and calculate determinants,
5.
the BLAS routines dcopy, dscal, dgeem and dgemv for double-precision linear algebra and zcopy, zdscal, zgeem and zgemv for complex linear algebra, or provide another set of subroutines that can perform such tasks.
The BLAS and LAPACK subroutines can be obtained from the Netlib Repository at the University of Tennessee, Knoxville:
http://netlib2.cs.utk.edu/.
Does the new version supersede the previous version?: Yes
Nature of problem: The nuclear mean field and an analysis of its symmetries in realistic cases are the main ingredients of a description of nuclear states. Within the Local Density Approximation, or for a zero-range velocity-dependent Skyrme interaction, the nuclear mean field is local and velocity dependent. The locality allows for an effective and fast solution of the self-consistent Hartree–Fock equations, even for heavy nuclei, and for various nucleonic (
n-particle–
n-hole) configurations, deformations, excitation energies, or angular momenta. Similarly, Local Density Approximation in the particle–particle channel, which is equivalent to using a zero-range interaction, allows for a simple implementation of pairing effects within the Hartree–Fock–Bogolyubov method.
Solution method: The program uses the Cartesian harmonic oscillator basis to expand single-particle or single-quasiparticle wave functions of neutrons and protons interacting by means of the Skyrme effective interaction and zero-range pairing interaction. The expansion coefficients are determined by the iterative diagonalization of the mean-field Hamiltonians or Routhians which depend non-linearly on the local neutron and proton densities. Suitable constraints are used to obtain states corresponding to a given configuration, deformation or angular momentum. The method of solution has been presented in: [J. Dobaczewski, J. Dudek, Comput. Phys. Commun. 102 (1997) 166].
Reasons for new version: Version 2.49s of HFODD provides a number of new options such as the isospin mixing and projection of the Skyrme functional, the finite-temperature HF and HFB formalism and optimized methods to perform multi-constrained calculations. It is also the first version of HFODD to contain threading and parallel capabilities.
Summary of revisions:
1.
Isospin mixing and projection of the HF states has been implemented.
2.
The finite-temperature formalism for the HFB equations has been implemented.
3.
The Lipkin translational energy correction method has been implemented.
4.
Calculation of the shell correction has been implemented.
5.
The two-basis method for the solution to the HFB equations has been implemented.
6.
The Augmented Lagrangian Method (ALM) for calculations with multiple constraints has been implemented.
7.
The linear constraint method based on the cranking approximation of the RPA matrix has been implemented.
8.
An interface between HFODD and the axially-symmetric and parity-conserving code HFBTHO has been implemented.
9.
The mixing of the matrix elements of the HF or HFB matrix has been implemented.
10.
A parallel interface using the MPI library has been implemented.
11.
A scalable model for reading input data has been implemented.
12.
OpenMP pragmas have been implemented in three subroutines.
13.
The diagonalization of the HFB matrix in the simplex-breaking case has been parallelized using the ScaLAPACK library.
14.
Several little significant errors of the previous published version were corrected.
Running time: In serial mode, running 6 HFB iterations for
152Dy for conserved parity and signature symmetries in a full spherical basis of
N
=
14
shells takes approximately 8 min on an AMD Opteron processor at 2.6 GHz, assuming standard BLAS and LAPACK libraries. As a rule of thumb, runtime for HFB calculations for parity and signature conserved symmetries roughly increases as
N
7
, where
N is the number of full HO shells. Using custom-built optimized BLAS and LAPACK libraries (such as in the ATLAS implementation) can bring down the execution time by 60%. Using the threaded version of the code with 12 threads and threaded BLAS libraries can bring an additional factor 2 speed-up, so that the same 6 HFB iterations now take of the order of 2 min 30 s.
► This is version 249t of the code HFODD. ► This version contains new physics capabilities. ► Built-in parallel model (MPI and OpenMP) is now available. ► Portability and scalability has been improved. We describe the new version (v2.49t) of the code hfodd which solves the nuclear Skyrme-Hartree-Fock (HF) or Skyrme-Hartree-Fock-Bogolyubov (HFB) problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following physics features: (i) the isospin mixing and projection, (ii) the finite-temperature formalism for the HFB and HF+BCS methods, (iii) the Lipkin translational energy correction method, (iv) the calculation of the shell correction. A number of specific numerical methods have also been implemented in order to deal with large-scale multi-constraint calculations and hardware limitations: (i) the two-basis method for the HFB method, (ii) the Augmented Lagrangian Method (ALM) for multi-constraint calculations, (iii) the linear constraint method based on the approximation of the RPA matrix for multi-constraint calculations, (iv) an interface with the axial and parity-conserving Skyrme-HFB code hfbtho, (v) the mixing of the HF or HFB matrix elements instead of the HF fields. Special care has been paid to using the code on massively parallel leadership class computers. For this purpose, the following features are now available with this version: (i) the Message Passing Interface (MPI) framework, (ii) scalable input data routines, (iii) multi-threading via OpenMP pragmas, (iv) parallel diagonalization of the HFB matrix in the simplex-breaking case using the ScaLAPACK library. Finally, several little significant errors of the previous published version were corrected. We describe the new version (v2.49t) of the code hfodd which solves the nuclear Skyrme-Hartree-Fock (HF) or Skyrme-Hartree-Fock-Bogolyubov (HFB) problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following physics features: (i) the isospin mixing and projection, (ii) the finite-temperature formalism for the HFB and HF+BCS methods, (iii) the Lipkin translational energy correction method, (iv) the calculation of the shell correction. A number of specific numerical methods have also been implemented in order to deal with large-scale multi-constraint calculations and hardware limitations: (i) the two-basis method for the HFB method, (ii) the Augmented Lagrangian Method (ALM) for multi-constraint calculations, (iii) the linear constraint method based on the approximation of the RPA matrix for multi-constraint calculations, (iv) an interface with the axial and parity-conserving Skyrme-HFB code hfbtho, (v) the mixing of the HF or HFB matrix elements instead of the HF fields. Special care has been paid to using the code on massively parallel leadership class computers. For this purpose, the following features are now available with this version: (i) the Message Passing Interface (MPI) framework, (ii) scalable input data routines, (iii) multi-threading via OpenMP pragmas, (iv) parallel diagonalization of the HFB matrix in the simplex-breaking case using the ScaLAPACK library. Finally, several little significant errors of the previous published version were corrected. Program title:hfodd (v2.49t) Catalogue identifier: ADFL_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADFL_v3_0.html Program obtainable from: CPC Program Library, QueenE14s University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence v3 No. of lines in distributed program, including test data, etc.: 190 614 No. of bytes in distributed program, including test data, etc.: 985 898 Distribution format: tar.gz Programming language: FORTRAN-90 Computer: Intel Pentium-III, Intel Xeon, AMD-Athlon, AMD-Opteron, Cray XT4, Cray XT5 Operating system: UNIX, LINUX, Windows XP Has the code been vectorized or parallelized?: Yes, parallelized using MPI RAM: 10 Mwords Word size: The code is written in single-precision for the use on a 64-bit processor. The compiler option -r8 or +autodblpad (or equivalent) has to be used to promote all real and complex single-precision floating-point items to double precision when the code is used on a 32-bit machine. Classification: 17.22 Catalogue identifier of previous version: ADFL_v2_2 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2361 External routines: The user must have access to1.the NAGLIB subroutine f02axe, or LAPACK subroutines zhpev, zhpevx, zheevr, or zheevd, which diagonalize complex hermitian matrices,|>2.the LAPACK subroutines dgetri and dgetrf which invert arbitrary real matrices,|>3.the LAPACK subroutines dsyevd, dsytrf and dsytri which compute eigenvalues and eigenfunctions of real symmetric matrices,|>4.the LINPACK subroutines zgedi and zgeco, which invert arbitrary complex matrices and calculate determinants,|>5.the BLAS routines dcopy, dscal, dgeem and dgemv for double-precision linear algebra and zcopy, zdscal, zgeem and zgemv for complex linear algebra, or provide another set of subroutines that can perform such tasks. The BLAS and LAPACK subroutines can be obtained from the Netlib Repository at the University of Tennessee, Knoxville: http://netlib2.cs.utk.edu/. Does the new version supersede the previous version?: Yes Nature of problem: The nuclear mean field and an analysis of its symmetries in realistic cases are the main ingredients of a description of nuclear states. Within the Local Density Approximation, or for a zero-range velocity-dependent Skyrme interaction, the nuclear mean field is local and velocity dependent. The locality allows for an effective and fast solution of the self-consistent Hartree-Fock equations, even for heavy nuclei, and for various nucleonic (n-particle-n-hole) configurations, deformations, excitation energies, or angular momenta. Similarly, Local Density Approximation in the particle-particle channel, which is equivalent to using a zero-range interaction, allows for a simple implementation of pairing effects within the Hartree-Fock-Bogolyubov method. Solution method: The program uses the Cartesian harmonic oscillator basis to expand single-particle or single-quasiparticle wave functions of neutrons and protons interacting by means of the Skyrme effective interaction and zero-range pairing interaction. The expansion coefficients are determined by the iterative diagonalization of the mean-field Hamiltonians or Routhians which depend non-linearly on the local neutron and proton densities. Suitable constraints are used to obtain states corresponding to a given configuration, deformation or angular momentum. The method of solution has been presented in: [J. Dobaczewski, J. Dudek, Comput. Phys. Commun. 102 (1997) 166]. Reasons for new version: Version 2.49s of HFODD provides a number of new options such as the isospin mixing and projection of the Skyrme functional, the finite-temperature HF and HFB formalism and optimized methods to perform multi-constrained calculations. It is also the first version of HFODD to contain threading and parallel capabilities. Summary of revisions:1.Isospin mixing and projection of the HF states has been implemented.|>2.The finite-temperature formalism for the HFB equations has been implemented.|>3.The Lipkin translational energy correction method has been implemented.|>4.Calculation of the shell correction has been implemented.|>5.The two-basis method for the solution to the HFB equations has been implemented.|>6.The Augmented Lagrangian Method (ALM) for calculations with multiple constraints has been implemented.|>7.The linear constraint method based on the cranking approximation of the RPA matrix has been implemented.|>8.An interface between HFODD and the axially-symmetric and parity-conserving code HFBTHO has been implemented.|>9.The mixing of the matrix elements of the HF or HFB matrix has been implemented.|>10.A parallel interface using the MPI library has been implemented.|>11.A scalable model for reading input data has been implemented.|>12.OpenMP pragmas have been implemented in three subroutines.|>13.The diagonalization of the HFB matrix in the simplex-breaking case has been parallelized using the ScaLAPACK library.|>14.Several little significant errors of the previous published version were corrected. Running time: In serial mode, running 6 HFB iterations for 152Dy for conserved parity and signature symmetries in a full spherical basis of N = 14 shells takes approximately 8 min on an AMD Opteron processor at 2.6 GHz, assuming standard BLAS and LAPACK libraries. As a rule of thumb, runtime for HFB calculations for parity and signature conserved symmetries roughly increases as N 7 , where N is the number of full HO shells. Using custom-built optimized BLAS and LAPACK libraries (such as in the ATLAS implementation) can bring down the execution time by 60%. Using the threaded version of the code with 12 threads and threaded BLAS libraries can bring an additional factor 2 speed-up, so that the same 6 HFB iterations now take of the order of 2 min 30 s. |
| Author | Dobaczewski, J. Stoitsov, M. Schunck, N. Sheikh, J.A. Toivanen, P. Satuła, W. Staszczak, A. McDonnell, J. |
| Author_xml | – sequence: 1 givenname: N. surname: Schunck fullname: Schunck, N. email: schunck1@llnl.gov organization: Physics Division, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA – sequence: 2 givenname: J. surname: Dobaczewski fullname: Dobaczewski, J. organization: Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Hoża 69, PL-00681 Warsaw, Poland – sequence: 3 givenname: J. surname: McDonnell fullname: McDonnell, J. organization: Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA – sequence: 4 givenname: W. surname: Satuła fullname: Satuła, W. organization: Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Hoża 69, PL-00681 Warsaw, Poland – sequence: 5 givenname: J.A. surname: Sheikh fullname: Sheikh, J.A. organization: Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA – sequence: 6 givenname: A. surname: Staszczak fullname: Staszczak, A. organization: Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA – sequence: 7 givenname: M. surname: Stoitsov fullname: Stoitsov, M. organization: Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA – sequence: 8 givenname: P. surname: Toivanen fullname: Toivanen, P. organization: Department of Physics, P.O. Box 35 (YFL), FI-40014 University of Jyväskylä, Finland |
| BookMark | eNp9kc1O3DAURi1EJQbKA7DLjm6SXseJf9RVO4KChMSCdm05zg14yMSDnSDNjnfgDXkSHIYVi1nda-mcK-v7jsnh4Ack5IxCQYHyn6vCbmxRAqUFyAIoOyALKoXKS1VVh2QBQCGveF0fkeMYVwAghGILEu58P43OD5nvsvEBs7vHbVjj28vrlQljwHm79PYxjT_-3vfbqfHPGT5NZpZi5oYPa5lgjM4MWYudTwfa7MGEtR-czX20ru_N6EPWmOjid_KtM33E0895Qv5fXvxbXuU3t3-vl79vclsKJnOjRKO4UZJTFJYJ0YKwFMBaWTdSQtt2vKuxqxtV1rxRVlaUcWbmF2tUx07I-e7uJvinCeOo1y5aTF8Z0E9RK85kxRiVifyxl6RCAOM1L8uEih1qg48xYKetGz-yGINxvaag5z70Sqc-9NyHBqlTH8mkX8xNcGsTtnudXzsHU07PDoNOWeJgsXUB7ahb7_bY79mMqUs |
| CitedBy_id | crossref_primary_10_1051_epjconf_20146602031 crossref_primary_10_1016_j_cpc_2017_03_007 crossref_primary_10_1051_epjconf_20136204003 crossref_primary_10_1016_j_cpc_2013_01_013 crossref_primary_10_1088_0031_8949_91_2_023013 crossref_primary_10_1088_1361_6471_aa5fd7 crossref_primary_10_1088_1674_1137_ad806f crossref_primary_10_1140_epja_i2015_15169_9 crossref_primary_10_1016_j_physletb_2014_10_013 crossref_primary_10_1088_1742_6596_402_1_012034 crossref_primary_10_1007_s00707_020_02798_1 crossref_primary_10_1016_j_nuclphysa_2015_07_016 crossref_primary_10_1016_j_nuclphysa_2015_07_015 crossref_primary_10_1088_0954_3899_39_12_125103 crossref_primary_10_1088_0034_4885_79_11_116301 crossref_primary_10_1140_epja_s10050_025_01604_7 crossref_primary_10_1140_epja_s10050_021_00365_3 crossref_primary_10_1007_s12043_024_02879_z crossref_primary_10_1088_1361_6471_ac0a82 crossref_primary_10_1088_0031_8949_90_11_114006 crossref_primary_10_1103_gfvh_yvxj crossref_primary_10_1088_0031_8949_90_11_114005 crossref_primary_10_1016_j_cpc_2017_10_009 crossref_primary_10_1007_s40430_018_0995_x crossref_primary_10_1016_j_cpc_2017_06_022 crossref_primary_10_1007_s12043_023_02659_1 crossref_primary_10_1016_j_cpc_2014_10_001 crossref_primary_10_1088_0031_8949_2013_T154_014027 crossref_primary_10_1088_0954_3899_41_5_055112 crossref_primary_10_1140_epja_s10050_020_00182_0 crossref_primary_10_1016_j_physletb_2023_138014 crossref_primary_10_1088_1742_6596_436_1_012058 crossref_primary_10_1088_0954_3899_42_3_034024 crossref_primary_10_1016_j_cpc_2013_05_020 crossref_primary_10_1140_epja_i2019_12766_6 |
| Cites_doi | 10.1016/0003-4916(60)90032-4 10.1103/PhysRevC.78.014318 10.1016/0375-9474(81)90132-9 10.1140/epjad/i2005-06-151-8 10.1103/PhysRevC.76.044304 10.1103/PhysRevC.21.2076 10.1103/PhysRevC.68.034327 10.1007/BF01291916 10.1103/PhysRevC.5.1050 10.1016/0370-2693(80)90200-2 10.1103/PhysRevC.80.011302 10.1103/PhysRev.51.106 10.1142/S0218301307005776 10.1103/PhysRevLett.85.26 10.1016/0092-640X(92)90036-H 10.1016/0370-2693(80)90201-4 10.1016/j.cpc.2005.01.014 10.1103/PhysRevC.80.054313 10.1103/PhysRevC.61.064317 10.1139/p91-010 10.1103/PhysRevC.81.054310 10.1103/PhysRevC.81.024316 10.1016/S0375-9474(98)00180-8 10.1016/0375-9474(67)90510-6 10.5506/APhysPolB.42.415 10.1103/PhysRevC.21.2060 10.1103/PhysRevC.21.1568 10.1103/PhysRevC.61.034313 10.1016/j.cpc.2005.01.001 10.1016/S0010-4655(97)00004-0 10.1103/PhysRevC.76.054315 10.1016/0375-9474(85)90199-X 10.1142/S0218301307005806 10.1016/0375-9474(84)90086-1 10.1103/PhysRevC.82.024313 10.1142/S0218301309013105 10.1140/epja/i2010-11018-9 10.1142/S0218301309012914 10.1103/PhysRevLett.102.192501 10.1016/j.cpc.2004.02.003 10.1142/S0218301311017582 10.1007/BF00927673 10.1016/S0010-4655(00)00121-1 10.1016/j.cpc.2009.08.009 10.1016/S0375-9474(01)01219-2 10.1103/PhysRevLett.24.607 10.1007/BF01342433 10.1016/0375-9474(84)90433-0 10.1103/PhysRevLett.106.132502 10.1016/0375-9474(68)90699-4 10.1016/S0010-4655(97)00005-2 10.1103/PhysRevC.77.025501 10.1103/PhysRevC.80.014309 10.1016/0375-9474(81)90558-3 10.1103/PhysRevLett.103.012502 10.1088/0954-3899/36/10/105105 |
| ContentType | Journal Article |
| Copyright | 2011 Elsevier B.V. |
| Copyright_xml | – notice: 2011 Elsevier B.V. |
| DBID | AAYXX CITATION 7SC 7U5 8FD H8D JQ2 L7M L~C L~D |
| DOI | 10.1016/j.cpc.2011.08.013 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2944 |
| EndPage | 192 |
| ExternalDocumentID | 10_1016_j_cpc_2011_08_013 S0010465511002852 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO AAYFN ABBOA ABFNM ABMAC ABNEU ABQEM ABQYD ABXDB ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADECG ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE IMUCA J1W KOM LG9 LZ4 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCB SDF SDG SES SEW SHN SPC SPCBC SPD SPG SSE SSK SSQ SSV SSZ T5K TN5 UPT VH1 WUQ ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7U5 8FD H8D JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2738-a97b96a9861e7c377d07c100cc85b880ddf6f5ef5b9256b9c841363a92563b9f3 |
| ISSN | 0010-4655 |
| IngestDate | Thu Oct 02 14:13:21 EDT 2025 Thu Oct 02 09:16:01 EDT 2025 Sat Nov 29 05:32:21 EST 2025 Tue Nov 18 21:43:31 EST 2025 Fri Feb 23 02:30:58 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Hartree–Fock–Bogolyubov Angular-momentum projection High-performance computing Isospin projection Skyrme interaction Hartree–Fock Hybrid programming model Finite temperature Multi-threading |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2738-a97b96a9861e7c377d07c100cc85b880ddf6f5ef5b9256b9c841363a92563b9f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PQID | 1770365622 |
| PQPubID | 23500 |
| PageCount | 27 |
| ParticipantIDs | proquest_miscellaneous_963843318 proquest_miscellaneous_1770365622 crossref_citationtrail_10_1016_j_cpc_2011_08_013 crossref_primary_10_1016_j_cpc_2011_08_013 elsevier_sciencedirect_doi_10_1016_j_cpc_2011_08_013 |
| PublicationCentury | 2000 |
| PublicationDate | 2012 2012-1-00 20120101 |
| PublicationDateYYYYMMDD | 2012-01-01 |
| PublicationDate_xml | – year: 2012 text: 2012 |
| PublicationDecade | 2010 |
| PublicationTitle | Computer physics communications |
| PublicationYear | 2012 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Dobaczewski, Satuła, Carlsson, Engel, Olbratowski, Powałowski, Sadziak, Sarich, Schunck, Staszczak, Stoitsov, Zalewski, Zduńczuk (br0070) 2009 Heisenberg (br0080) 1932; 77 Ring, Schuck (br0350) 1980 Dobaczewski (br0340) 2009; 36 Zduńczuk, Dobaczewski, Satuła (br0220) 2007; 16 Stoitsov, Nazarewicz, Schunck (br0510) 2009; 18 Staszczak, Stoitsov, Baran, Nazarewicz (br0470) 2010; 46 Satuła, Dobaczewski, Nazarewicz, Rafalski (br0170) 2011; 106 Dobaczewski, Dudek (br0030) 2000; 131 Chabanat, Bonche, Haensel, Meyer, Schaeffer (br0580) 1998; 635 Schunck, Dobaczewski, Moré, McDonnell, Nazarewicz, Sarich, Stoitsov (br0530) 2010; 81 Satuła, Dobaczewski, Nazarewicz, Borucki, Rafalski (br0160) 2011; 20 Satuła, Dobaczewski, Nazarewicz, Rafalski (br0140) 2010; 81 Kortelainen, Lesinski, Moré, Nazarewicz, Sarich, Schunck, Stoitsov, Wild (br0590) 2010; 82 Dechargé, Gogny (br0480) 1980; 21 E. Chabanat, Interactions effectives pour des conditions extrêmes dʼisospin, Université Claude Bernard Lyon-1, Thesis 1995, LYCEN T 9501, unpublished. Martin, Egido, Robledo (br0290) 2003; 68 Strutinsky (br0360) 1967; 95 Robledo (br0200) 2007; 16 Stoitsov, Dobaczewski, Nazarewicz, Ring (br0500) 2005; 167 Anguiano, Egido, Robledo (br0190) 2001; 696 Strutinsky (br0370) 1968; 122 Rafalski, Satuła, Dobaczewski (br0120) 2009; 18 Vertse, Kruppa, Nazarewicz (br0420) 2000; 61 Zduńczuk, Satuła, Dobaczewski, Kosmulski (br0240) 2007; 76 Dobaczewski, Stoitsov, Nazarewicz (br0520) 2004; 726 Kruppa, Bender, Nazarewicz, Reinhard, Vertse, Ćwiok (br0410) 2000; 61 Hestenes (br0450) 1969; 4 Satuła, Dobaczewski, Nazarewicz, Rafalski (br0150) 2011; 42 Dobaczewski, Borecki, Nazarewicz, Stoitsov (br0440) 2005; 25 Younes, Gogny (br0490) 2009; 80 Dobaczewski, Dudek (br0010) 1997; 102 Engelbrecht, Lemmer (br0100) 1970; 24 Powell (br0460) 1969 Baran, Bulgac, McNeil Forbes, Hagen, Nazarewicz, Schunck, Stoitsov (br0550) 2008; 78 Dobaczewski, Dudek (br0020) 1997; 102 Towner, Hardy (br0230) 2008; 77 Giannoni, Quentin, Giannoni, Quentin (br0380) 1980; 21 Wigner (br0090) 1937; 51 Sheikh, Nazarewicz, Pei (br0320) 2009; 80 Bonche, Levit, Vautherin, Bonche, Levit, Vautherin (br0270) 1985; 436 Dobaczewski, Olbratowski (br0050) 2005; 167 Werner, Dudek (br0400) 1992; 50 Dobaczewski, Satuła, Carlsson, Engel, Olbratowski, Powałowski, Sadziak, Sarich, Schunck, Staszczak, Stoitsov, Zalewski, Zduńczuk (br0060) 2009; 180 Goodman (br0250) 1981; 352 Lipkin (br0330) 1960; 9 Diebel, Albrecht, Hasse (br0260) 1981; 355 Varshalovich, Moskalev, Khersonskii (br0180) 1988 Pei, Nazarewicz, Sheikh, Kerman (br0310) 2009; 102 Davies, Krieger (br0540) 1991; 69 Dobaczewski, Stoitsov, Nazarewicz, Reinhard (br0210) 2007; 76 Caurier, Poves, Zucker, Caurier, Poves, Zucker (br0110) 1980; 96 Egido, Robledo, Martin (br0280) 2000; 85 Dobaczewski, Flocard, Treiner (br0300) 1984; 422 Staszczak, Baran, Dobaczewski, Nazarewicz (br0560) 2009; 80 Bolsterli, Fiset, Nix, Norton (br0390) 1972; 5 Gall, Bonche, Dobaczewski, Flocard, Heenen (br0430) 1994; 348 Dobaczewski, Olbratowski (br0040) 2004; 158 Satuła, Dobaczewski, Nazarewicz, Rafalski (br0130) 2009; 103 Werner (10.1016/j.cpc.2011.08.013_br0400_1) 1992; 50 Kortelainen (10.1016/j.cpc.2011.08.013_br0590) 2010; 82 Dechargé (10.1016/j.cpc.2011.08.013_br0480) 1980; 21 Strutinsky (10.1016/j.cpc.2011.08.013_br0370) 1968; 122 Gall (10.1016/j.cpc.2011.08.013_br0430) 1994; 348 Satuła (10.1016/j.cpc.2011.08.013_br0170) 2011; 106 Wigner (10.1016/j.cpc.2011.08.013_br0090) 1937; 51 Satuła (10.1016/j.cpc.2011.08.013_br0130) 2009; 103 Dobaczewski (10.1016/j.cpc.2011.08.013_br0060) 2009; 180 Diebel (10.1016/j.cpc.2011.08.013_br0260) 1981; 355 Stoitsov (10.1016/j.cpc.2011.08.013_br0500) 2005; 167 Stoitsov (10.1016/j.cpc.2011.08.013_br0510) 2009; 18 Satuła (10.1016/j.cpc.2011.08.013_br0150) 2011; 42 Younes (10.1016/j.cpc.2011.08.013_br0490) 2009; 80 Ring (10.1016/j.cpc.2011.08.013_br0350) 1980 Engelbrecht (10.1016/j.cpc.2011.08.013_br0100) 1970; 24 Sheikh (10.1016/j.cpc.2011.08.013_br0320) 2009; 80 Staszczak (10.1016/j.cpc.2011.08.013_br0560) 2009; 80 Dobaczewski (10.1016/j.cpc.2011.08.013_br0070) Rafalski (10.1016/j.cpc.2011.08.013_br0120) 2009; 18 Staszczak (10.1016/j.cpc.2011.08.013_br0470) 2010; 46 (10.1016/j.cpc.2011.08.013_br0400_2) 1992 Bonche (10.1016/j.cpc.2011.08.013_br0270_1) 1985; 436 Robledo (10.1016/j.cpc.2011.08.013_br0200) 2007; 16 Kruppa (10.1016/j.cpc.2011.08.013_br0410) 2000; 61 Giannoni (10.1016/j.cpc.2011.08.013_br0380_1) 1980; 21 Schunck (10.1016/j.cpc.2011.08.013_br0530) 2010; 81 Davies (10.1016/j.cpc.2011.08.013_br0540) 1991; 69 Goodman (10.1016/j.cpc.2011.08.013_br0250) 1981; 352 Egido (10.1016/j.cpc.2011.08.013_br0280) 2000; 85 Dobaczewski (10.1016/j.cpc.2011.08.013_br0340) 2009; 36 Hestenes (10.1016/j.cpc.2011.08.013_br0450) 1969; 4 Powell (10.1016/j.cpc.2011.08.013_br0460) 1969 Martin (10.1016/j.cpc.2011.08.013_br0290) 2003; 68 Zduńczuk (10.1016/j.cpc.2011.08.013_br0220) 2007; 16 Dobaczewski (10.1016/j.cpc.2011.08.013_br0440) 2005; 25 Dobaczewski (10.1016/j.cpc.2011.08.013_br0030) 2000; 131 Caurier (10.1016/j.cpc.2011.08.013_br0110_2) 1980; 96 Dobaczewski (10.1016/j.cpc.2011.08.013_br0050) 2005; 167 Bonche (10.1016/j.cpc.2011.08.013_br0270_2) 1984; 427 Dobaczewski (10.1016/j.cpc.2011.08.013_br0010) 1997; 102 Vertse (10.1016/j.cpc.2011.08.013_br0420) 2000; 61 Dobaczewski (10.1016/j.cpc.2011.08.013_br0210) 2007; 76 Dobaczewski (10.1016/j.cpc.2011.08.013_br0020) 1997; 102 10.1016/j.cpc.2011.08.013_br0570 Giannoni (10.1016/j.cpc.2011.08.013_br0380_2) 1980; 21 Heisenberg (10.1016/j.cpc.2011.08.013_br0080) 1932; 77 Towner (10.1016/j.cpc.2011.08.013_br0230) 2008; 77 Satuła (10.1016/j.cpc.2011.08.013_br0140) 2010; 81 Dobaczewski (10.1016/j.cpc.2011.08.013_br0300) 1984; 422 Dobaczewski (10.1016/j.cpc.2011.08.013_br0040) 2004; 158 Strutinsky (10.1016/j.cpc.2011.08.013_br0360) 1967; 95 Chabanat (10.1016/j.cpc.2011.08.013_br0580) 1998; 635 Pei (10.1016/j.cpc.2011.08.013_br0310) 2009; 102 Caurier (10.1016/j.cpc.2011.08.013_br0110_1) 1980; 96 Bolsterli (10.1016/j.cpc.2011.08.013_br0390) 1972; 5 Satuła (10.1016/j.cpc.2011.08.013_br0160) 2011; 20 Zduńczuk (10.1016/j.cpc.2011.08.013_br0240) 2007; 76 Lipkin (10.1016/j.cpc.2011.08.013_br0330) 1960; 9 Varshalovich (10.1016/j.cpc.2011.08.013_br0180) 1988 Baran (10.1016/j.cpc.2011.08.013_br0550) 2008; 78 Anguiano (10.1016/j.cpc.2011.08.013_br0190) 2001; 696 Dobaczewski (10.1016/j.cpc.2011.08.013_br0520) 2004; 726 |
| References_xml | – volume: 42 start-page: 415 year: 2011 ident: br0150 publication-title: Acta Phys. Polon. B – volume: 80 start-page: 011302(R) year: 2009 ident: br0320 publication-title: Phys. Rev. C – volume: 180 start-page: 2361 year: 2009 ident: br0060 publication-title: Comput. Phys. Comm. – volume: 102 start-page: 183 year: 1997 ident: br0020 publication-title: Comput. Phys. Comm. – year: 2009 ident: br0070 article-title: HFODD (v2.40h) Userʼs Guide – volume: 25 start-page: 541 year: 2005 ident: br0440 publication-title: Eur. Phys. J. A – volume: 352 start-page: 45 year: 1981 ident: br0250 publication-title: Nucl. Phys. A – volume: 9 start-page: 272 year: 1960 ident: br0330 publication-title: Ann. of Phys. – volume: 635 start-page: 231 year: 1998 ident: br0580 publication-title: Nucl. Phys. A – volume: 167 start-page: 214 year: 2005 ident: br0050 publication-title: Comput. Phys. Comm. – year: 1988 ident: br0180 article-title: Quantum Theory of Angular Momentum – reference: E. Chabanat, Interactions effectives pour des conditions extrêmes dʼisospin, Université Claude Bernard Lyon-1, Thesis 1995, LYCEN T 9501, unpublished. – volume: 18 start-page: 958 year: 2009 ident: br0120 publication-title: Int. J. Mod. Phys. E – volume: 36 start-page: 105105 year: 2009 ident: br0340 publication-title: J. Phys. G: Nucl. Part. Phys. – volume: 51 start-page: 106 year: 1937 ident: br0090 publication-title: Phys. Rev. – volume: 102 start-page: 166 year: 1997 ident: br0010 publication-title: Comput. Phys. Comm. – volume: 61 start-page: 064317 year: 2000 ident: br0420 publication-title: Phys. Rev. C – volume: 4 start-page: 303 year: 1969 ident: br0450 publication-title: J. Optim. Theory Appl. – volume: 46 start-page: 85 year: 2010 ident: br0470 publication-title: Eur. Phys. J. A – volume: 96 start-page: 11 year: 1980 ident: br0110 publication-title: Phys. Lett. B – volume: 81 start-page: 054310 year: 2010 ident: br0140 publication-title: Phys. Rev. C – volume: 167 start-page: 43 year: 2005 ident: br0500 publication-title: Comput. Phys. Comm. – volume: 16 start-page: 337 year: 2007 ident: br0200 publication-title: Int. J. Mod. Phys. E – volume: 85 start-page: 26 year: 2000 ident: br0280 publication-title: Phys. Rev. Lett. – volume: 422 start-page: 103 year: 1984 ident: br0300 publication-title: Nucl. Phys. A – year: 1980 ident: br0350 article-title: The Nuclear Many-Body Problem – volume: 81 start-page: 024316 year: 2010 ident: br0530 publication-title: Phys. Rev. C – volume: 16 start-page: 377 year: 2007 ident: br0220 publication-title: Int. J. Mod. Phys. E – volume: 69 start-page: 62 year: 1991 ident: br0540 publication-title: Can. J. Phys. – volume: 21 start-page: 1568 year: 1980 ident: br0480 publication-title: Phys. Rev. C – volume: 102 start-page: 192501 year: 2009 ident: br0310 publication-title: Phys. Rev. Lett. – volume: 18 start-page: 816 year: 2009 ident: br0510 publication-title: Int. J. Mod. Phys. E – volume: 82 start-page: 024313 year: 2010 ident: br0590 publication-title: Phys. Rev. C – volume: 158 start-page: 158 year: 2004 ident: br0040 publication-title: Comput. Phys. Comm. – volume: 122 start-page: 1 year: 1968 ident: br0370 publication-title: Nucl. Phys. A – volume: 103 start-page: 012502 year: 2009 ident: br0130 publication-title: Phys. Rev. Lett. – volume: 77 start-page: 025501 year: 2008 ident: br0230 publication-title: Phys. Rev. C – start-page: 283 year: 1969 ident: br0460 publication-title: Optimization – volume: 24 start-page: 607 year: 1970 ident: br0100 publication-title: Phys. Rev. Lett. – volume: 78 start-page: 014318 year: 2008 ident: br0550 publication-title: Phys. Rev. C – volume: 696 start-page: 467 year: 2001 ident: br0190 publication-title: Nucl. Phys. A – volume: 68 start-page: 034327 year: 2003 ident: br0290 publication-title: Phys. Rev. C – volume: 131 start-page: 164 year: 2000 ident: br0030 publication-title: Comput. Phys. Comm. – volume: 95 start-page: 420 year: 1967 ident: br0360 publication-title: Nucl. Phys. A – volume: 106 start-page: 132502 year: 2011 ident: br0170 publication-title: Phys. Rev. Lett. – volume: 726 start-page: 52 year: 2004 ident: br0520 publication-title: AIP Conference Proceedings – volume: 80 start-page: 014309 year: 2009 ident: br0560 publication-title: Phys. Rev. C – volume: 76 start-page: 044304 year: 2007 ident: br0240 publication-title: Phys. Rev. C – volume: 76 start-page: 054315 year: 2007 ident: br0210 publication-title: Phys. Rev. C – volume: 61 start-page: 034313 year: 2000 ident: br0410 publication-title: Phys. Rev. C – volume: 77 start-page: 1 year: 1932 ident: br0080 publication-title: Z. Phys. – volume: 355 start-page: 66 year: 1981 ident: br0260 publication-title: Nucl. Phys. A – volume: 20 start-page: 244 year: 2011 ident: br0160 publication-title: Int. J. Mod. Phys. E – volume: 21 start-page: 2060 year: 1980 ident: br0380 publication-title: Phys. Rev. C – volume: 5 start-page: 1050 year: 1972 ident: br0390 publication-title: Phys. Rev. C – volume: 348 start-page: 183 year: 1994 ident: br0430 publication-title: Z. Phys. A – volume: 80 start-page: 054313 year: 2009 ident: br0490 publication-title: Phys. Rev. C – volume: 50 start-page: 179 year: 1992 ident: br0400 publication-title: At. Data Nucl. Data Tables – volume: 436 start-page: 265 year: 1985 ident: br0270 publication-title: Nucl. Phys. A – volume: 9 start-page: 272 year: 1960 ident: 10.1016/j.cpc.2011.08.013_br0330 publication-title: Ann. of Phys. doi: 10.1016/0003-4916(60)90032-4 – volume: 726 start-page: 52 year: 2004 ident: 10.1016/j.cpc.2011.08.013_br0520 publication-title: AIP Conference Proceedings – volume: 78 start-page: 014318 year: 2008 ident: 10.1016/j.cpc.2011.08.013_br0550 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.78.014318 – volume: 355 start-page: 66 year: 1981 ident: 10.1016/j.cpc.2011.08.013_br0260 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(81)90132-9 – volume: 25 start-page: 541 issue: s01 year: 2005 ident: 10.1016/j.cpc.2011.08.013_br0440 publication-title: Eur. Phys. J. A doi: 10.1140/epjad/i2005-06-151-8 – volume: 76 start-page: 044304 year: 2007 ident: 10.1016/j.cpc.2011.08.013_br0240 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.76.044304 – volume: 21 start-page: 2076 year: 1980 ident: 10.1016/j.cpc.2011.08.013_br0380_2 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.21.2076 – volume: 68 start-page: 034327 year: 2003 ident: 10.1016/j.cpc.2011.08.013_br0290 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.68.034327 – volume: 348 start-page: 183 year: 1994 ident: 10.1016/j.cpc.2011.08.013_br0430 publication-title: Z. Phys. A doi: 10.1007/BF01291916 – volume: 5 start-page: 1050 year: 1972 ident: 10.1016/j.cpc.2011.08.013_br0390 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.5.1050 – start-page: 683 year: 1992 ident: 10.1016/j.cpc.2011.08.013_br0400_2 – year: 1988 ident: 10.1016/j.cpc.2011.08.013_br0180 – volume: 96 start-page: 11 year: 1980 ident: 10.1016/j.cpc.2011.08.013_br0110_1 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(80)90200-2 – volume: 80 start-page: 011302(R) year: 2009 ident: 10.1016/j.cpc.2011.08.013_br0320 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.80.011302 – ident: 10.1016/j.cpc.2011.08.013_br0570 – volume: 51 start-page: 106 year: 1937 ident: 10.1016/j.cpc.2011.08.013_br0090 publication-title: Phys. Rev. doi: 10.1103/PhysRev.51.106 – volume: 16 start-page: 337 year: 2007 ident: 10.1016/j.cpc.2011.08.013_br0200 publication-title: Int. J. Mod. Phys. E doi: 10.1142/S0218301307005776 – volume: 85 start-page: 26 year: 2000 ident: 10.1016/j.cpc.2011.08.013_br0280 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.26 – volume: 50 start-page: 179 year: 1992 ident: 10.1016/j.cpc.2011.08.013_br0400_1 publication-title: At. Data Nucl. Data Tables doi: 10.1016/0092-640X(92)90036-H – volume: 96 start-page: 15 year: 1980 ident: 10.1016/j.cpc.2011.08.013_br0110_2 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(80)90201-4 – volume: 167 start-page: 214 year: 2005 ident: 10.1016/j.cpc.2011.08.013_br0050 publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2005.01.014 – volume: 80 start-page: 054313 year: 2009 ident: 10.1016/j.cpc.2011.08.013_br0490 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.80.054313 – volume: 61 start-page: 064317 year: 2000 ident: 10.1016/j.cpc.2011.08.013_br0420 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.61.064317 – volume: 69 start-page: 62 year: 1991 ident: 10.1016/j.cpc.2011.08.013_br0540 publication-title: Can. J. Phys. doi: 10.1139/p91-010 – volume: 81 start-page: 054310 year: 2010 ident: 10.1016/j.cpc.2011.08.013_br0140 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.81.054310 – volume: 81 start-page: 024316 year: 2010 ident: 10.1016/j.cpc.2011.08.013_br0530 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.81.024316 – volume: 635 start-page: 231 year: 1998 ident: 10.1016/j.cpc.2011.08.013_br0580 publication-title: Nucl. Phys. A doi: 10.1016/S0375-9474(98)00180-8 – volume: 95 start-page: 420 year: 1967 ident: 10.1016/j.cpc.2011.08.013_br0360 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(67)90510-6 – volume: 42 start-page: 415 year: 2011 ident: 10.1016/j.cpc.2011.08.013_br0150 publication-title: Acta Phys. Polon. B doi: 10.5506/APhysPolB.42.415 – volume: 21 start-page: 2060 year: 1980 ident: 10.1016/j.cpc.2011.08.013_br0380_1 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.21.2060 – volume: 21 start-page: 1568 year: 1980 ident: 10.1016/j.cpc.2011.08.013_br0480 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.21.1568 – year: 1980 ident: 10.1016/j.cpc.2011.08.013_br0350 – volume: 61 start-page: 034313 year: 2000 ident: 10.1016/j.cpc.2011.08.013_br0410 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.61.034313 – volume: 167 start-page: 43 year: 2005 ident: 10.1016/j.cpc.2011.08.013_br0500 publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2005.01.001 – ident: 10.1016/j.cpc.2011.08.013_br0070 – volume: 102 start-page: 166 year: 1997 ident: 10.1016/j.cpc.2011.08.013_br0010 publication-title: Comput. Phys. Comm. doi: 10.1016/S0010-4655(97)00004-0 – volume: 76 start-page: 054315 year: 2007 ident: 10.1016/j.cpc.2011.08.013_br0210 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.76.054315 – volume: 436 start-page: 265 year: 1985 ident: 10.1016/j.cpc.2011.08.013_br0270_1 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(85)90199-X – volume: 16 start-page: 377 year: 2007 ident: 10.1016/j.cpc.2011.08.013_br0220 publication-title: Int. J. Mod. Phys. E doi: 10.1142/S0218301307005806 – volume: 427 start-page: 278 year: 1984 ident: 10.1016/j.cpc.2011.08.013_br0270_2 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(84)90086-1 – volume: 82 start-page: 024313 year: 2010 ident: 10.1016/j.cpc.2011.08.013_br0590 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.82.024313 – volume: 18 start-page: 958 year: 2009 ident: 10.1016/j.cpc.2011.08.013_br0120 publication-title: Int. J. Mod. Phys. E doi: 10.1142/S0218301309013105 – volume: 46 start-page: 85 year: 2010 ident: 10.1016/j.cpc.2011.08.013_br0470 publication-title: Eur. Phys. J. A doi: 10.1140/epja/i2010-11018-9 – volume: 18 start-page: 816 year: 2009 ident: 10.1016/j.cpc.2011.08.013_br0510 publication-title: Int. J. Mod. Phys. E doi: 10.1142/S0218301309012914 – volume: 102 start-page: 192501 year: 2009 ident: 10.1016/j.cpc.2011.08.013_br0310 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.192501 – volume: 158 start-page: 158 year: 2004 ident: 10.1016/j.cpc.2011.08.013_br0040 publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2004.02.003 – volume: 20 start-page: 244 year: 2011 ident: 10.1016/j.cpc.2011.08.013_br0160 publication-title: Int. J. Mod. Phys. E doi: 10.1142/S0218301311017582 – volume: 4 start-page: 303 year: 1969 ident: 10.1016/j.cpc.2011.08.013_br0450 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00927673 – start-page: 283 year: 1969 ident: 10.1016/j.cpc.2011.08.013_br0460 – volume: 131 start-page: 164 year: 2000 ident: 10.1016/j.cpc.2011.08.013_br0030 publication-title: Comput. Phys. Comm. doi: 10.1016/S0010-4655(00)00121-1 – volume: 180 start-page: 2361 year: 2009 ident: 10.1016/j.cpc.2011.08.013_br0060 publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2009.08.009 – volume: 696 start-page: 467 year: 2001 ident: 10.1016/j.cpc.2011.08.013_br0190 publication-title: Nucl. Phys. A doi: 10.1016/S0375-9474(01)01219-2 – volume: 24 start-page: 607 year: 1970 ident: 10.1016/j.cpc.2011.08.013_br0100 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.24.607 – volume: 77 start-page: 1 year: 1932 ident: 10.1016/j.cpc.2011.08.013_br0080 publication-title: Z. Phys. doi: 10.1007/BF01342433 – volume: 422 start-page: 103 year: 1984 ident: 10.1016/j.cpc.2011.08.013_br0300 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(84)90433-0 – volume: 106 start-page: 132502 year: 2011 ident: 10.1016/j.cpc.2011.08.013_br0170 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.132502 – volume: 122 start-page: 1 year: 1968 ident: 10.1016/j.cpc.2011.08.013_br0370 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(68)90699-4 – volume: 102 start-page: 183 year: 1997 ident: 10.1016/j.cpc.2011.08.013_br0020 publication-title: Comput. Phys. Comm. doi: 10.1016/S0010-4655(97)00005-2 – volume: 77 start-page: 025501 year: 2008 ident: 10.1016/j.cpc.2011.08.013_br0230 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.77.025501 – volume: 80 start-page: 014309 year: 2009 ident: 10.1016/j.cpc.2011.08.013_br0560 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.80.014309 – volume: 352 start-page: 45 year: 1981 ident: 10.1016/j.cpc.2011.08.013_br0250 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(81)90558-3 – volume: 103 start-page: 012502 year: 2009 ident: 10.1016/j.cpc.2011.08.013_br0130 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.012502 – volume: 36 start-page: 105105 year: 2009 ident: 10.1016/j.cpc.2011.08.013_br0340 publication-title: J. Phys. G: Nucl. Part. Phys. doi: 10.1088/0954-3899/36/10/105105 |
| SSID | ssj0007793 |
| Score | 1.9909035 |
| Snippet | We describe the new version (v2.49t) of the code
hfodd which solves the nuclear Skyrme–Hartree–Fock (HF) or Skyrme–Hartree–Fock–Bogolyubov (HFB) problem by... We describe the new version (v2.49t) of the code hfodd which solves the nuclear Skyrme-Hartree-Fock (HF) or Skyrme-Hartree-Fock-Bogolyubov (HFB) problem by... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 166 |
| SubjectTerms | Angular-momentum projection Approximation Computation Density Finite temperature Hartree–Fock Hartree–Fock–Bogolyubov High-performance computing Hybrid programming model Isospin projection Libraries Mathematical analysis Mathematical models Multi-threading Shells Skyrme interaction Subroutines |
| Title | Solution of the Skyrme–Hartree–Fock–Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis |
| URI | https://dx.doi.org/10.1016/j.cpc.2011.08.013 https://www.proquest.com/docview/1770365622 https://www.proquest.com/docview/963843318 |
| Volume | 183 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLaqDiRuJn5Fx4-MxG5Ameqkie3LUW0aE5omdUDvosRxoKMkJW2qjSvegTfiUXgSzonjpGrZBEjcpEkaJ63Pl3M-2-eHkOdemgrNOXMSVykH12-dCAcrCYsTDUOMflR5-b57w09OxHgsTzudHzYWZjnlWSYuLuTsv4oazoGwMXT2L8Td3BROwD4IHbYgdtj-keDtRJdd_R99uiw-a-vU4B1Bk0K3x4eoEO3Bq_xDPr0s43z5Un8pWz9zvM8QvT-rkMtEI9MFpopprzG1roMZMQFPC3T9jOaT-SrltXUj6kmUOXqxtzEpDaUfqY9gYuuKQA29Bm2jvoIeNsW1j5svqkntxkOnOT2KFuXu0N8VbsWJ3--tTmqwdvC7GWdj9DZYC8z0ZqyWUdWCS8eVJntkq8u9DdAazcyCYMXIM1OAb8N-mKmM8z01U216VxMsu5aWe1RlNoKfhDn3XOEDDdhyuS9Fl2ztvz4YHzd8gPM69XP9H-zaeuVluPagq9jRGk-oyM_ZbbJdj1rovkHbHdLR2V1y89QI9B4pLOZonlLACjWY-_nte4022EOcwUeLMNogjE6yqlWDMGoRRn-DMFoh7D55e3hwNjxy6mIejsLoL9QAsQwiKQKmufI4T_pcQdcpJfwYjEiSpEHq69SPJbDwWCoB9CrwIjzyYpl6D0g3yzP9kNAgVf4A-k-zJB746SBW0lNgiSLm8zRiskf6thNDVWe6x4Ir09C6NJ6H0O8h9nuIRViZ1yMvmiYzk-bluosHVjJhzVMN_wwBRtc1e2alGIIOx4W5KNN5OQ8ZxzR4MBJxe4RecQ0aSoxuFDv_9vRH5Ba-aGb28DHpLopSPyE31HIxmRdPa8z-AkhJ0C8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+of+the+Skyrme%E2%80%93Hartree%E2%80%93Fock%E2%80%93Bogolyubov+equations+in+the+Cartesian+deformed+harmonic-oscillator+basis&rft.jtitle=Computer+physics+communications&rft.au=Schunck%2C+N.&rft.au=Dobaczewski%2C+J.&rft.au=McDonnell%2C+J.&rft.au=Satu%C5%82a%2C+W.&rft.date=2012&rft.pub=Elsevier+B.V&rft.issn=0010-4655&rft.eissn=1879-2944&rft.volume=183&rft.issue=1&rft.spage=166&rft.epage=192&rft_id=info:doi/10.1016%2Fj.cpc.2011.08.013&rft.externalDocID=S0010465511002852 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon |