Solution of the Skyrme–Hartree–Fock–Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis

We describe the new version (v2.49t) of the code hfodd which solves the nuclear Skyrme–Hartree–Fock (HF) or Skyrme–Hartree–Fock–Bogolyubov (HFB) problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following physics features: (i) the isospin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications Jg. 183; H. 1; S. 166 - 192
Hauptverfasser: Schunck, N., Dobaczewski, J., McDonnell, J., Satuła, W., Sheikh, J.A., Staszczak, A., Stoitsov, M., Toivanen, P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 2012
Schlagworte:
ISSN:0010-4655, 1879-2944
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We describe the new version (v2.49t) of the code hfodd which solves the nuclear Skyrme–Hartree–Fock (HF) or Skyrme–Hartree–Fock–Bogolyubov (HFB) problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following physics features: (i) the isospin mixing and projection, (ii) the finite-temperature formalism for the HFB and HF + BCS methods, (iii) the Lipkin translational energy correction method, (iv) the calculation of the shell correction. A number of specific numerical methods have also been implemented in order to deal with large-scale multi-constraint calculations and hardware limitations: (i) the two-basis method for the HFB method, (ii) the Augmented Lagrangian Method (ALM) for multi-constraint calculations, (iii) the linear constraint method based on the approximation of the RPA matrix for multi-constraint calculations, (iv) an interface with the axial and parity-conserving Skyrme–HFB code hfbtho, (v) the mixing of the HF or HFB matrix elements instead of the HF fields. Special care has been paid to using the code on massively parallel leadership class computers. For this purpose, the following features are now available with this version: (i) the Message Passing Interface (MPI) framework, (ii) scalable input data routines, (iii) multi-threading via OpenMP pragmas, (iv) parallel diagonalization of the HFB matrix in the simplex-breaking case using the ScaLAPACK library. Finally, several little significant errors of the previous published version were corrected. Program title: hfodd (v2.49t) Catalogue identifier: ADFL_v3_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADFL_v3_0.html Program obtainable from: CPC Program Library, Queenʼs University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence v3 No. of lines in distributed program, including test data, etc.: 190 614 No. of bytes in distributed program, including test data, etc.: 985 898 Distribution format: tar.gz Programming language: FORTRAN-90 Computer: Intel Pentium-III, Intel Xeon, AMD-Athlon, AMD-Opteron, Cray XT4, Cray XT5 Operating system: UNIX, LINUX, Windows XP Has the code been vectorized or parallelized?: Yes, parallelized using MPI RAM: 10 Mwords Word size: The code is written in single-precision for the use on a 64-bit processor. The compiler option -r8 or +autodblpad (or equivalent) has to be used to promote all real and complex single-precision floating-point items to double precision when the code is used on a 32-bit machine. Classification: 17.22 Catalogue identifier of previous version: ADFL_v2_2 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2361 External routines: The user must have access to 1. the NAGLIB subroutine f02axe, or LAPACK subroutines zhpev, zhpevx, zheevr, or zheevd, which diagonalize complex hermitian matrices, 2. the LAPACK subroutines dgetri and dgetrf which invert arbitrary real matrices, 3. the LAPACK subroutines dsyevd, dsytrf and dsytri which compute eigenvalues and eigenfunctions of real symmetric matrices, 4. the LINPACK subroutines zgedi and zgeco, which invert arbitrary complex matrices and calculate determinants, 5. the BLAS routines dcopy, dscal, dgeem and dgemv for double-precision linear algebra and zcopy, zdscal, zgeem and zgemv for complex linear algebra, or provide another set of subroutines that can perform such tasks. The BLAS and LAPACK subroutines can be obtained from the Netlib Repository at the University of Tennessee, Knoxville: http://netlib2.cs.utk.edu/. Does the new version supersede the previous version?: Yes Nature of problem: The nuclear mean field and an analysis of its symmetries in realistic cases are the main ingredients of a description of nuclear states. Within the Local Density Approximation, or for a zero-range velocity-dependent Skyrme interaction, the nuclear mean field is local and velocity dependent. The locality allows for an effective and fast solution of the self-consistent Hartree–Fock equations, even for heavy nuclei, and for various nucleonic ( n-particle– n-hole) configurations, deformations, excitation energies, or angular momenta. Similarly, Local Density Approximation in the particle–particle channel, which is equivalent to using a zero-range interaction, allows for a simple implementation of pairing effects within the Hartree–Fock–Bogolyubov method. Solution method: The program uses the Cartesian harmonic oscillator basis to expand single-particle or single-quasiparticle wave functions of neutrons and protons interacting by means of the Skyrme effective interaction and zero-range pairing interaction. The expansion coefficients are determined by the iterative diagonalization of the mean-field Hamiltonians or Routhians which depend non-linearly on the local neutron and proton densities. Suitable constraints are used to obtain states corresponding to a given configuration, deformation or angular momentum. The method of solution has been presented in: [J. Dobaczewski, J. Dudek, Comput. Phys. Commun. 102 (1997) 166]. Reasons for new version: Version 2.49s of HFODD provides a number of new options such as the isospin mixing and projection of the Skyrme functional, the finite-temperature HF and HFB formalism and optimized methods to perform multi-constrained calculations. It is also the first version of HFODD to contain threading and parallel capabilities. Summary of revisions: 1. Isospin mixing and projection of the HF states has been implemented. 2. The finite-temperature formalism for the HFB equations has been implemented. 3. The Lipkin translational energy correction method has been implemented. 4. Calculation of the shell correction has been implemented. 5. The two-basis method for the solution to the HFB equations has been implemented. 6. The Augmented Lagrangian Method (ALM) for calculations with multiple constraints has been implemented. 7. The linear constraint method based on the cranking approximation of the RPA matrix has been implemented. 8. An interface between HFODD and the axially-symmetric and parity-conserving code HFBTHO has been implemented. 9. The mixing of the matrix elements of the HF or HFB matrix has been implemented. 10. A parallel interface using the MPI library has been implemented. 11. A scalable model for reading input data has been implemented. 12. OpenMP pragmas have been implemented in three subroutines. 13. The diagonalization of the HFB matrix in the simplex-breaking case has been parallelized using the ScaLAPACK library. 14. Several little significant errors of the previous published version were corrected. Running time: In serial mode, running 6 HFB iterations for 152Dy for conserved parity and signature symmetries in a full spherical basis of N = 14 shells takes approximately 8 min on an AMD Opteron processor at 2.6 GHz, assuming standard BLAS and LAPACK libraries. As a rule of thumb, runtime for HFB calculations for parity and signature conserved symmetries roughly increases as N 7 , where N is the number of full HO shells. Using custom-built optimized BLAS and LAPACK libraries (such as in the ATLAS implementation) can bring down the execution time by 60%. Using the threaded version of the code with 12 threads and threaded BLAS libraries can bring an additional factor 2 speed-up, so that the same 6 HFB iterations now take of the order of 2 min 30 s. ► This is version 249t of the code HFODD. ► This version contains new physics capabilities. ► Built-in parallel model (MPI and OpenMP) is now available. ► Portability and scalability has been improved.
AbstractList We describe the new version (v2.49t) of the code hfodd which solves the nuclear Skyrme–Hartree–Fock (HF) or Skyrme–Hartree–Fock–Bogolyubov (HFB) problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following physics features: (i) the isospin mixing and projection, (ii) the finite-temperature formalism for the HFB and HF + BCS methods, (iii) the Lipkin translational energy correction method, (iv) the calculation of the shell correction. A number of specific numerical methods have also been implemented in order to deal with large-scale multi-constraint calculations and hardware limitations: (i) the two-basis method for the HFB method, (ii) the Augmented Lagrangian Method (ALM) for multi-constraint calculations, (iii) the linear constraint method based on the approximation of the RPA matrix for multi-constraint calculations, (iv) an interface with the axial and parity-conserving Skyrme–HFB code hfbtho, (v) the mixing of the HF or HFB matrix elements instead of the HF fields. Special care has been paid to using the code on massively parallel leadership class computers. For this purpose, the following features are now available with this version: (i) the Message Passing Interface (MPI) framework, (ii) scalable input data routines, (iii) multi-threading via OpenMP pragmas, (iv) parallel diagonalization of the HFB matrix in the simplex-breaking case using the ScaLAPACK library. Finally, several little significant errors of the previous published version were corrected. Program title: hfodd (v2.49t) Catalogue identifier: ADFL_v3_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADFL_v3_0.html Program obtainable from: CPC Program Library, Queenʼs University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence v3 No. of lines in distributed program, including test data, etc.: 190 614 No. of bytes in distributed program, including test data, etc.: 985 898 Distribution format: tar.gz Programming language: FORTRAN-90 Computer: Intel Pentium-III, Intel Xeon, AMD-Athlon, AMD-Opteron, Cray XT4, Cray XT5 Operating system: UNIX, LINUX, Windows XP Has the code been vectorized or parallelized?: Yes, parallelized using MPI RAM: 10 Mwords Word size: The code is written in single-precision for the use on a 64-bit processor. The compiler option -r8 or +autodblpad (or equivalent) has to be used to promote all real and complex single-precision floating-point items to double precision when the code is used on a 32-bit machine. Classification: 17.22 Catalogue identifier of previous version: ADFL_v2_2 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2361 External routines: The user must have access to 1. the NAGLIB subroutine f02axe, or LAPACK subroutines zhpev, zhpevx, zheevr, or zheevd, which diagonalize complex hermitian matrices, 2. the LAPACK subroutines dgetri and dgetrf which invert arbitrary real matrices, 3. the LAPACK subroutines dsyevd, dsytrf and dsytri which compute eigenvalues and eigenfunctions of real symmetric matrices, 4. the LINPACK subroutines zgedi and zgeco, which invert arbitrary complex matrices and calculate determinants, 5. the BLAS routines dcopy, dscal, dgeem and dgemv for double-precision linear algebra and zcopy, zdscal, zgeem and zgemv for complex linear algebra, or provide another set of subroutines that can perform such tasks. The BLAS and LAPACK subroutines can be obtained from the Netlib Repository at the University of Tennessee, Knoxville: http://netlib2.cs.utk.edu/. Does the new version supersede the previous version?: Yes Nature of problem: The nuclear mean field and an analysis of its symmetries in realistic cases are the main ingredients of a description of nuclear states. Within the Local Density Approximation, or for a zero-range velocity-dependent Skyrme interaction, the nuclear mean field is local and velocity dependent. The locality allows for an effective and fast solution of the self-consistent Hartree–Fock equations, even for heavy nuclei, and for various nucleonic ( n-particle– n-hole) configurations, deformations, excitation energies, or angular momenta. Similarly, Local Density Approximation in the particle–particle channel, which is equivalent to using a zero-range interaction, allows for a simple implementation of pairing effects within the Hartree–Fock–Bogolyubov method. Solution method: The program uses the Cartesian harmonic oscillator basis to expand single-particle or single-quasiparticle wave functions of neutrons and protons interacting by means of the Skyrme effective interaction and zero-range pairing interaction. The expansion coefficients are determined by the iterative diagonalization of the mean-field Hamiltonians or Routhians which depend non-linearly on the local neutron and proton densities. Suitable constraints are used to obtain states corresponding to a given configuration, deformation or angular momentum. The method of solution has been presented in: [J. Dobaczewski, J. Dudek, Comput. Phys. Commun. 102 (1997) 166]. Reasons for new version: Version 2.49s of HFODD provides a number of new options such as the isospin mixing and projection of the Skyrme functional, the finite-temperature HF and HFB formalism and optimized methods to perform multi-constrained calculations. It is also the first version of HFODD to contain threading and parallel capabilities. Summary of revisions: 1. Isospin mixing and projection of the HF states has been implemented. 2. The finite-temperature formalism for the HFB equations has been implemented. 3. The Lipkin translational energy correction method has been implemented. 4. Calculation of the shell correction has been implemented. 5. The two-basis method for the solution to the HFB equations has been implemented. 6. The Augmented Lagrangian Method (ALM) for calculations with multiple constraints has been implemented. 7. The linear constraint method based on the cranking approximation of the RPA matrix has been implemented. 8. An interface between HFODD and the axially-symmetric and parity-conserving code HFBTHO has been implemented. 9. The mixing of the matrix elements of the HF or HFB matrix has been implemented. 10. A parallel interface using the MPI library has been implemented. 11. A scalable model for reading input data has been implemented. 12. OpenMP pragmas have been implemented in three subroutines. 13. The diagonalization of the HFB matrix in the simplex-breaking case has been parallelized using the ScaLAPACK library. 14. Several little significant errors of the previous published version were corrected. Running time: In serial mode, running 6 HFB iterations for 152Dy for conserved parity and signature symmetries in a full spherical basis of N = 14 shells takes approximately 8 min on an AMD Opteron processor at 2.6 GHz, assuming standard BLAS and LAPACK libraries. As a rule of thumb, runtime for HFB calculations for parity and signature conserved symmetries roughly increases as N 7 , where N is the number of full HO shells. Using custom-built optimized BLAS and LAPACK libraries (such as in the ATLAS implementation) can bring down the execution time by 60%. Using the threaded version of the code with 12 threads and threaded BLAS libraries can bring an additional factor 2 speed-up, so that the same 6 HFB iterations now take of the order of 2 min 30 s. ► This is version 249t of the code HFODD. ► This version contains new physics capabilities. ► Built-in parallel model (MPI and OpenMP) is now available. ► Portability and scalability has been improved.
We describe the new version (v2.49t) of the code hfodd which solves the nuclear Skyrme-Hartree-Fock (HF) or Skyrme-Hartree-Fock-Bogolyubov (HFB) problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following physics features: (i) the isospin mixing and projection, (ii) the finite-temperature formalism for the HFB and HF+BCS methods, (iii) the Lipkin translational energy correction method, (iv) the calculation of the shell correction. A number of specific numerical methods have also been implemented in order to deal with large-scale multi-constraint calculations and hardware limitations: (i) the two-basis method for the HFB method, (ii) the Augmented Lagrangian Method (ALM) for multi-constraint calculations, (iii) the linear constraint method based on the approximation of the RPA matrix for multi-constraint calculations, (iv) an interface with the axial and parity-conserving Skyrme-HFB code hfbtho, (v) the mixing of the HF or HFB matrix elements instead of the HF fields. Special care has been paid to using the code on massively parallel leadership class computers. For this purpose, the following features are now available with this version: (i) the Message Passing Interface (MPI) framework, (ii) scalable input data routines, (iii) multi-threading via OpenMP pragmas, (iv) parallel diagonalization of the HFB matrix in the simplex-breaking case using the ScaLAPACK library. Finally, several little significant errors of the previous published version were corrected.
We describe the new version (v2.49t) of the code hfodd which solves the nuclear Skyrme-Hartree-Fock (HF) or Skyrme-Hartree-Fock-Bogolyubov (HFB) problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following physics features: (i) the isospin mixing and projection, (ii) the finite-temperature formalism for the HFB and HF+BCS methods, (iii) the Lipkin translational energy correction method, (iv) the calculation of the shell correction. A number of specific numerical methods have also been implemented in order to deal with large-scale multi-constraint calculations and hardware limitations: (i) the two-basis method for the HFB method, (ii) the Augmented Lagrangian Method (ALM) for multi-constraint calculations, (iii) the linear constraint method based on the approximation of the RPA matrix for multi-constraint calculations, (iv) an interface with the axial and parity-conserving Skyrme-HFB code hfbtho, (v) the mixing of the HF or HFB matrix elements instead of the HF fields. Special care has been paid to using the code on massively parallel leadership class computers. For this purpose, the following features are now available with this version: (i) the Message Passing Interface (MPI) framework, (ii) scalable input data routines, (iii) multi-threading via OpenMP pragmas, (iv) parallel diagonalization of the HFB matrix in the simplex-breaking case using the ScaLAPACK library. Finally, several little significant errors of the previous published version were corrected. Program title:hfodd (v2.49t) Catalogue identifier: ADFL_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADFL_v3_0.html Program obtainable from: CPC Program Library, QueenE14s University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence v3 No. of lines in distributed program, including test data, etc.: 190 614 No. of bytes in distributed program, including test data, etc.: 985 898 Distribution format: tar.gz Programming language: FORTRAN-90 Computer: Intel Pentium-III, Intel Xeon, AMD-Athlon, AMD-Opteron, Cray XT4, Cray XT5 Operating system: UNIX, LINUX, Windows XP Has the code been vectorized or parallelized?: Yes, parallelized using MPI RAM: 10 Mwords Word size: The code is written in single-precision for the use on a 64-bit processor. The compiler option -r8 or +autodblpad (or equivalent) has to be used to promote all real and complex single-precision floating-point items to double precision when the code is used on a 32-bit machine. Classification: 17.22 Catalogue identifier of previous version: ADFL_v2_2 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2361 External routines: The user must have access to1.the NAGLIB subroutine f02axe, or LAPACK subroutines zhpev, zhpevx, zheevr, or zheevd, which diagonalize complex hermitian matrices,|>2.the LAPACK subroutines dgetri and dgetrf which invert arbitrary real matrices,|>3.the LAPACK subroutines dsyevd, dsytrf and dsytri which compute eigenvalues and eigenfunctions of real symmetric matrices,|>4.the LINPACK subroutines zgedi and zgeco, which invert arbitrary complex matrices and calculate determinants,|>5.the BLAS routines dcopy, dscal, dgeem and dgemv for double-precision linear algebra and zcopy, zdscal, zgeem and zgemv for complex linear algebra, or provide another set of subroutines that can perform such tasks. The BLAS and LAPACK subroutines can be obtained from the Netlib Repository at the University of Tennessee, Knoxville: http://netlib2.cs.utk.edu/. Does the new version supersede the previous version?: Yes Nature of problem: The nuclear mean field and an analysis of its symmetries in realistic cases are the main ingredients of a description of nuclear states. Within the Local Density Approximation, or for a zero-range velocity-dependent Skyrme interaction, the nuclear mean field is local and velocity dependent. The locality allows for an effective and fast solution of the self-consistent Hartree-Fock equations, even for heavy nuclei, and for various nucleonic (n-particle-n-hole) configurations, deformations, excitation energies, or angular momenta. Similarly, Local Density Approximation in the particle-particle channel, which is equivalent to using a zero-range interaction, allows for a simple implementation of pairing effects within the Hartree-Fock-Bogolyubov method. Solution method: The program uses the Cartesian harmonic oscillator basis to expand single-particle or single-quasiparticle wave functions of neutrons and protons interacting by means of the Skyrme effective interaction and zero-range pairing interaction. The expansion coefficients are determined by the iterative diagonalization of the mean-field Hamiltonians or Routhians which depend non-linearly on the local neutron and proton densities. Suitable constraints are used to obtain states corresponding to a given configuration, deformation or angular momentum. The method of solution has been presented in: [J. Dobaczewski, J. Dudek, Comput. Phys. Commun. 102 (1997) 166]. Reasons for new version: Version 2.49s of HFODD provides a number of new options such as the isospin mixing and projection of the Skyrme functional, the finite-temperature HF and HFB formalism and optimized methods to perform multi-constrained calculations. It is also the first version of HFODD to contain threading and parallel capabilities. Summary of revisions:1.Isospin mixing and projection of the HF states has been implemented.|>2.The finite-temperature formalism for the HFB equations has been implemented.|>3.The Lipkin translational energy correction method has been implemented.|>4.Calculation of the shell correction has been implemented.|>5.The two-basis method for the solution to the HFB equations has been implemented.|>6.The Augmented Lagrangian Method (ALM) for calculations with multiple constraints has been implemented.|>7.The linear constraint method based on the cranking approximation of the RPA matrix has been implemented.|>8.An interface between HFODD and the axially-symmetric and parity-conserving code HFBTHO has been implemented.|>9.The mixing of the matrix elements of the HF or HFB matrix has been implemented.|>10.A parallel interface using the MPI library has been implemented.|>11.A scalable model for reading input data has been implemented.|>12.OpenMP pragmas have been implemented in three subroutines.|>13.The diagonalization of the HFB matrix in the simplex-breaking case has been parallelized using the ScaLAPACK library.|>14.Several little significant errors of the previous published version were corrected. Running time: In serial mode, running 6 HFB iterations for 152Dy for conserved parity and signature symmetries in a full spherical basis of N = 14 shells takes approximately 8 min on an AMD Opteron processor at 2.6 GHz, assuming standard BLAS and LAPACK libraries. As a rule of thumb, runtime for HFB calculations for parity and signature conserved symmetries roughly increases as N 7 , where N is the number of full HO shells. Using custom-built optimized BLAS and LAPACK libraries (such as in the ATLAS implementation) can bring down the execution time by 60%. Using the threaded version of the code with 12 threads and threaded BLAS libraries can bring an additional factor 2 speed-up, so that the same 6 HFB iterations now take of the order of 2 min 30 s.
Author Dobaczewski, J.
Stoitsov, M.
Schunck, N.
Sheikh, J.A.
Toivanen, P.
Satuła, W.
Staszczak, A.
McDonnell, J.
Author_xml – sequence: 1
  givenname: N.
  surname: Schunck
  fullname: Schunck, N.
  email: schunck1@llnl.gov
  organization: Physics Division, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
– sequence: 2
  givenname: J.
  surname: Dobaczewski
  fullname: Dobaczewski, J.
  organization: Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Hoża 69, PL-00681 Warsaw, Poland
– sequence: 3
  givenname: J.
  surname: McDonnell
  fullname: McDonnell, J.
  organization: Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
– sequence: 4
  givenname: W.
  surname: Satuła
  fullname: Satuła, W.
  organization: Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Hoża 69, PL-00681 Warsaw, Poland
– sequence: 5
  givenname: J.A.
  surname: Sheikh
  fullname: Sheikh, J.A.
  organization: Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
– sequence: 6
  givenname: A.
  surname: Staszczak
  fullname: Staszczak, A.
  organization: Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
– sequence: 7
  givenname: M.
  surname: Stoitsov
  fullname: Stoitsov, M.
  organization: Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
– sequence: 8
  givenname: P.
  surname: Toivanen
  fullname: Toivanen, P.
  organization: Department of Physics, P.O. Box 35 (YFL), FI-40014 University of Jyväskylä, Finland
BookMark eNp9kc1O3DAURi1EJQbKA7DLjm6SXseJf9RVO4KChMSCdm05zg14yMSDnSDNjnfgDXkSHIYVi1nda-mcK-v7jsnh4Ack5IxCQYHyn6vCbmxRAqUFyAIoOyALKoXKS1VVh2QBQCGveF0fkeMYVwAghGILEu58P43OD5nvsvEBs7vHbVjj28vrlQljwHm79PYxjT_-3vfbqfHPGT5NZpZi5oYPa5lgjM4MWYudTwfa7MGEtR-czX20ru_N6EPWmOjid_KtM33E0895Qv5fXvxbXuU3t3-vl79vclsKJnOjRKO4UZJTFJYJ0YKwFMBaWTdSQtt2vKuxqxtV1rxRVlaUcWbmF2tUx07I-e7uJvinCeOo1y5aTF8Z0E9RK85kxRiVifyxl6RCAOM1L8uEih1qg48xYKetGz-yGINxvaag5z70Sqc-9NyHBqlTH8mkX8xNcGsTtnudXzsHU07PDoNOWeJgsXUB7ahb7_bY79mMqUs
CitedBy_id crossref_primary_10_1051_epjconf_20146602031
crossref_primary_10_1016_j_cpc_2017_03_007
crossref_primary_10_1051_epjconf_20136204003
crossref_primary_10_1016_j_cpc_2013_01_013
crossref_primary_10_1088_0031_8949_91_2_023013
crossref_primary_10_1088_1361_6471_aa5fd7
crossref_primary_10_1088_1674_1137_ad806f
crossref_primary_10_1140_epja_i2015_15169_9
crossref_primary_10_1016_j_physletb_2014_10_013
crossref_primary_10_1088_1742_6596_402_1_012034
crossref_primary_10_1007_s00707_020_02798_1
crossref_primary_10_1016_j_nuclphysa_2015_07_016
crossref_primary_10_1016_j_nuclphysa_2015_07_015
crossref_primary_10_1088_0954_3899_39_12_125103
crossref_primary_10_1088_0034_4885_79_11_116301
crossref_primary_10_1140_epja_s10050_025_01604_7
crossref_primary_10_1140_epja_s10050_021_00365_3
crossref_primary_10_1007_s12043_024_02879_z
crossref_primary_10_1088_1361_6471_ac0a82
crossref_primary_10_1088_0031_8949_90_11_114006
crossref_primary_10_1103_gfvh_yvxj
crossref_primary_10_1088_0031_8949_90_11_114005
crossref_primary_10_1016_j_cpc_2017_10_009
crossref_primary_10_1007_s40430_018_0995_x
crossref_primary_10_1016_j_cpc_2017_06_022
crossref_primary_10_1007_s12043_023_02659_1
crossref_primary_10_1016_j_cpc_2014_10_001
crossref_primary_10_1088_0031_8949_2013_T154_014027
crossref_primary_10_1088_0954_3899_41_5_055112
crossref_primary_10_1140_epja_s10050_020_00182_0
crossref_primary_10_1016_j_physletb_2023_138014
crossref_primary_10_1088_1742_6596_436_1_012058
crossref_primary_10_1088_0954_3899_42_3_034024
crossref_primary_10_1016_j_cpc_2013_05_020
crossref_primary_10_1140_epja_i2019_12766_6
Cites_doi 10.1016/0003-4916(60)90032-4
10.1103/PhysRevC.78.014318
10.1016/0375-9474(81)90132-9
10.1140/epjad/i2005-06-151-8
10.1103/PhysRevC.76.044304
10.1103/PhysRevC.21.2076
10.1103/PhysRevC.68.034327
10.1007/BF01291916
10.1103/PhysRevC.5.1050
10.1016/0370-2693(80)90200-2
10.1103/PhysRevC.80.011302
10.1103/PhysRev.51.106
10.1142/S0218301307005776
10.1103/PhysRevLett.85.26
10.1016/0092-640X(92)90036-H
10.1016/0370-2693(80)90201-4
10.1016/j.cpc.2005.01.014
10.1103/PhysRevC.80.054313
10.1103/PhysRevC.61.064317
10.1139/p91-010
10.1103/PhysRevC.81.054310
10.1103/PhysRevC.81.024316
10.1016/S0375-9474(98)00180-8
10.1016/0375-9474(67)90510-6
10.5506/APhysPolB.42.415
10.1103/PhysRevC.21.2060
10.1103/PhysRevC.21.1568
10.1103/PhysRevC.61.034313
10.1016/j.cpc.2005.01.001
10.1016/S0010-4655(97)00004-0
10.1103/PhysRevC.76.054315
10.1016/0375-9474(85)90199-X
10.1142/S0218301307005806
10.1016/0375-9474(84)90086-1
10.1103/PhysRevC.82.024313
10.1142/S0218301309013105
10.1140/epja/i2010-11018-9
10.1142/S0218301309012914
10.1103/PhysRevLett.102.192501
10.1016/j.cpc.2004.02.003
10.1142/S0218301311017582
10.1007/BF00927673
10.1016/S0010-4655(00)00121-1
10.1016/j.cpc.2009.08.009
10.1016/S0375-9474(01)01219-2
10.1103/PhysRevLett.24.607
10.1007/BF01342433
10.1016/0375-9474(84)90433-0
10.1103/PhysRevLett.106.132502
10.1016/0375-9474(68)90699-4
10.1016/S0010-4655(97)00005-2
10.1103/PhysRevC.77.025501
10.1103/PhysRevC.80.014309
10.1016/0375-9474(81)90558-3
10.1103/PhysRevLett.103.012502
10.1088/0954-3899/36/10/105105
ContentType Journal Article
Copyright 2011 Elsevier B.V.
Copyright_xml – notice: 2011 Elsevier B.V.
DBID AAYXX
CITATION
7SC
7U5
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cpc.2011.08.013
DatabaseName CrossRef
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
EndPage 192
ExternalDocumentID 10_1016_j_cpc_2011_08_013
S0010465511002852
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7U5
8FD
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2738-a97b96a9861e7c377d07c100cc85b880ddf6f5ef5b9256b9c841363a92563b9f3
ISSN 0010-4655
IngestDate Thu Oct 02 14:13:21 EDT 2025
Thu Oct 02 09:16:01 EDT 2025
Sat Nov 29 05:32:21 EST 2025
Tue Nov 18 21:43:31 EST 2025
Fri Feb 23 02:30:58 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Hartree–Fock–Bogolyubov
Angular-momentum projection
High-performance computing
Isospin projection
Skyrme interaction
Hartree–Fock
Hybrid programming model
Finite temperature
Multi-threading
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2738-a97b96a9861e7c377d07c100cc85b880ddf6f5ef5b9256b9c841363a92563b9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1770365622
PQPubID 23500
PageCount 27
ParticipantIDs proquest_miscellaneous_963843318
proquest_miscellaneous_1770365622
crossref_citationtrail_10_1016_j_cpc_2011_08_013
crossref_primary_10_1016_j_cpc_2011_08_013
elsevier_sciencedirect_doi_10_1016_j_cpc_2011_08_013
PublicationCentury 2000
PublicationDate 2012
2012-1-00
20120101
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationTitle Computer physics communications
PublicationYear 2012
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dobaczewski, Satuła, Carlsson, Engel, Olbratowski, Powałowski, Sadziak, Sarich, Schunck, Staszczak, Stoitsov, Zalewski, Zduńczuk (br0070) 2009
Heisenberg (br0080) 1932; 77
Ring, Schuck (br0350) 1980
Dobaczewski (br0340) 2009; 36
Zduńczuk, Dobaczewski, Satuła (br0220) 2007; 16
Stoitsov, Nazarewicz, Schunck (br0510) 2009; 18
Staszczak, Stoitsov, Baran, Nazarewicz (br0470) 2010; 46
Satuła, Dobaczewski, Nazarewicz, Rafalski (br0170) 2011; 106
Dobaczewski, Dudek (br0030) 2000; 131
Chabanat, Bonche, Haensel, Meyer, Schaeffer (br0580) 1998; 635
Schunck, Dobaczewski, Moré, McDonnell, Nazarewicz, Sarich, Stoitsov (br0530) 2010; 81
Satuła, Dobaczewski, Nazarewicz, Borucki, Rafalski (br0160) 2011; 20
Satuła, Dobaczewski, Nazarewicz, Rafalski (br0140) 2010; 81
Kortelainen, Lesinski, Moré, Nazarewicz, Sarich, Schunck, Stoitsov, Wild (br0590) 2010; 82
Dechargé, Gogny (br0480) 1980; 21
E. Chabanat, Interactions effectives pour des conditions extrêmes dʼisospin, Université Claude Bernard Lyon-1, Thesis 1995, LYCEN T 9501, unpublished.
Martin, Egido, Robledo (br0290) 2003; 68
Strutinsky (br0360) 1967; 95
Robledo (br0200) 2007; 16
Stoitsov, Dobaczewski, Nazarewicz, Ring (br0500) 2005; 167
Anguiano, Egido, Robledo (br0190) 2001; 696
Strutinsky (br0370) 1968; 122
Rafalski, Satuła, Dobaczewski (br0120) 2009; 18
Vertse, Kruppa, Nazarewicz (br0420) 2000; 61
Zduńczuk, Satuła, Dobaczewski, Kosmulski (br0240) 2007; 76
Dobaczewski, Stoitsov, Nazarewicz (br0520) 2004; 726
Kruppa, Bender, Nazarewicz, Reinhard, Vertse, Ćwiok (br0410) 2000; 61
Hestenes (br0450) 1969; 4
Satuła, Dobaczewski, Nazarewicz, Rafalski (br0150) 2011; 42
Dobaczewski, Borecki, Nazarewicz, Stoitsov (br0440) 2005; 25
Younes, Gogny (br0490) 2009; 80
Dobaczewski, Dudek (br0010) 1997; 102
Engelbrecht, Lemmer (br0100) 1970; 24
Powell (br0460) 1969
Baran, Bulgac, McNeil Forbes, Hagen, Nazarewicz, Schunck, Stoitsov (br0550) 2008; 78
Dobaczewski, Dudek (br0020) 1997; 102
Towner, Hardy (br0230) 2008; 77
Giannoni, Quentin, Giannoni, Quentin (br0380) 1980; 21
Wigner (br0090) 1937; 51
Sheikh, Nazarewicz, Pei (br0320) 2009; 80
Bonche, Levit, Vautherin, Bonche, Levit, Vautherin (br0270) 1985; 436
Dobaczewski, Olbratowski (br0050) 2005; 167
Werner, Dudek (br0400) 1992; 50
Dobaczewski, Satuła, Carlsson, Engel, Olbratowski, Powałowski, Sadziak, Sarich, Schunck, Staszczak, Stoitsov, Zalewski, Zduńczuk (br0060) 2009; 180
Goodman (br0250) 1981; 352
Lipkin (br0330) 1960; 9
Diebel, Albrecht, Hasse (br0260) 1981; 355
Varshalovich, Moskalev, Khersonskii (br0180) 1988
Pei, Nazarewicz, Sheikh, Kerman (br0310) 2009; 102
Davies, Krieger (br0540) 1991; 69
Dobaczewski, Stoitsov, Nazarewicz, Reinhard (br0210) 2007; 76
Caurier, Poves, Zucker, Caurier, Poves, Zucker (br0110) 1980; 96
Egido, Robledo, Martin (br0280) 2000; 85
Dobaczewski, Flocard, Treiner (br0300) 1984; 422
Staszczak, Baran, Dobaczewski, Nazarewicz (br0560) 2009; 80
Bolsterli, Fiset, Nix, Norton (br0390) 1972; 5
Gall, Bonche, Dobaczewski, Flocard, Heenen (br0430) 1994; 348
Dobaczewski, Olbratowski (br0040) 2004; 158
Satuła, Dobaczewski, Nazarewicz, Rafalski (br0130) 2009; 103
Werner (10.1016/j.cpc.2011.08.013_br0400_1) 1992; 50
Kortelainen (10.1016/j.cpc.2011.08.013_br0590) 2010; 82
Dechargé (10.1016/j.cpc.2011.08.013_br0480) 1980; 21
Strutinsky (10.1016/j.cpc.2011.08.013_br0370) 1968; 122
Gall (10.1016/j.cpc.2011.08.013_br0430) 1994; 348
Satuła (10.1016/j.cpc.2011.08.013_br0170) 2011; 106
Wigner (10.1016/j.cpc.2011.08.013_br0090) 1937; 51
Satuła (10.1016/j.cpc.2011.08.013_br0130) 2009; 103
Dobaczewski (10.1016/j.cpc.2011.08.013_br0060) 2009; 180
Diebel (10.1016/j.cpc.2011.08.013_br0260) 1981; 355
Stoitsov (10.1016/j.cpc.2011.08.013_br0500) 2005; 167
Stoitsov (10.1016/j.cpc.2011.08.013_br0510) 2009; 18
Satuła (10.1016/j.cpc.2011.08.013_br0150) 2011; 42
Younes (10.1016/j.cpc.2011.08.013_br0490) 2009; 80
Ring (10.1016/j.cpc.2011.08.013_br0350) 1980
Engelbrecht (10.1016/j.cpc.2011.08.013_br0100) 1970; 24
Sheikh (10.1016/j.cpc.2011.08.013_br0320) 2009; 80
Staszczak (10.1016/j.cpc.2011.08.013_br0560) 2009; 80
Dobaczewski (10.1016/j.cpc.2011.08.013_br0070)
Rafalski (10.1016/j.cpc.2011.08.013_br0120) 2009; 18
Staszczak (10.1016/j.cpc.2011.08.013_br0470) 2010; 46
(10.1016/j.cpc.2011.08.013_br0400_2) 1992
Bonche (10.1016/j.cpc.2011.08.013_br0270_1) 1985; 436
Robledo (10.1016/j.cpc.2011.08.013_br0200) 2007; 16
Kruppa (10.1016/j.cpc.2011.08.013_br0410) 2000; 61
Giannoni (10.1016/j.cpc.2011.08.013_br0380_1) 1980; 21
Schunck (10.1016/j.cpc.2011.08.013_br0530) 2010; 81
Davies (10.1016/j.cpc.2011.08.013_br0540) 1991; 69
Goodman (10.1016/j.cpc.2011.08.013_br0250) 1981; 352
Egido (10.1016/j.cpc.2011.08.013_br0280) 2000; 85
Dobaczewski (10.1016/j.cpc.2011.08.013_br0340) 2009; 36
Hestenes (10.1016/j.cpc.2011.08.013_br0450) 1969; 4
Powell (10.1016/j.cpc.2011.08.013_br0460) 1969
Martin (10.1016/j.cpc.2011.08.013_br0290) 2003; 68
Zduńczuk (10.1016/j.cpc.2011.08.013_br0220) 2007; 16
Dobaczewski (10.1016/j.cpc.2011.08.013_br0440) 2005; 25
Dobaczewski (10.1016/j.cpc.2011.08.013_br0030) 2000; 131
Caurier (10.1016/j.cpc.2011.08.013_br0110_2) 1980; 96
Dobaczewski (10.1016/j.cpc.2011.08.013_br0050) 2005; 167
Bonche (10.1016/j.cpc.2011.08.013_br0270_2) 1984; 427
Dobaczewski (10.1016/j.cpc.2011.08.013_br0010) 1997; 102
Vertse (10.1016/j.cpc.2011.08.013_br0420) 2000; 61
Dobaczewski (10.1016/j.cpc.2011.08.013_br0210) 2007; 76
Dobaczewski (10.1016/j.cpc.2011.08.013_br0020) 1997; 102
10.1016/j.cpc.2011.08.013_br0570
Giannoni (10.1016/j.cpc.2011.08.013_br0380_2) 1980; 21
Heisenberg (10.1016/j.cpc.2011.08.013_br0080) 1932; 77
Towner (10.1016/j.cpc.2011.08.013_br0230) 2008; 77
Satuła (10.1016/j.cpc.2011.08.013_br0140) 2010; 81
Dobaczewski (10.1016/j.cpc.2011.08.013_br0300) 1984; 422
Dobaczewski (10.1016/j.cpc.2011.08.013_br0040) 2004; 158
Strutinsky (10.1016/j.cpc.2011.08.013_br0360) 1967; 95
Chabanat (10.1016/j.cpc.2011.08.013_br0580) 1998; 635
Pei (10.1016/j.cpc.2011.08.013_br0310) 2009; 102
Caurier (10.1016/j.cpc.2011.08.013_br0110_1) 1980; 96
Bolsterli (10.1016/j.cpc.2011.08.013_br0390) 1972; 5
Satuła (10.1016/j.cpc.2011.08.013_br0160) 2011; 20
Zduńczuk (10.1016/j.cpc.2011.08.013_br0240) 2007; 76
Lipkin (10.1016/j.cpc.2011.08.013_br0330) 1960; 9
Varshalovich (10.1016/j.cpc.2011.08.013_br0180) 1988
Baran (10.1016/j.cpc.2011.08.013_br0550) 2008; 78
Anguiano (10.1016/j.cpc.2011.08.013_br0190) 2001; 696
Dobaczewski (10.1016/j.cpc.2011.08.013_br0520) 2004; 726
References_xml – volume: 42
  start-page: 415
  year: 2011
  ident: br0150
  publication-title: Acta Phys. Polon. B
– volume: 80
  start-page: 011302(R)
  year: 2009
  ident: br0320
  publication-title: Phys. Rev. C
– volume: 180
  start-page: 2361
  year: 2009
  ident: br0060
  publication-title: Comput. Phys. Comm.
– volume: 102
  start-page: 183
  year: 1997
  ident: br0020
  publication-title: Comput. Phys. Comm.
– year: 2009
  ident: br0070
  article-title: HFODD (v2.40h) Userʼs Guide
– volume: 25
  start-page: 541
  year: 2005
  ident: br0440
  publication-title: Eur. Phys. J. A
– volume: 352
  start-page: 45
  year: 1981
  ident: br0250
  publication-title: Nucl. Phys. A
– volume: 9
  start-page: 272
  year: 1960
  ident: br0330
  publication-title: Ann. of Phys.
– volume: 635
  start-page: 231
  year: 1998
  ident: br0580
  publication-title: Nucl. Phys. A
– volume: 167
  start-page: 214
  year: 2005
  ident: br0050
  publication-title: Comput. Phys. Comm.
– year: 1988
  ident: br0180
  article-title: Quantum Theory of Angular Momentum
– reference: E. Chabanat, Interactions effectives pour des conditions extrêmes dʼisospin, Université Claude Bernard Lyon-1, Thesis 1995, LYCEN T 9501, unpublished.
– volume: 18
  start-page: 958
  year: 2009
  ident: br0120
  publication-title: Int. J. Mod. Phys. E
– volume: 36
  start-page: 105105
  year: 2009
  ident: br0340
  publication-title: J. Phys. G: Nucl. Part. Phys.
– volume: 51
  start-page: 106
  year: 1937
  ident: br0090
  publication-title: Phys. Rev.
– volume: 102
  start-page: 166
  year: 1997
  ident: br0010
  publication-title: Comput. Phys. Comm.
– volume: 61
  start-page: 064317
  year: 2000
  ident: br0420
  publication-title: Phys. Rev. C
– volume: 4
  start-page: 303
  year: 1969
  ident: br0450
  publication-title: J. Optim. Theory Appl.
– volume: 46
  start-page: 85
  year: 2010
  ident: br0470
  publication-title: Eur. Phys. J. A
– volume: 96
  start-page: 11
  year: 1980
  ident: br0110
  publication-title: Phys. Lett. B
– volume: 81
  start-page: 054310
  year: 2010
  ident: br0140
  publication-title: Phys. Rev. C
– volume: 167
  start-page: 43
  year: 2005
  ident: br0500
  publication-title: Comput. Phys. Comm.
– volume: 16
  start-page: 337
  year: 2007
  ident: br0200
  publication-title: Int. J. Mod. Phys. E
– volume: 85
  start-page: 26
  year: 2000
  ident: br0280
  publication-title: Phys. Rev. Lett.
– volume: 422
  start-page: 103
  year: 1984
  ident: br0300
  publication-title: Nucl. Phys. A
– year: 1980
  ident: br0350
  article-title: The Nuclear Many-Body Problem
– volume: 81
  start-page: 024316
  year: 2010
  ident: br0530
  publication-title: Phys. Rev. C
– volume: 16
  start-page: 377
  year: 2007
  ident: br0220
  publication-title: Int. J. Mod. Phys. E
– volume: 69
  start-page: 62
  year: 1991
  ident: br0540
  publication-title: Can. J. Phys.
– volume: 21
  start-page: 1568
  year: 1980
  ident: br0480
  publication-title: Phys. Rev. C
– volume: 102
  start-page: 192501
  year: 2009
  ident: br0310
  publication-title: Phys. Rev. Lett.
– volume: 18
  start-page: 816
  year: 2009
  ident: br0510
  publication-title: Int. J. Mod. Phys. E
– volume: 82
  start-page: 024313
  year: 2010
  ident: br0590
  publication-title: Phys. Rev. C
– volume: 158
  start-page: 158
  year: 2004
  ident: br0040
  publication-title: Comput. Phys. Comm.
– volume: 122
  start-page: 1
  year: 1968
  ident: br0370
  publication-title: Nucl. Phys. A
– volume: 103
  start-page: 012502
  year: 2009
  ident: br0130
  publication-title: Phys. Rev. Lett.
– volume: 77
  start-page: 025501
  year: 2008
  ident: br0230
  publication-title: Phys. Rev. C
– start-page: 283
  year: 1969
  ident: br0460
  publication-title: Optimization
– volume: 24
  start-page: 607
  year: 1970
  ident: br0100
  publication-title: Phys. Rev. Lett.
– volume: 78
  start-page: 014318
  year: 2008
  ident: br0550
  publication-title: Phys. Rev. C
– volume: 696
  start-page: 467
  year: 2001
  ident: br0190
  publication-title: Nucl. Phys. A
– volume: 68
  start-page: 034327
  year: 2003
  ident: br0290
  publication-title: Phys. Rev. C
– volume: 131
  start-page: 164
  year: 2000
  ident: br0030
  publication-title: Comput. Phys. Comm.
– volume: 95
  start-page: 420
  year: 1967
  ident: br0360
  publication-title: Nucl. Phys. A
– volume: 106
  start-page: 132502
  year: 2011
  ident: br0170
  publication-title: Phys. Rev. Lett.
– volume: 726
  start-page: 52
  year: 2004
  ident: br0520
  publication-title: AIP Conference Proceedings
– volume: 80
  start-page: 014309
  year: 2009
  ident: br0560
  publication-title: Phys. Rev. C
– volume: 76
  start-page: 044304
  year: 2007
  ident: br0240
  publication-title: Phys. Rev. C
– volume: 76
  start-page: 054315
  year: 2007
  ident: br0210
  publication-title: Phys. Rev. C
– volume: 61
  start-page: 034313
  year: 2000
  ident: br0410
  publication-title: Phys. Rev. C
– volume: 77
  start-page: 1
  year: 1932
  ident: br0080
  publication-title: Z. Phys.
– volume: 355
  start-page: 66
  year: 1981
  ident: br0260
  publication-title: Nucl. Phys. A
– volume: 20
  start-page: 244
  year: 2011
  ident: br0160
  publication-title: Int. J. Mod. Phys. E
– volume: 21
  start-page: 2060
  year: 1980
  ident: br0380
  publication-title: Phys. Rev. C
– volume: 5
  start-page: 1050
  year: 1972
  ident: br0390
  publication-title: Phys. Rev. C
– volume: 348
  start-page: 183
  year: 1994
  ident: br0430
  publication-title: Z. Phys. A
– volume: 80
  start-page: 054313
  year: 2009
  ident: br0490
  publication-title: Phys. Rev. C
– volume: 50
  start-page: 179
  year: 1992
  ident: br0400
  publication-title: At. Data Nucl. Data Tables
– volume: 436
  start-page: 265
  year: 1985
  ident: br0270
  publication-title: Nucl. Phys. A
– volume: 9
  start-page: 272
  year: 1960
  ident: 10.1016/j.cpc.2011.08.013_br0330
  publication-title: Ann. of Phys.
  doi: 10.1016/0003-4916(60)90032-4
– volume: 726
  start-page: 52
  year: 2004
  ident: 10.1016/j.cpc.2011.08.013_br0520
  publication-title: AIP Conference Proceedings
– volume: 78
  start-page: 014318
  year: 2008
  ident: 10.1016/j.cpc.2011.08.013_br0550
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.78.014318
– volume: 355
  start-page: 66
  year: 1981
  ident: 10.1016/j.cpc.2011.08.013_br0260
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(81)90132-9
– volume: 25
  start-page: 541
  issue: s01
  year: 2005
  ident: 10.1016/j.cpc.2011.08.013_br0440
  publication-title: Eur. Phys. J. A
  doi: 10.1140/epjad/i2005-06-151-8
– volume: 76
  start-page: 044304
  year: 2007
  ident: 10.1016/j.cpc.2011.08.013_br0240
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.76.044304
– volume: 21
  start-page: 2076
  year: 1980
  ident: 10.1016/j.cpc.2011.08.013_br0380_2
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.21.2076
– volume: 68
  start-page: 034327
  year: 2003
  ident: 10.1016/j.cpc.2011.08.013_br0290
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.68.034327
– volume: 348
  start-page: 183
  year: 1994
  ident: 10.1016/j.cpc.2011.08.013_br0430
  publication-title: Z. Phys. A
  doi: 10.1007/BF01291916
– volume: 5
  start-page: 1050
  year: 1972
  ident: 10.1016/j.cpc.2011.08.013_br0390
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.5.1050
– start-page: 683
  year: 1992
  ident: 10.1016/j.cpc.2011.08.013_br0400_2
– year: 1988
  ident: 10.1016/j.cpc.2011.08.013_br0180
– volume: 96
  start-page: 11
  year: 1980
  ident: 10.1016/j.cpc.2011.08.013_br0110_1
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(80)90200-2
– volume: 80
  start-page: 011302(R)
  year: 2009
  ident: 10.1016/j.cpc.2011.08.013_br0320
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.80.011302
– ident: 10.1016/j.cpc.2011.08.013_br0570
– volume: 51
  start-page: 106
  year: 1937
  ident: 10.1016/j.cpc.2011.08.013_br0090
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.51.106
– volume: 16
  start-page: 337
  year: 2007
  ident: 10.1016/j.cpc.2011.08.013_br0200
  publication-title: Int. J. Mod. Phys. E
  doi: 10.1142/S0218301307005776
– volume: 85
  start-page: 26
  year: 2000
  ident: 10.1016/j.cpc.2011.08.013_br0280
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.26
– volume: 50
  start-page: 179
  year: 1992
  ident: 10.1016/j.cpc.2011.08.013_br0400_1
  publication-title: At. Data Nucl. Data Tables
  doi: 10.1016/0092-640X(92)90036-H
– volume: 96
  start-page: 15
  year: 1980
  ident: 10.1016/j.cpc.2011.08.013_br0110_2
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(80)90201-4
– volume: 167
  start-page: 214
  year: 2005
  ident: 10.1016/j.cpc.2011.08.013_br0050
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2005.01.014
– volume: 80
  start-page: 054313
  year: 2009
  ident: 10.1016/j.cpc.2011.08.013_br0490
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.80.054313
– volume: 61
  start-page: 064317
  year: 2000
  ident: 10.1016/j.cpc.2011.08.013_br0420
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.61.064317
– volume: 69
  start-page: 62
  year: 1991
  ident: 10.1016/j.cpc.2011.08.013_br0540
  publication-title: Can. J. Phys.
  doi: 10.1139/p91-010
– volume: 81
  start-page: 054310
  year: 2010
  ident: 10.1016/j.cpc.2011.08.013_br0140
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.81.054310
– volume: 81
  start-page: 024316
  year: 2010
  ident: 10.1016/j.cpc.2011.08.013_br0530
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.81.024316
– volume: 635
  start-page: 231
  year: 1998
  ident: 10.1016/j.cpc.2011.08.013_br0580
  publication-title: Nucl. Phys. A
  doi: 10.1016/S0375-9474(98)00180-8
– volume: 95
  start-page: 420
  year: 1967
  ident: 10.1016/j.cpc.2011.08.013_br0360
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(67)90510-6
– volume: 42
  start-page: 415
  year: 2011
  ident: 10.1016/j.cpc.2011.08.013_br0150
  publication-title: Acta Phys. Polon. B
  doi: 10.5506/APhysPolB.42.415
– volume: 21
  start-page: 2060
  year: 1980
  ident: 10.1016/j.cpc.2011.08.013_br0380_1
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.21.2060
– volume: 21
  start-page: 1568
  year: 1980
  ident: 10.1016/j.cpc.2011.08.013_br0480
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.21.1568
– year: 1980
  ident: 10.1016/j.cpc.2011.08.013_br0350
– volume: 61
  start-page: 034313
  year: 2000
  ident: 10.1016/j.cpc.2011.08.013_br0410
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.61.034313
– volume: 167
  start-page: 43
  year: 2005
  ident: 10.1016/j.cpc.2011.08.013_br0500
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2005.01.001
– ident: 10.1016/j.cpc.2011.08.013_br0070
– volume: 102
  start-page: 166
  year: 1997
  ident: 10.1016/j.cpc.2011.08.013_br0010
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/S0010-4655(97)00004-0
– volume: 76
  start-page: 054315
  year: 2007
  ident: 10.1016/j.cpc.2011.08.013_br0210
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.76.054315
– volume: 436
  start-page: 265
  year: 1985
  ident: 10.1016/j.cpc.2011.08.013_br0270_1
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(85)90199-X
– volume: 16
  start-page: 377
  year: 2007
  ident: 10.1016/j.cpc.2011.08.013_br0220
  publication-title: Int. J. Mod. Phys. E
  doi: 10.1142/S0218301307005806
– volume: 427
  start-page: 278
  year: 1984
  ident: 10.1016/j.cpc.2011.08.013_br0270_2
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(84)90086-1
– volume: 82
  start-page: 024313
  year: 2010
  ident: 10.1016/j.cpc.2011.08.013_br0590
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.82.024313
– volume: 18
  start-page: 958
  year: 2009
  ident: 10.1016/j.cpc.2011.08.013_br0120
  publication-title: Int. J. Mod. Phys. E
  doi: 10.1142/S0218301309013105
– volume: 46
  start-page: 85
  year: 2010
  ident: 10.1016/j.cpc.2011.08.013_br0470
  publication-title: Eur. Phys. J. A
  doi: 10.1140/epja/i2010-11018-9
– volume: 18
  start-page: 816
  year: 2009
  ident: 10.1016/j.cpc.2011.08.013_br0510
  publication-title: Int. J. Mod. Phys. E
  doi: 10.1142/S0218301309012914
– volume: 102
  start-page: 192501
  year: 2009
  ident: 10.1016/j.cpc.2011.08.013_br0310
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.192501
– volume: 158
  start-page: 158
  year: 2004
  ident: 10.1016/j.cpc.2011.08.013_br0040
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2004.02.003
– volume: 20
  start-page: 244
  year: 2011
  ident: 10.1016/j.cpc.2011.08.013_br0160
  publication-title: Int. J. Mod. Phys. E
  doi: 10.1142/S0218301311017582
– volume: 4
  start-page: 303
  year: 1969
  ident: 10.1016/j.cpc.2011.08.013_br0450
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00927673
– start-page: 283
  year: 1969
  ident: 10.1016/j.cpc.2011.08.013_br0460
– volume: 131
  start-page: 164
  year: 2000
  ident: 10.1016/j.cpc.2011.08.013_br0030
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/S0010-4655(00)00121-1
– volume: 180
  start-page: 2361
  year: 2009
  ident: 10.1016/j.cpc.2011.08.013_br0060
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2009.08.009
– volume: 696
  start-page: 467
  year: 2001
  ident: 10.1016/j.cpc.2011.08.013_br0190
  publication-title: Nucl. Phys. A
  doi: 10.1016/S0375-9474(01)01219-2
– volume: 24
  start-page: 607
  year: 1970
  ident: 10.1016/j.cpc.2011.08.013_br0100
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.24.607
– volume: 77
  start-page: 1
  year: 1932
  ident: 10.1016/j.cpc.2011.08.013_br0080
  publication-title: Z. Phys.
  doi: 10.1007/BF01342433
– volume: 422
  start-page: 103
  year: 1984
  ident: 10.1016/j.cpc.2011.08.013_br0300
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(84)90433-0
– volume: 106
  start-page: 132502
  year: 2011
  ident: 10.1016/j.cpc.2011.08.013_br0170
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.132502
– volume: 122
  start-page: 1
  year: 1968
  ident: 10.1016/j.cpc.2011.08.013_br0370
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(68)90699-4
– volume: 102
  start-page: 183
  year: 1997
  ident: 10.1016/j.cpc.2011.08.013_br0020
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/S0010-4655(97)00005-2
– volume: 77
  start-page: 025501
  year: 2008
  ident: 10.1016/j.cpc.2011.08.013_br0230
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.77.025501
– volume: 80
  start-page: 014309
  year: 2009
  ident: 10.1016/j.cpc.2011.08.013_br0560
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.80.014309
– volume: 352
  start-page: 45
  year: 1981
  ident: 10.1016/j.cpc.2011.08.013_br0250
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(81)90558-3
– volume: 103
  start-page: 012502
  year: 2009
  ident: 10.1016/j.cpc.2011.08.013_br0130
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.012502
– volume: 36
  start-page: 105105
  year: 2009
  ident: 10.1016/j.cpc.2011.08.013_br0340
  publication-title: J. Phys. G: Nucl. Part. Phys.
  doi: 10.1088/0954-3899/36/10/105105
SSID ssj0007793
Score 1.9909035
Snippet We describe the new version (v2.49t) of the code hfodd which solves the nuclear Skyrme–Hartree–Fock (HF) or Skyrme–Hartree–Fock–Bogolyubov (HFB) problem by...
We describe the new version (v2.49t) of the code hfodd which solves the nuclear Skyrme-Hartree-Fock (HF) or Skyrme-Hartree-Fock-Bogolyubov (HFB) problem by...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 166
SubjectTerms Angular-momentum projection
Approximation
Computation
Density
Finite temperature
Hartree–Fock
Hartree–Fock–Bogolyubov
High-performance computing
Hybrid programming model
Isospin projection
Libraries
Mathematical analysis
Mathematical models
Multi-threading
Shells
Skyrme interaction
Subroutines
Title Solution of the Skyrme–Hartree–Fock–Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis
URI https://dx.doi.org/10.1016/j.cpc.2011.08.013
https://www.proquest.com/docview/1770365622
https://www.proquest.com/docview/963843318
Volume 183
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLaqDiRuJn5Fx4-MxG5Ameqkie3LUW0aE5omdUDvosRxoKMkJW2qjSvegTfiUXgSzonjpGrZBEjcpEkaJ63Pl3M-2-eHkOdemgrNOXMSVykH12-dCAcrCYsTDUOMflR5-b57w09OxHgsTzudHzYWZjnlWSYuLuTsv4oazoGwMXT2L8Td3BROwD4IHbYgdtj-keDtRJdd_R99uiw-a-vU4B1Bk0K3x4eoEO3Bq_xDPr0s43z5Un8pWz9zvM8QvT-rkMtEI9MFpopprzG1roMZMQFPC3T9jOaT-SrltXUj6kmUOXqxtzEpDaUfqY9gYuuKQA29Bm2jvoIeNsW1j5svqkntxkOnOT2KFuXu0N8VbsWJ3--tTmqwdvC7GWdj9DZYC8z0ZqyWUdWCS8eVJntkq8u9DdAazcyCYMXIM1OAb8N-mKmM8z01U216VxMsu5aWe1RlNoKfhDn3XOEDDdhyuS9Fl2ztvz4YHzd8gPM69XP9H-zaeuVluPagq9jRGk-oyM_ZbbJdj1rovkHbHdLR2V1y89QI9B4pLOZonlLACjWY-_nte4022EOcwUeLMNogjE6yqlWDMGoRRn-DMFoh7D55e3hwNjxy6mIejsLoL9QAsQwiKQKmufI4T_pcQdcpJfwYjEiSpEHq69SPJbDwWCoB9CrwIjzyYpl6D0g3yzP9kNAgVf4A-k-zJB746SBW0lNgiSLm8zRiskf6thNDVWe6x4Ir09C6NJ6H0O8h9nuIRViZ1yMvmiYzk-bluosHVjJhzVMN_wwBRtc1e2alGIIOx4W5KNN5OQ8ZxzR4MBJxe4RecQ0aSoxuFDv_9vRH5Ba-aGb28DHpLopSPyE31HIxmRdPa8z-AkhJ0C8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+of+the+Skyrme%E2%80%93Hartree%E2%80%93Fock%E2%80%93Bogolyubov+equations+in+the+Cartesian+deformed+harmonic-oscillator+basis&rft.jtitle=Computer+physics+communications&rft.au=Schunck%2C+N.&rft.au=Dobaczewski%2C+J.&rft.au=McDonnell%2C+J.&rft.au=Satu%C5%82a%2C+W.&rft.date=2012&rft.pub=Elsevier+B.V&rft.issn=0010-4655&rft.eissn=1879-2944&rft.volume=183&rft.issue=1&rft.spage=166&rft.epage=192&rft_id=info:doi/10.1016%2Fj.cpc.2011.08.013&rft.externalDocID=S0010465511002852
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon