Monopole Floer homology and invariant theta characteristics

We describe a relationship between the monopole Floer homology of three‐manifolds and the geometry of Riemann surfaces. For an automorphism φ$\varphi$ of a compact Riemann surface Σ$\Sigma$ with quotient P1$\mathbb {P}^1$, there is a natural correspondence between theta characteristics L$L$ on Σ$\Si...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the London Mathematical Society Ročník 109; číslo 5
Hlavní autor: Lin, Francesco
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.05.2024
ISSN:0024-6107, 1469-7750
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We describe a relationship between the monopole Floer homology of three‐manifolds and the geometry of Riemann surfaces. For an automorphism φ$\varphi$ of a compact Riemann surface Σ$\Sigma$ with quotient P1$\mathbb {P}^1$, there is a natural correspondence between theta characteristics L$L$ on Σ$\Sigma$ which are invariant under φ$\varphi$ and self‐conjugate spinc${\text{spin}}^c$ structures sL$\mathfrak {s}_L$ on the mapping torus Mφ$M_{\varphi }$ of φ$\varphi$. We show that the monopole Floer homology groups of (Mφ,sL)$(M_{\varphi },\mathfrak {s}_L)$ are explicitly determined by the eigenvalues of the (lift of the) action of φ$\varphi$ on H0(L)$H^0(L)$, the space of holomorphic sections of L$L$, and discuss several consequences of this description. Our result is based on a detailed analysis of the transversality properties of the Seiberg–Witten equations for suitable small perturbations.
ISSN:0024-6107
1469-7750
DOI:10.1112/jlms.12895