Monopole Floer homology and invariant theta characteristics

We describe a relationship between the monopole Floer homology of three‐manifolds and the geometry of Riemann surfaces. For an automorphism φ$\varphi$ of a compact Riemann surface Σ$\Sigma$ with quotient P1$\mathbb {P}^1$, there is a natural correspondence between theta characteristics L$L$ on Σ$\Si...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the London Mathematical Society Vol. 109; no. 5
Main Author: Lin, Francesco
Format: Journal Article
Language:English
Published: 01.05.2024
ISSN:0024-6107, 1469-7750
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We describe a relationship between the monopole Floer homology of three‐manifolds and the geometry of Riemann surfaces. For an automorphism φ$\varphi$ of a compact Riemann surface Σ$\Sigma$ with quotient P1$\mathbb {P}^1$, there is a natural correspondence between theta characteristics L$L$ on Σ$\Sigma$ which are invariant under φ$\varphi$ and self‐conjugate spinc${\text{spin}}^c$ structures sL$\mathfrak {s}_L$ on the mapping torus Mφ$M_{\varphi }$ of φ$\varphi$. We show that the monopole Floer homology groups of (Mφ,sL)$(M_{\varphi },\mathfrak {s}_L)$ are explicitly determined by the eigenvalues of the (lift of the) action of φ$\varphi$ on H0(L)$H^0(L)$, the space of holomorphic sections of L$L$, and discuss several consequences of this description. Our result is based on a detailed analysis of the transversality properties of the Seiberg–Witten equations for suitable small perturbations.
AbstractList We describe a relationship between the monopole Floer homology of three‐manifolds and the geometry of Riemann surfaces. For an automorphism of a compact Riemann surface with quotient , there is a natural correspondence between theta characteristics on which are invariant under and self‐conjugate structures on the mapping torus of . We show that the monopole Floer homology groups of are explicitly determined by the eigenvalues of the (lift of the) action of on , the space of holomorphic sections of , and discuss several consequences of this description. Our result is based on a detailed analysis of the transversality properties of the Seiberg–Witten equations for suitable small perturbations.
We describe a relationship between the monopole Floer homology of three‐manifolds and the geometry of Riemann surfaces. For an automorphism φ$\varphi$ of a compact Riemann surface Σ$\Sigma$ with quotient P1$\mathbb {P}^1$, there is a natural correspondence between theta characteristics L$L$ on Σ$\Sigma$ which are invariant under φ$\varphi$ and self‐conjugate spinc${\text{spin}}^c$ structures sL$\mathfrak {s}_L$ on the mapping torus Mφ$M_{\varphi }$ of φ$\varphi$. We show that the monopole Floer homology groups of (Mφ,sL)$(M_{\varphi },\mathfrak {s}_L)$ are explicitly determined by the eigenvalues of the (lift of the) action of φ$\varphi$ on H0(L)$H^0(L)$, the space of holomorphic sections of L$L$, and discuss several consequences of this description. Our result is based on a detailed analysis of the transversality properties of the Seiberg–Witten equations for suitable small perturbations.
Author Lin, Francesco
Author_xml – sequence: 1
  givenname: Francesco
  surname: Lin
  fullname: Lin, Francesco
  email: flin@math.columbia.edu
  organization: Columbia University
BookMark eNp9j71OwzAURi1UJNrCwhNkRkq514njREyoovyoFQMwR47tUFeuXdkWqG9PS5gQYrrLOZ_umZCR804TcokwQ0R6vbHbOENaN-yEjLGsmpxzBiMyBqBlXiHwMzKJcQOABQIdk5uVd37nrc4W1uuQrf3WW_--z4RTmXEfIhjhUpbWOolMrkUQMulgYjIynpPTXtioL37ulLwt7l7nD_ny-f5xfrvMJeUFy7VkSiqoqFYgKYiuZ52AQrOS9arpFOsor_vDfxUvdEPrGoHJjheNqjoEWRdTAsOuDD7GoPtWmiSS8S4FYWyL0B7j22N8-x1_UK5-KbtgtiLs_4ZxgD-N1ft_yPZpuXoZnC8JRW3O
CitedBy_id crossref_primary_10_1080_10586458_2025_2481271
Cites_doi 10.4007/annals.2007.165.457
10.4310/MRL.1998.v5.n5.a3
10.24033/asens.1205
10.4310/CAG.1999.v7.n3.a1
10.4310/CAG.1997.v5.n4.a3
10.1007/978-3-0348-7999-6
10.1016/S0001-8708(02)00030-0
10.1016/j.aim.2008.01.009
10.1073/pnas.1018734108
10.1016/j.aim.2006.08.001
10.2140/agt.2011.11.1
10.4310/MRL.1996.v3.n5.a8
10.2140/gt.2020.24.2829
10.1090/gsm/005
10.1007/BF00136869
10.1515/9783110198102
10.2307/1970721
10.1017/CBO9780511543111
10.1017/CBO9781139084437
10.5802/afst.1251
10.1142/S1793525320500247
10.1007/BFb0068264
10.1007/978-1-4757-5323-3
10.1016/0001-8708(74)90021-8
10.24033/asens.1209
ContentType Journal Article
Copyright 2024 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.
Copyright_xml – notice: 2024 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.
DBID AAYXX
CITATION
DOI 10.1112/jlms.12895
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1469-7750
EndPage n/a
ExternalDocumentID 10_1112_jlms_12895
JLMS12895
Genre article
GrantInformation_xml – fundername: Alfred P. Sloan Foundation
– fundername: NSF
  funderid: DMS‐1948820
GroupedDBID --Z
-DZ
-~X
.2P
.I3
0R~
1OB
1OC
1TH
33P
4.4
5GY
5VS
6OB
6TJ
70D
AAHHS
AAHQN
AAIJN
AAJKP
AAMNL
AAMVS
AANLZ
AAOGV
AASGY
AASVR
AAUQX
AAXRX
AAYCA
AAYJJ
AAZKR
ABCUV
ABEFU
ABEJV
ABEUO
ABFSI
ABITZ
ABIXL
ABJNI
ABLJU
ABNGD
ABNKS
ABQLI
ABQTQ
ABSAR
ABSMQ
ABTAH
ABVKB
ABXVV
ABZBJ
ACAHQ
ACCFJ
ACCZN
ACGFS
ACNCT
ACPOU
ACQPF
ACUFI
ACXBN
ACXQS
ADBBV
ADEOM
ADEYI
ADHZD
ADKYN
ADMGS
ADOCK
ADOZA
ADRIX
ADXAS
ADZMN
ADZXQ
AECKG
AEEZP
AEGPL
AEIGN
AEJOX
AEPUE
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFIYH
AFKSM
AFPWT
AFWVQ
AFZJQ
AGKEF
AGSYK
AHBTC
AHXPO
AI.
AIJHB
AITYG
AIURR
AIWBW
AJBDE
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALUQN
ALVPJ
AMYDB
ASAOO
ASPBG
ATDFG
AUFTA
AVWKF
AXUDD
AZFZN
BFHJK
BMNLL
BMXJE
BQUQU
CAG
CHEAL
COF
CS3
CXTWN
CZ4
DCZOG
DFGAJ
DILTD
DRFUL
DRSTM
D~K
E.L
EBS
EE~
EJD
ESX
F9B
FEDTE
FSPIC
H13
H5~
HAR
HGLYW
HVGLF
HW0
H~9
IOX
J21
KOP
KSI
L7B
L98
LATKE
LEEKS
LOXES
LUTES
LYRES
M-Z
M49
MBTAY
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N9A
NGC
NHB
NU-
O0~
O9-
OHT
O~Y
P2P
P2W
PALCI
PB-
Q1.
Q5Y
RCA
RD5
RJQFR
ROL
ROX
ROZ
RW1
RXO
S10
SAMSI
SUPJJ
TCN
TJP
TN5
UPT
UQL
VH1
VOH
WH7
WIH
WIK
WOHZO
WXSBR
X7H
XJT
XKC
XOL
XSW
XXG
Y6R
YQT
YYP
ZCG
ZKB
ZY4
ZZTAW
~91
AAGQS
AAYXX
ABGDZ
ABGNP
ACUKT
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
AIQQE
AMVHM
CITATION
LH4
ID FETCH-LOGICAL-c2735-ec5dcd062ed0c20abf5ba03e545fd9bd5b278f024673e9288105cb739d6b10c83
IEDL.DBID DRFUL
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001217133300020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0024-6107
IngestDate Sat Nov 29 06:25:19 EST 2025
Tue Nov 18 22:31:49 EST 2025
Wed Jan 22 17:20:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2735-ec5dcd062ed0c20abf5ba03e545fd9bd5b278f024673e9288105cb739d6b10c83
PageCount 27
ParticipantIDs crossref_citationtrail_10_1112_jlms_12895
crossref_primary_10_1112_jlms_12895
wiley_primary_10_1112_jlms_12895_JLMS12895
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle Journal of the London Mathematical Society
PublicationYear 2024
References 1974; 14
2012
2010; 19
2010
2007; 165
2003; 173
1985; 267
2011; 11
2005
1997; 5
1992; 10
1999; 7
2007; 10
2003; 30
1978; 638
1968; 88
1995; 5
1998; 395
2021; 13
2011; 108
2006; 43
2008; 218
2008; 217
2020; 24
2002; 208
1996; 2
1998; 5
1996; 3
1971; 4
1996; 44
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Roe J. (e_1_2_8_28_1) 1998
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_7_1
Brussee R. (e_1_2_8_5_1) 1996; 2
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Huybrechts D. (e_1_2_8_12_1) 2005
Itoh M. (e_1_2_8_13_1) 2006; 43
Morgan J. W. (e_1_2_8_21_1) 1996
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_30_1
References_xml – volume: 4
  start-page: 47
  year: 1971
  end-page: 62
  article-title: Riemann surfaces and spin structures
  publication-title: Ann. Sci. Éc Norm. Supér. (4)
– volume: 5
  year: 1995
– volume: 11
  start-page: 1
  issue: 1
  year: 2011
  end-page: 68
  article-title: Knot Floer homology and rational surgeries
  publication-title: Algebr. Geom. Topol.
– volume: 3
  start-page: 661
  issue: 5
  year: 1996
  end-page: 674
  article-title: Milnor torsion
  publication-title: Math. Res. Lett.
– volume: 208
  year: 2002
– volume: 24
  start-page: 2829
  issue: 6
  year: 2020
  end-page: 2854
  article-title: , I: Heegaard Floer homology and Seiberg‐Witten Floer homology
  publication-title: Geom. Topol.
– volume: 43
  start-page: 121
  issue: 1
  year: 2006
  end-page: 129
  article-title: The dual Thurston norm and the geometry of closed 3‐manifolds
  publication-title: Osaka J. Math.
– volume: 218
  start-page: 728
  issue: 3
  year: 2008
  end-page: 761
  article-title: On the Heegaard Floer homology of a surface times a circle
  publication-title: Adv. Math.
– year: 2005
– volume: 2
  start-page: 103
  year: 1996
  end-page: 146
  article-title: The canonical class and the properties of Kähler surfaces
  publication-title: New York J. Math.
– volume: 4
  start-page: 181
  year: 1971
  end-page: 192
  article-title: Theta characteristics of an algebraic curve
  publication-title: Ann. Sci. Éc. Norm. Supér. (4)
– volume: 108
  start-page: 8100
  issue: 20
  year: 2011
  end-page: 8105
  article-title: Equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 44
  year: 1996
– volume: 173
  start-page: 179
  issue: 2
  year: 2003
  end-page: 261
  article-title: Absolutely graded Floer homologies and intersection forms for four‐manifolds with boundary
  publication-title: Adv. Math.
– volume: 638
  year: 1978
– volume: 19
  start-page: 457
  issue: 3‐4
  year: 2010
  end-page: 477
  article-title: Invariant spin structures on Riemann surfaces
  publication-title: Ann. Fac. Sci. Toulouse Math. (6)
– year: 2010
– year: 2012
– volume: 217
  start-page: 873
  issue: 3
  year: 2008
  end-page: 888
  article-title: The theta characteristic of a branched covering
  publication-title: Adv. Math.
– volume: 10
  year: 2007
– volume: 5
  start-page: 685
  issue: 4
  year: 1997
  end-page: 791
  article-title: Seiberg‐Witten monopoles on Seifert fibered spaces
  publication-title: Comm. Anal. Geom.
– volume: 14
  start-page: 1
  year: 1974
  end-page: 55
  article-title: Harmonic spinors
  publication-title: Adv. Math.
– volume: 267
  year: 1985
– volume: 88
  start-page: 451
  year: 1968
  end-page: 491
  article-title: A Lefschetz fixed point formula for elliptic complexes. II. Applications
  publication-title: Ann. of Math. (2)
– volume: 30
  year: 2003
– volume: 13
  start-page: 699
  issue: 3
  year: 2021
  end-page: 737
  article-title: Harmonic spinors on the Davis hyperbolic 4‐manifold
  publication-title: J. Topol. Anal.
– volume: 395
  year: 1998
– volume: 5
  start-page: 583
  issue: 5
  year: 1998
  end-page: 598
  article-title: A combinatorial formulation for the Seiberg‐Witten invariants of 3‐manifolds
  publication-title: Math. Res. Lett.
– volume: 10
  start-page: 263
  issue: 3
  year: 1992
  end-page: 273
  article-title: Harmonic spinors on Riemann surfaces
  publication-title: Ann. Global Anal. Geom.
– volume: 7
  start-page: 451
  issue: 3
  year: 1999
  end-page: 495
  article-title: Obstruction bundles, semiregularity, and Seiberg‐Witten invariants
  publication-title: Comm. Anal. Geom.
– volume: 165
  start-page: 457
  issue: 2
  year: 2007
  end-page: 546
  article-title: Monopoles and lens space surgeries
  publication-title: Ann. of Math. (2)
– ident: e_1_2_8_17_1
  doi: 10.4007/annals.2007.165.457
– ident: e_1_2_8_31_1
  doi: 10.4310/MRL.1998.v5.n5.a3
– ident: e_1_2_8_4_1
  doi: 10.24033/asens.1205
– volume-title: Elliptic operators, topology and asymptotic methods
  year: 1998
  ident: e_1_2_8_28_1
– ident: e_1_2_8_10_1
  doi: 10.4310/CAG.1999.v7.n3.a1
– ident: e_1_2_8_22_1
  doi: 10.4310/CAG.1997.v5.n4.a3
– ident: e_1_2_8_32_1
  doi: 10.1007/978-3-0348-7999-6
– volume: 2
  start-page: 103
  year: 1996
  ident: e_1_2_8_5_1
  article-title: The canonical class and the C∞$C^\infty$ properties of Kähler surfaces
  publication-title: New York J. Math.
– ident: e_1_2_8_26_1
  doi: 10.1016/S0001-8708(02)00030-0
– ident: e_1_2_8_14_1
  doi: 10.1016/j.aim.2008.01.009
– ident: e_1_2_8_7_1
  doi: 10.1073/pnas.1018734108
– volume-title: The Seiberg‐Witten equations and applications to the topology of smooth four‐manifolds
  year: 1996
  ident: e_1_2_8_21_1
– ident: e_1_2_8_9_1
  doi: 10.1016/j.aim.2006.08.001
– ident: e_1_2_8_27_1
  doi: 10.2140/agt.2011.11.1
– volume-title: Complex geometry
  year: 2005
  ident: e_1_2_8_12_1
– ident: e_1_2_8_23_1
  doi: 10.4310/MRL.1996.v3.n5.a8
– ident: e_1_2_8_15_1
  doi: 10.2140/gt.2020.24.2829
– ident: e_1_2_8_20_1
  doi: 10.1090/gsm/005
– ident: e_1_2_8_6_1
  doi: 10.1007/BF00136869
– ident: e_1_2_8_25_1
  doi: 10.1515/9783110198102
– ident: e_1_2_8_2_1
  doi: 10.2307/1970721
– ident: e_1_2_8_16_1
  doi: 10.1017/CBO9780511543111
– ident: e_1_2_8_19_1
– ident: e_1_2_8_8_1
  doi: 10.1017/CBO9781139084437
– ident: e_1_2_8_18_1
  doi: 10.5802/afst.1251
– ident: e_1_2_8_29_1
  doi: 10.1142/S1793525320500247
– ident: e_1_2_8_30_1
  doi: 10.1007/BFb0068264
– ident: e_1_2_8_3_1
  doi: 10.1007/978-1-4757-5323-3
– volume: 43
  start-page: 121
  issue: 1
  year: 2006
  ident: e_1_2_8_13_1
  article-title: The dual Thurston norm and the geometry of closed 3‐manifolds
  publication-title: Osaka J. Math.
– ident: e_1_2_8_11_1
  doi: 10.1016/0001-8708(74)90021-8
– ident: e_1_2_8_24_1
  doi: 10.24033/asens.1209
SSID ssj0013102
Score 2.372417
Snippet We describe a relationship between the monopole Floer homology of three‐manifolds and the geometry of Riemann surfaces. For an automorphism φ$\varphi$ of a...
We describe a relationship between the monopole Floer homology of three‐manifolds and the geometry of Riemann surfaces. For an automorphism of a compact...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
Title Monopole Floer homology and invariant theta characteristics
URI https://onlinelibrary.wiley.com/doi/abs/10.1112%2Fjlms.12895
Volume 109
WOSCitedRecordID wos001217133300020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1469-7750
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013102
  issn: 0024-6107
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7MzYMe_C3OXxT0olBN07RJ0IuoRWQbog52K2mS4mTrZJv7-03TbnMggnjr4b0QPt5Lvpc03wM4JVRz5fHU9RWiLpGhcJlOsRsimQii7Ptr22yCtlqs0-FPFbievoUp9CFmB255Ztj1Ok9wkZRdSLxcNPS91x9dmNWVB0tQwyZwSRVqd89RuzG_RfBQqRZOTImEaClPavwv594LG9J3gmp3mGj9f3PbgLWSWTo3RShsQkVnW7DanMmyjrbhymRw3hRBO1FvoIfO26BvT9UdkSmnm01M3WyAdozHWDhyUcp5B9rR_evtg1t2T3CloSSBq2WgpEIh1gpJjESSBolAvjaUKVU8UUGCKUsNNCH1NceMGaYlE-pzFSYekszfhWo2yPQeOIE2RRqTLAyURzyWCt83AxCiqSFDnKk6nE0hjGUpLZ53uOjFRYmB4xyQ2AJSh5OZ7UchqPGj1bnF9xeT-LHRfLFf-38xPoAVnMeD_WfxEKrj4ac-gmU5GXdHw-Mygr4ArJbKfw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50E9QHf4vzZ0BfFKppm7YJPolapnZDdAPfSpukONk62eb-fpO0bg5EEN_6cFfKx13y3TX5DuCEBJIJm2WWK3BgEe4nFpWZY_mYpwkR5v61GTYRNJv05YU9lmdz9F2YQh9i0nDTmWHWa53guiFdZrlWDX3r9obnanll3jxUiYojrwLVm6ewHU1_I9i4lAsnqkbCQalPqvwvpt4zO9J3hmq2mHD1nx-3Bislt0RXRTCsw5zMN2C5MRFmHW7CpcphPRZBorDblwP02u-ZvjpKcoE6-VhVzgpqpDxGCeKzYs5b0A5vW9d1q5yfYHFFSjxLck9wgX1HCswdnKSZlybYlYo0ZYKlwkudgGYKGz9wJXMoVVyLp4HLhJ_amFN3Gyp5P5c7gDypyjTKqe8Jm9g0S1xXvYAQGSg6xKiowekXhjEvxcX1jItuXBQZTqwBiQ0gNTie2L4Xkho_Wp0ZgH8xie-jxrN52v2L8REs1luNKI7umg97sOTo4DAnGPehMhp8yANY4ONRZzg4LMPpE9bgzm8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA66ieiDd3FeA_qiUE3bpEnwSZzFyzaGOthbaZMUJ1s3trnfb5LWzYEI4lsezinl45zkO7l8B4AzTBWXLk8dXyLqYBHEDlOp5wRIJDGW9v21bTZBGw3WbvNmcTfHvIXJ9SGmG24mM-x8bRJcDWRaZLlRDX3v9kaXenrlZBGUMeGBzsty9Tls1WbHCC4q5MKxrpEQLfRJtf_VzHtuRfrOUO0SE67_8-c2wFrBLeFNHgybYEFlW2C1PhVmHW2Da53Dpi2CgmG3r4bwrd-z--owziTsZBNdOWuoofYYx1DMiznvgFZ493p77xT9ExyhSQlxlCBSSBR4SiLhoThJSRIjX2nSlEqeSJJ4lKUam4D6inuMaa4lEupzGSQuEszfBaWsn6k9AInSZRoTLCDSxS5LY9_XH8BYUU2HOJMVcP6FYSQKcXHT46Ib5UWGFxlAIgtIBZxObQe5pMaPVhcW4F9Mosda_cWO9v9ifAKWm9Uwqj00ng7Aimdiw15gPASl8fBDHYElMRl3RsPjIpo-Aaq5zeo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monopole+Floer+homology+and+invariant+theta+characteristics&rft.jtitle=Journal+of+the+London+Mathematical+Society&rft.au=Lin%2C+Francesco&rft.date=2024-05-01&rft.issn=0024-6107&rft.eissn=1469-7750&rft.volume=109&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1112%2Fjlms.12895&rft.externalDBID=10.1112%252Fjlms.12895&rft.externalDocID=JLMS12895
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-6107&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-6107&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-6107&client=summon