Monopole Floer homology and invariant theta characteristics
We describe a relationship between the monopole Floer homology of three‐manifolds and the geometry of Riemann surfaces. For an automorphism φ$\varphi$ of a compact Riemann surface Σ$\Sigma$ with quotient P1$\mathbb {P}^1$, there is a natural correspondence between theta characteristics L$L$ on Σ$\Si...
Saved in:
| Published in: | Journal of the London Mathematical Society Vol. 109; no. 5 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
01.05.2024
|
| ISSN: | 0024-6107, 1469-7750 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We describe a relationship between the monopole Floer homology of three‐manifolds and the geometry of Riemann surfaces. For an automorphism φ$\varphi$ of a compact Riemann surface Σ$\Sigma$ with quotient P1$\mathbb {P}^1$, there is a natural correspondence between theta characteristics L$L$ on Σ$\Sigma$ which are invariant under φ$\varphi$ and self‐conjugate spinc${\text{spin}}^c$ structures sL$\mathfrak {s}_L$ on the mapping torus Mφ$M_{\varphi }$ of φ$\varphi$. We show that the monopole Floer homology groups of (Mφ,sL)$(M_{\varphi },\mathfrak {s}_L)$ are explicitly determined by the eigenvalues of the (lift of the) action of φ$\varphi$ on H0(L)$H^0(L)$, the space of holomorphic sections of L$L$, and discuss several consequences of this description. Our result is based on a detailed analysis of the transversality properties of the Seiberg–Witten equations for suitable small perturbations. |
|---|---|
| AbstractList | We describe a relationship between the monopole Floer homology of three‐manifolds and the geometry of Riemann surfaces. For an automorphism of a compact Riemann surface with quotient , there is a natural correspondence between theta characteristics on which are invariant under and self‐conjugate structures on the mapping torus of . We show that the monopole Floer homology groups of are explicitly determined by the eigenvalues of the (lift of the) action of on , the space of holomorphic sections of , and discuss several consequences of this description. Our result is based on a detailed analysis of the transversality properties of the Seiberg–Witten equations for suitable small perturbations. We describe a relationship between the monopole Floer homology of three‐manifolds and the geometry of Riemann surfaces. For an automorphism φ$\varphi$ of a compact Riemann surface Σ$\Sigma$ with quotient P1$\mathbb {P}^1$, there is a natural correspondence between theta characteristics L$L$ on Σ$\Sigma$ which are invariant under φ$\varphi$ and self‐conjugate spinc${\text{spin}}^c$ structures sL$\mathfrak {s}_L$ on the mapping torus Mφ$M_{\varphi }$ of φ$\varphi$. We show that the monopole Floer homology groups of (Mφ,sL)$(M_{\varphi },\mathfrak {s}_L)$ are explicitly determined by the eigenvalues of the (lift of the) action of φ$\varphi$ on H0(L)$H^0(L)$, the space of holomorphic sections of L$L$, and discuss several consequences of this description. Our result is based on a detailed analysis of the transversality properties of the Seiberg–Witten equations for suitable small perturbations. |
| Author | Lin, Francesco |
| Author_xml | – sequence: 1 givenname: Francesco surname: Lin fullname: Lin, Francesco email: flin@math.columbia.edu organization: Columbia University |
| BookMark | eNp9j71OwzAURi1UJNrCwhNkRkq514njREyoovyoFQMwR47tUFeuXdkWqG9PS5gQYrrLOZ_umZCR804TcokwQ0R6vbHbOENaN-yEjLGsmpxzBiMyBqBlXiHwMzKJcQOABQIdk5uVd37nrc4W1uuQrf3WW_--z4RTmXEfIhjhUpbWOolMrkUQMulgYjIynpPTXtioL37ulLwt7l7nD_ny-f5xfrvMJeUFy7VkSiqoqFYgKYiuZ52AQrOS9arpFOsor_vDfxUvdEPrGoHJjheNqjoEWRdTAsOuDD7GoPtWmiSS8S4FYWyL0B7j22N8-x1_UK5-KbtgtiLs_4ZxgD-N1ft_yPZpuXoZnC8JRW3O |
| CitedBy_id | crossref_primary_10_1080_10586458_2025_2481271 |
| Cites_doi | 10.4007/annals.2007.165.457 10.4310/MRL.1998.v5.n5.a3 10.24033/asens.1205 10.4310/CAG.1999.v7.n3.a1 10.4310/CAG.1997.v5.n4.a3 10.1007/978-3-0348-7999-6 10.1016/S0001-8708(02)00030-0 10.1016/j.aim.2008.01.009 10.1073/pnas.1018734108 10.1016/j.aim.2006.08.001 10.2140/agt.2011.11.1 10.4310/MRL.1996.v3.n5.a8 10.2140/gt.2020.24.2829 10.1090/gsm/005 10.1007/BF00136869 10.1515/9783110198102 10.2307/1970721 10.1017/CBO9780511543111 10.1017/CBO9781139084437 10.5802/afst.1251 10.1142/S1793525320500247 10.1007/BFb0068264 10.1007/978-1-4757-5323-3 10.1016/0001-8708(74)90021-8 10.24033/asens.1209 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence. |
| Copyright_xml | – notice: 2024 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence. |
| DBID | AAYXX CITATION |
| DOI | 10.1112/jlms.12895 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1469-7750 |
| EndPage | n/a |
| ExternalDocumentID | 10_1112_jlms_12895 JLMS12895 |
| Genre | article |
| GrantInformation_xml | – fundername: Alfred P. Sloan Foundation – fundername: NSF funderid: DMS‐1948820 |
| GroupedDBID | --Z -DZ -~X .2P .I3 0R~ 1OB 1OC 1TH 33P 4.4 5GY 5VS 6OB 6TJ 70D AAHHS AAHQN AAIJN AAJKP AAMNL AAMVS AANLZ AAOGV AASGY AASVR AAUQX AAXRX AAYCA AAYJJ AAZKR ABCUV ABEFU ABEJV ABEUO ABFSI ABITZ ABIXL ABJNI ABLJU ABNGD ABNKS ABQLI ABQTQ ABSAR ABSMQ ABTAH ABVKB ABXVV ABZBJ ACAHQ ACCFJ ACCZN ACGFS ACNCT ACPOU ACQPF ACUFI ACXBN ACXQS ADBBV ADEOM ADEYI ADHZD ADKYN ADMGS ADOCK ADOZA ADRIX ADXAS ADZMN ADZXQ AECKG AEEZP AEGPL AEIGN AEJOX AEPUE AEQDE AEUYR AFBPY AFFPM AFGKR AFIYH AFKSM AFPWT AFWVQ AFZJQ AGKEF AGSYK AHBTC AHXPO AI. AIJHB AITYG AIURR AIWBW AJBDE AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALUQN ALVPJ AMYDB ASAOO ASPBG ATDFG AUFTA AVWKF AXUDD AZFZN BFHJK BMNLL BMXJE BQUQU CAG CHEAL COF CS3 CXTWN CZ4 DCZOG DFGAJ DILTD DRFUL DRSTM D~K E.L EBS EE~ EJD ESX F9B FEDTE FSPIC H13 H5~ HAR HGLYW HVGLF HW0 H~9 IOX J21 KOP KSI L7B L98 LATKE LEEKS LOXES LUTES LYRES M-Z M49 MBTAY MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N9A NGC NHB NU- O0~ O9- OHT O~Y P2P P2W PALCI PB- Q1. Q5Y RCA RD5 RJQFR ROL ROX ROZ RW1 RXO S10 SAMSI SUPJJ TCN TJP TN5 UPT UQL VH1 VOH WH7 WIH WIK WOHZO WXSBR X7H XJT XKC XOL XSW XXG Y6R YQT YYP ZCG ZKB ZY4 ZZTAW ~91 AAGQS AAYXX ABGDZ ABGNP ACUKT ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG AIQQE AMVHM CITATION LH4 |
| ID | FETCH-LOGICAL-c2735-ec5dcd062ed0c20abf5ba03e545fd9bd5b278f024673e9288105cb739d6b10c83 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001217133300020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0024-6107 |
| IngestDate | Sat Nov 29 06:25:19 EST 2025 Tue Nov 18 22:31:49 EST 2025 Wed Jan 22 17:20:40 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2735-ec5dcd062ed0c20abf5ba03e545fd9bd5b278f024673e9288105cb739d6b10c83 |
| PageCount | 27 |
| ParticipantIDs | crossref_citationtrail_10_1112_jlms_12895 crossref_primary_10_1112_jlms_12895 wiley_primary_10_1112_jlms_12895_JLMS12895 |
| PublicationCentury | 2000 |
| PublicationDate | May 2024 2024-05-00 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of the London Mathematical Society |
| PublicationYear | 2024 |
| References | 1974; 14 2012 2010; 19 2010 2007; 165 2003; 173 1985; 267 2011; 11 2005 1997; 5 1992; 10 1999; 7 2007; 10 2003; 30 1978; 638 1968; 88 1995; 5 1998; 395 2021; 13 2011; 108 2006; 43 2008; 218 2008; 217 2020; 24 2002; 208 1996; 2 1998; 5 1996; 3 1971; 4 1996; 44 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Roe J. (e_1_2_8_28_1) 1998 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_7_1 Brussee R. (e_1_2_8_5_1) 1996; 2 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Huybrechts D. (e_1_2_8_12_1) 2005 Itoh M. (e_1_2_8_13_1) 2006; 43 Morgan J. W. (e_1_2_8_21_1) 1996 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_30_1 |
| References_xml | – volume: 4 start-page: 47 year: 1971 end-page: 62 article-title: Riemann surfaces and spin structures publication-title: Ann. Sci. Éc Norm. Supér. (4) – volume: 5 year: 1995 – volume: 11 start-page: 1 issue: 1 year: 2011 end-page: 68 article-title: Knot Floer homology and rational surgeries publication-title: Algebr. Geom. Topol. – volume: 3 start-page: 661 issue: 5 year: 1996 end-page: 674 article-title: Milnor torsion publication-title: Math. Res. Lett. – volume: 208 year: 2002 – volume: 24 start-page: 2829 issue: 6 year: 2020 end-page: 2854 article-title: , I: Heegaard Floer homology and Seiberg‐Witten Floer homology publication-title: Geom. Topol. – volume: 43 start-page: 121 issue: 1 year: 2006 end-page: 129 article-title: The dual Thurston norm and the geometry of closed 3‐manifolds publication-title: Osaka J. Math. – volume: 218 start-page: 728 issue: 3 year: 2008 end-page: 761 article-title: On the Heegaard Floer homology of a surface times a circle publication-title: Adv. Math. – year: 2005 – volume: 2 start-page: 103 year: 1996 end-page: 146 article-title: The canonical class and the properties of Kähler surfaces publication-title: New York J. Math. – volume: 4 start-page: 181 year: 1971 end-page: 192 article-title: Theta characteristics of an algebraic curve publication-title: Ann. Sci. Éc. Norm. Supér. (4) – volume: 108 start-page: 8100 issue: 20 year: 2011 end-page: 8105 article-title: Equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions publication-title: Proc. Natl. Acad. Sci. USA – volume: 44 year: 1996 – volume: 173 start-page: 179 issue: 2 year: 2003 end-page: 261 article-title: Absolutely graded Floer homologies and intersection forms for four‐manifolds with boundary publication-title: Adv. Math. – volume: 638 year: 1978 – volume: 19 start-page: 457 issue: 3‐4 year: 2010 end-page: 477 article-title: Invariant spin structures on Riemann surfaces publication-title: Ann. Fac. Sci. Toulouse Math. (6) – year: 2010 – year: 2012 – volume: 217 start-page: 873 issue: 3 year: 2008 end-page: 888 article-title: The theta characteristic of a branched covering publication-title: Adv. Math. – volume: 10 year: 2007 – volume: 5 start-page: 685 issue: 4 year: 1997 end-page: 791 article-title: Seiberg‐Witten monopoles on Seifert fibered spaces publication-title: Comm. Anal. Geom. – volume: 14 start-page: 1 year: 1974 end-page: 55 article-title: Harmonic spinors publication-title: Adv. Math. – volume: 267 year: 1985 – volume: 88 start-page: 451 year: 1968 end-page: 491 article-title: A Lefschetz fixed point formula for elliptic complexes. II. Applications publication-title: Ann. of Math. (2) – volume: 30 year: 2003 – volume: 13 start-page: 699 issue: 3 year: 2021 end-page: 737 article-title: Harmonic spinors on the Davis hyperbolic 4‐manifold publication-title: J. Topol. Anal. – volume: 395 year: 1998 – volume: 5 start-page: 583 issue: 5 year: 1998 end-page: 598 article-title: A combinatorial formulation for the Seiberg‐Witten invariants of 3‐manifolds publication-title: Math. Res. Lett. – volume: 10 start-page: 263 issue: 3 year: 1992 end-page: 273 article-title: Harmonic spinors on Riemann surfaces publication-title: Ann. Global Anal. Geom. – volume: 7 start-page: 451 issue: 3 year: 1999 end-page: 495 article-title: Obstruction bundles, semiregularity, and Seiberg‐Witten invariants publication-title: Comm. Anal. Geom. – volume: 165 start-page: 457 issue: 2 year: 2007 end-page: 546 article-title: Monopoles and lens space surgeries publication-title: Ann. of Math. (2) – ident: e_1_2_8_17_1 doi: 10.4007/annals.2007.165.457 – ident: e_1_2_8_31_1 doi: 10.4310/MRL.1998.v5.n5.a3 – ident: e_1_2_8_4_1 doi: 10.24033/asens.1205 – volume-title: Elliptic operators, topology and asymptotic methods year: 1998 ident: e_1_2_8_28_1 – ident: e_1_2_8_10_1 doi: 10.4310/CAG.1999.v7.n3.a1 – ident: e_1_2_8_22_1 doi: 10.4310/CAG.1997.v5.n4.a3 – ident: e_1_2_8_32_1 doi: 10.1007/978-3-0348-7999-6 – volume: 2 start-page: 103 year: 1996 ident: e_1_2_8_5_1 article-title: The canonical class and the C∞$C^\infty$ properties of Kähler surfaces publication-title: New York J. Math. – ident: e_1_2_8_26_1 doi: 10.1016/S0001-8708(02)00030-0 – ident: e_1_2_8_14_1 doi: 10.1016/j.aim.2008.01.009 – ident: e_1_2_8_7_1 doi: 10.1073/pnas.1018734108 – volume-title: The Seiberg‐Witten equations and applications to the topology of smooth four‐manifolds year: 1996 ident: e_1_2_8_21_1 – ident: e_1_2_8_9_1 doi: 10.1016/j.aim.2006.08.001 – ident: e_1_2_8_27_1 doi: 10.2140/agt.2011.11.1 – volume-title: Complex geometry year: 2005 ident: e_1_2_8_12_1 – ident: e_1_2_8_23_1 doi: 10.4310/MRL.1996.v3.n5.a8 – ident: e_1_2_8_15_1 doi: 10.2140/gt.2020.24.2829 – ident: e_1_2_8_20_1 doi: 10.1090/gsm/005 – ident: e_1_2_8_6_1 doi: 10.1007/BF00136869 – ident: e_1_2_8_25_1 doi: 10.1515/9783110198102 – ident: e_1_2_8_2_1 doi: 10.2307/1970721 – ident: e_1_2_8_16_1 doi: 10.1017/CBO9780511543111 – ident: e_1_2_8_19_1 – ident: e_1_2_8_8_1 doi: 10.1017/CBO9781139084437 – ident: e_1_2_8_18_1 doi: 10.5802/afst.1251 – ident: e_1_2_8_29_1 doi: 10.1142/S1793525320500247 – ident: e_1_2_8_30_1 doi: 10.1007/BFb0068264 – ident: e_1_2_8_3_1 doi: 10.1007/978-1-4757-5323-3 – volume: 43 start-page: 121 issue: 1 year: 2006 ident: e_1_2_8_13_1 article-title: The dual Thurston norm and the geometry of closed 3‐manifolds publication-title: Osaka J. Math. – ident: e_1_2_8_11_1 doi: 10.1016/0001-8708(74)90021-8 – ident: e_1_2_8_24_1 doi: 10.24033/asens.1209 |
| SSID | ssj0013102 |
| Score | 2.372417 |
| Snippet | We describe a relationship between the monopole Floer homology of three‐manifolds and the geometry of Riemann surfaces. For an automorphism φ$\varphi$ of a... We describe a relationship between the monopole Floer homology of three‐manifolds and the geometry of Riemann surfaces. For an automorphism of a compact... |
| SourceID | crossref wiley |
| SourceType | Enrichment Source Index Database Publisher |
| Title | Monopole Floer homology and invariant theta characteristics |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1112%2Fjlms.12895 |
| Volume | 109 |
| WOSCitedRecordID | wos001217133300020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1469-7750 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013102 issn: 0024-6107 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5q60EPvsX6YkEvCtHN5rVBL6IGkbaIWugt7CtYaVNpa3-_u5u0tSCCeMthBsK3Mzvf7CbfAJyKWOnIyITjKsYdP-PS4Spgji9FoOkREVTalW5ErRbtdOKnClxP_4Up9CFmB24mM-x-bRKc8XIKiWtEQ997_dGF3l3jYAlqRAeuX4Xa3XPSbsxvEVxcqoX7ukXCUSlPqv0v594LBek7QbUVJln_37ttwFrJLNFNEQqbUFH5Fqw2Z7Kso2240hlshiIolPQGaojeBn17qo5YLlE3n-i-WQONtMeYIbEo5bwD7eT-9fbBKacnOEJTksBRIpBC4pAoiQXBjGcBZ9hTmjJlMuYy4CSimYYmjDwVE0o10xI88mIZchcL6u1CNR_kag-QaWMynfyUS-xLzMzIScKYru0xxaFQdTibQpiKUlrcTLjopUWLQVIDSGoBqcPJzPajENT40erc4vuLSfrYaL7Yp_2_GB_ACjHxYL9ZPITqePipjmBZTMbd0fC4jKAvh-rLgQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60FdSDb7E-F_SiEN1u89jgSdRQNS2iLXgL-wpW2lTa2t_v7ia2FkQQbznMQvgys_PNZPcbgBMRKu0ZqXCqinHHTbl0uPKY40rhaXpEBJX2S8dBs0lfXsLH4myOuQuT60NMGm4mMux-bQLcNKSLKDeqoW_d3vBcb6-hNw9lV_uRV4LyzVPUjqe_Eaq4kAt3dY2Eg0KfVK-_mK6eyUjfGapNMdHqP19uDVYKbomucmdYhzmVbcByYyLMOtyESx3DZiyCQlG3rwbotd-zfXXEMok62VhXzhpqpFeMGBKzYs5b0I5uW9d1p5if4AhNSjxHCU8KiX2iJBYEM556nOGa0qQplSGXHicBTTU2flBTIaFUcy3Bg1oofV7Fgta2oZT1M7UDyBQyqQ5_yiV2JWZm6CRhTGf3kGJfqAqcfmGYiEJc3My46CZ5kUESA0hiAanA8cT2PZfU-NHqzAL8i0lyHzee7dPuX4yPYLHeasRJfNd82IMlYpzDnmDch9Jo8KEOYEGMR53h4LBwp0_AfM9x |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA66ieiDd3FeA_qiUM3apk3xSZzFSzeGOthbya042bqxzf1-kzRuDkQQ3_pwDpSv58s5J02-A8AZj6SKjIw7VUmZ42dMOExi6viCY1UeuZwI86WTsNEg7XbUtGdz9F2YQh9iuuGmmWHWa01wORCZZblWDX3v9kaXanmN8CIo-zgKFC_Ltee4lcx-I1SRlQv3VY-EQqtPqvyvZt5zGel7hWpSTLz-z5fbAGu2toQ3RTBsggWZb4HV-lSYdbQNrhWH9VgECeNuXw7hW79n9tUhzQXs5BPVOSuoofIYU8jnxZx3QCu-e729d-z8BIerogQ7kmPBBQpcKRB3EWUZZhR5UhVNmYiYwMwNSaawCUJPRi4hqtbiLPQiEbAq4sTbBaW8n8s9AHUjkyn6EyaQLxDVQyddSlV2jwgKuKyA8y8MU27FxfWMi25aNBluqgFJDSAVcDq1HRSSGj9aXRiAfzFJH5P6i3na_4vxCVhu1uI0eWg8HYAVV8eGOcB4CErj4Yc8Akt8Mu6Mhsc2mj4Bk1PO7A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monopole+Floer+homology+and+invariant+theta+characteristics&rft.jtitle=Journal+of+the+London+Mathematical+Society&rft.au=Lin%2C+Francesco&rft.date=2024-05-01&rft.issn=0024-6107&rft.eissn=1469-7750&rft.volume=109&rft.issue=5&rft_id=info:doi/10.1112%2Fjlms.12895&rft.externalDBID=n%2Fa&rft.externalDocID=10_1112_jlms_12895 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-6107&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-6107&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-6107&client=summon |