A quantitative approach to estimating pile bearing capacity using multidimensional datasets and novel modeling techniques

The project discusses a modern approach to estimating pile-bearing capacity (PBC), a critical subject in geotechnical engineering that affects the construction, design, and safety of a foundation. Particularly, PBC addresses the amount of load piling that can take and sustained without a risk of exc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multiscale and Multidisciplinary Modeling, Experiments and Design Jg. 9; H. 1; S. 28
Hauptverfasser: Li, Huijing, Yang, Zhangli
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.12.2026
Springer Nature B.V
Schlagworte:
ISSN:2520-8160, 2520-8179
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The project discusses a modern approach to estimating pile-bearing capacity (PBC), a critical subject in geotechnical engineering that affects the construction, design, and safety of a foundation. Particularly, PBC addresses the amount of load piling that can take and sustained without a risk of excessive settlement or failure of the structure, including high-rise buildings, bridges, and offshore structures. Estimating this capacity is significant to the foundation. Its underestimation leads to foundation failure, while its overestimation leads to increased costs through material procurement or deeper foundations than are needed. In this work, two machine learning (ML) heuristics of decision tree regression (DTR) and voting regression (VR) have been applied to boost the prediction accuracy related to PBC, since traditional empirical and analytical methods generally do not provide adequate protection to the interaction complexities in soil-pile systems. Two innovative optimization algorithms have been implemented for the optimization of the modeling technique these are the arithmetic optimization algorithm (AOA) and the equilibrium slime mold algorithm (ESMA). The performances of the techniques were reviewed using five evaluation metrics, R² and RMSE (kN) being among them. Outcomes showed that the best model was the VR optimized with ESMA, VRES, which had an R² of 0.979 and an RMSE of 224.665. Hence, the scheme performed best in this study. These predictive schemes optimize engineering decision-making processes and thus can be used in preliminary design and safety assessment phases of foundation projects. Proper estimation of pile-bearing capacity by the engineer can minimize construction risks, optimize material use, and improve efficiency.
AbstractList The project discusses a modern approach to estimating pile-bearing capacity (PBC), a critical subject in geotechnical engineering that affects the construction, design, and safety of a foundation. Particularly, PBC addresses the amount of load piling that can take and sustained without a risk of excessive settlement or failure of the structure, including high-rise buildings, bridges, and offshore structures. Estimating this capacity is significant to the foundation. Its underestimation leads to foundation failure, while its overestimation leads to increased costs through material procurement or deeper foundations than are needed. In this work, two machine learning (ML) heuristics of decision tree regression (DTR) and voting regression (VR) have been applied to boost the prediction accuracy related to PBC, since traditional empirical and analytical methods generally do not provide adequate protection to the interaction complexities in soil-pile systems. Two innovative optimization algorithms have been implemented for the optimization of the modeling technique these are the arithmetic optimization algorithm (AOA) and the equilibrium slime mold algorithm (ESMA). The performances of the techniques were reviewed using five evaluation metrics, R² and RMSE (kN) being among them. Outcomes showed that the best model was the VR optimized with ESMA, VRES, which had an R² of 0.979 and an RMSE of 224.665. Hence, the scheme performed best in this study. These predictive schemes optimize engineering decision-making processes and thus can be used in preliminary design and safety assessment phases of foundation projects. Proper estimation of pile-bearing capacity by the engineer can minimize construction risks, optimize material use, and improve efficiency.
ArticleNumber 28
Author Li, Huijing
Yang, Zhangli
Author_xml – sequence: 1
  givenname: Huijing
  surname: Li
  fullname: Li, Huijing
  email: hjli625@163.com
  organization: Architecture and Materials College, Chongqing Polytechnic University of Electronic Technology
– sequence: 2
  givenname: Zhangli
  surname: Yang
  fullname: Yang, Zhangli
  organization: Architecture and Materials College, Chongqing Polytechnic University of Electronic Technology
BookMark eNp9kMtKxDAUhoMoeJsXcBVwXc2lmaRLEW8guNF1OE1PnQydpDapMG9va0V3rs6F_z-X75QchhiQkAvOrjhj-jqVvJJVwYQqGGeVLPQBORFKsMJwXR3-5mt2TFYpbRljQstSG3ZC9jf0Y4SQfYbsP5FC3w8R3IbmSDFlv5va4Z32vkNaIwxz4aAH5_Oejmkud2OXfeN3GJKPATraQIaEOVEIDQ3xEzu6iw12szij2wT_MWI6J0ctdAlXP_GMvN3fvd4-Fs8vD0-3N8-FE1rkogVcl7otRekEqLZWyqlKo9K1riulQRhnjNHQqsYYVdeggDe1ap2QvGoblGfkcpk7PTbvzXYbx2G6M1kpNJdGSm4mlVhUbogpDdjafpieH_aWMztTtgtlO1G235StnkxyMaV-BoPD3-h_XF8vh4TT
Cites_doi 10.1016/j.trgeo.2020.100372
10.1063/5.0247333
10.1145/2939672.2939778
10.1002/nag.3152
10.1007/s00521-015-2072-z
10.1080/17486025.2024.2337702
10.1007/s12205-013-0315-z
10.1115/OMAE2007-29761
10.1061/AJGEB6.0001172
10.1080/1064119X.2020.1841861
10.15446/esrj.v19n1.38712
10.1016/j.istruc.2025.108519
10.1007/978-981-16-7160-9_117
10.1016/j.cma.2020.113609
10.1016/j.enggeo.2008.10.010
10.1016/j.enggeo.2016.07.010
10.1061/(ASCE)1090-0241(2004)130:9(935)
10.1016/j.compgeo.2013.08.001
10.20469/ijaps.2.50003-2
10.1007/s00500-020-05435-0
10.1016/j.istruc.2025.109791
10.1139/T09-094
10.1007/s00366-019-00849-3
10.1007/s00366-018-00694-w
10.1007/s11709-024-1085-z
10.1007/s40515-024-00411-9
10.1007/s41062-021-00568-z
10.22034/aeis.2024.483670.1241
10.1007/s00366-018-0674-7
10.1016/j.measurement.2014.08.007
10.1061/AJGEB6.0000243
10.1016/j.knosys.2019.105190
10.1016/j.enggeo.2012.05.006
10.1016/j.istruc.2024.107649
10.1080/17486025.2024.2438077
10.1016/S0030-3992(99)00004-3
10.4043/5227-MS
10.1016/j.ins.2024.121588
10.1007/s40808-022-01637-7
10.1007/s00366-019-00932-9
10.1007/s10706-019-01085-8
10.1061/(ASCE)GM.1943-5622.0002215
10.31224/osf.io/jzdpq
10.1016/j.future.2020.03.055
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
DBID AAYXX
CITATION
DOI 10.1007/s41939-025-01093-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2520-8179
ExternalDocumentID 10_1007_s41939_025_01093_7
GrantInformation_xml – fundername: Research on the Practice of Cultivating Excellent Technical and Skilled Talents in the Professional Group of Intelligent Architecture in Higher Vocational Education" of Chongqing Academy of Education Science
  grantid: K23YG3090303
– fundername: Scientific Research Project of Chongqing Polytechnic University of Electronic Technology
  grantid: XJZK201916
GroupedDBID 0R~
406
AACDK
AAHNG
AAIAL
AAJBT
AASML
AATNV
AATVU
AAUYE
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABKCH
ABMQK
ABQBU
ABRTQ
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AHPBZ
AHWEU
AIAKS
AIGIU
AILAN
AITGF
AIXLP
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ATHPR
AXYYD
AYFIA
CSCUP
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
NPVJJ
NQJWS
O9J
PT4
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAAVM
AAYXX
ABJCF
AEUYN
AFFHD
AFKRA
ARAPS
BENPR
BGLVJ
BGNMA
CCPQU
CITATION
EJD
FINBP
FSGXE
H13
HCIFZ
M4Y
M7S
NU0
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c272t-fae647f424c2a5fb55c597e57b7b957a28c8887af5d885bba5a1db5fc2319fde3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001615550600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2520-8160
IngestDate Fri Nov 14 03:53:22 EST 2025
Sat Nov 29 06:51:55 EST 2025
Thu Nov 13 04:39:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Predictive modeling
Geotechnical engineering
Pile bearing capacity
Hybrid schemes
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-fae647f424c2a5fb55c597e57b7b957a28c8887af5d885bba5a1db5fc2319fde3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3271383318
PQPubID 7435034
ParticipantIDs proquest_journals_3271383318
crossref_primary_10_1007_s41939_025_01093_7
springer_journals_10_1007_s41939_025_01093_7
PublicationCentury 2000
PublicationDate 2026-12-01
PublicationDateYYYYMMDD 2026-12-01
PublicationDate_xml – month: 12
  year: 2026
  text: 2026-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Multiscale and Multidisciplinary Modeling, Experiments and Design
PublicationTitleAbbrev Multiscale and Multidiscip. Model. Exp. and Des
PublicationYear 2026
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References 1093_CR23
A Dehghanbanadaki (1093_CR57) 2021; 25
1093_CR21
F Milad (1093_CR31) 2015; 19
AR Taghavi Khangah (1093_CR6) 2024; 003
S Alzabeebee (1093_CR40) 2022; 28
N Kardani (1093_CR59) 2020; 38
1093_CR28
CC Ikeagwuani (1093_CR27) 2021; 6
E Conte (1093_CR25) 2021; 21
A Eslami (1093_CR18) 2021; 39
1093_CR56
1093_CR10
S Alzabeebee (1093_CR41) 2024; 11
B Naeim (1093_CR4) 2024; 70
MY Abu-Farsakh (1093_CR24) 2004; 130
1093_CR51
M Kumar (1093_CR36) 2024; 18
S Li (1093_CR55) 2020; 111
A Eslami (1093_CR45) 2025; 20
W Yong (1093_CR11) 2021; 37
E Momeni (1093_CR19) 2014; 57
H Moayedi (1093_CR32) 2020; 36
FS Niazi (1093_CR12) 2016; 212
N Graine (1093_CR26) 2021; 45
GG Meyerhof (1093_CR15) 1976; 102
E Momeni (1093_CR1) 2015; 19
NO Nawari (1093_CR29) 1999; 4
1093_CR46
1093_CR44
1093_CR42
HM Coyle (1093_CR13) 1981; 107
1093_CR48
S Alzabeebee (1093_CR39) 2020; 24
D Beer (1093_CR20) 1945; 46
A Faramarzi (1093_CR54) 2020; 191
S Alzabeebee (1093_CR58) 2020; 24
L Abualigah (1093_CR53) 2021; 376
H Maizir (1093_CR2) 2016; 2
ZH Kilimci (1093_CR50) 2022; 2
1093_CR8
JB Hansen (1093_CR22) 1951; 12
1093_CR35
1093_CR7
L Hu (1093_CR47) 2025; 690
1093_CR30
A Kordjazi (1093_CR9) 2014; 55
H Harandizadeh (1093_CR34) 2021; 37
D Jahed Armaghani (1093_CR3) 2017; 28
G Cai (1093_CR16) 2009; 104
1093_CR37
MK Habib (1093_CR52) 1998; 30
G Cai (1093_CR17) 2012; 141
M Kumar (1093_CR38) 2023; 9
S Shaik (1093_CR33) 2019; 35
E Khajavi (1093_CR5) 2025; 74
MA Shahin (1093_CR14) 2010; 47
References_xml – volume: 24
  start-page: 100372
  year: 2020
  ident: 1093_CR58
  publication-title: Transp Geotechnics
  doi: 10.1016/j.trgeo.2020.100372
– ident: 1093_CR46
  doi: 10.1063/5.0247333
– volume: 24
  start-page: 100372
  year: 2020
  ident: 1093_CR39
  publication-title: Transp Geotechnics
  doi: 10.1016/j.trgeo.2020.100372
– volume: 46
  start-page: 229
  year: 1945
  ident: 1093_CR20
  publication-title: Ann Des Travawe Publics Des Belgiwue
– ident: 1093_CR56
  doi: 10.1145/2939672.2939778
– volume: 45
  start-page: 265
  issue: 2
  year: 2021
  ident: 1093_CR26
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.3152
– volume: 28
  start-page: 391
  year: 2017
  ident: 1093_CR3
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2072-z
– ident: 1093_CR35
  doi: 10.1080/17486025.2024.2337702
– volume: 19
  start-page: 611
  year: 2015
  ident: 1093_CR31
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-013-0315-z
– ident: 1093_CR7
  doi: 10.1115/OMAE2007-29761
– volume: 107
  start-page: 965
  issue: 7
  year: 1981
  ident: 1093_CR13
  publication-title: J Geotech Eng Div
  doi: 10.1061/AJGEB6.0001172
– volume: 39
  start-page: 1373
  issue: 11
  year: 2021
  ident: 1093_CR18
  publication-title: Mar Georesources Geotechnology
  doi: 10.1080/1064119X.2020.1841861
– volume: 19
  start-page: 85
  issue: 1
  year: 2015
  ident: 1093_CR1
  publication-title: Earth Sci Res J
  doi: 10.15446/esrj.v19n1.38712
– volume: 74
  start-page: 108519
  year: 2025
  ident: 1093_CR5
  publication-title: Structures
  doi: 10.1016/j.istruc.2025.108519
– ident: 1093_CR37
  doi: 10.1007/978-981-16-7160-9_117
– volume: 376
  start-page: 113609
  year: 2021
  ident: 1093_CR53
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113609
– ident: 1093_CR30
– ident: 1093_CR51
– volume: 104
  start-page: 3
  year: 2009
  ident: 1093_CR16
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2008.10.010
– volume: 212
  start-page: 21
  year: 2016
  ident: 1093_CR12
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2016.07.010
– volume: 130
  start-page: 935
  issue: 9
  year: 2004
  ident: 1093_CR24
  publication-title: J Geotech GeoEnviron Eng
  doi: 10.1061/(ASCE)1090-0241(2004)130:9(935)
– volume: 55
  start-page: 91
  year: 2014
  ident: 1093_CR9
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2013.08.001
– volume: 2
  start-page: 45
  year: 2016
  ident: 1093_CR2
  publication-title: Int J Appl Phys Sci
  doi: 10.20469/ijaps.2.50003-2
– volume: 25
  start-page: 4103
  year: 2021
  ident: 1093_CR57
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-05435-0
– volume: 12
  start-page: 14
  year: 1951
  ident: 1093_CR22
  publication-title: Christ Nielsen Post
– ident: 1093_CR48
  doi: 10.1016/j.istruc.2025.109791
– volume: 47
  start-page: 230
  issue: 2
  year: 2010
  ident: 1093_CR14
  publication-title: Can Geotech J
  doi: 10.1139/T09-094
– volume: 37
  start-page: 685
  issue: 1
  year: 2021
  ident: 1093_CR34
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00849-3
– volume: 36
  start-page: 227
  issue: 1
  year: 2020
  ident: 1093_CR32
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-00694-w
– ident: 1093_CR8
– volume: 18
  start-page: 870
  issue: 6
  year: 2024
  ident: 1093_CR36
  publication-title: Front Struct Civil Eng
  doi: 10.1007/s11709-024-1085-z
– volume: 11
  start-page: 3160
  issue: 5
  year: 2024
  ident: 1093_CR41
  publication-title: Transp Infrastructure Geotechnology
  doi: 10.1007/s40515-024-00411-9
– volume: 6
  start-page: 199
  issue: 4
  year: 2021
  ident: 1093_CR27
  publication-title: Innovative Infrastructure Solutions
  doi: 10.1007/s41062-021-00568-z
– volume: 003
  start-page: 124
  issue: 04
  year: 2024
  ident: 1093_CR6
  publication-title: Adv Eng Intell Syst
  doi: 10.22034/aeis.2024.483670.1241
– ident: 1093_CR23
– volume: 35
  start-page: 1463
  year: 2019
  ident: 1093_CR33
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0674-7
– volume: 57
  start-page: 122
  year: 2014
  ident: 1093_CR19
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.08.007
– volume: 102
  start-page: 197
  issue: 3
  year: 1976
  ident: 1093_CR15
  publication-title: J Geotech Eng Div
  doi: 10.1061/AJGEB6.0000243
– volume: 191
  start-page: 105190
  year: 2020
  ident: 1093_CR54
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2019.105190
– volume: 141
  start-page: 84
  year: 2012
  ident: 1093_CR17
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2012.05.006
– volume: 28
  start-page: 397
  issue: 4
  year: 2022
  ident: 1093_CR40
  publication-title: Geomech Eng
– volume: 70
  start-page: 107649
  year: 2024
  ident: 1093_CR4
  publication-title: Structures
  doi: 10.1016/j.istruc.2024.107649
– volume: 20
  start-page: 661
  issue: 3
  year: 2025
  ident: 1093_CR45
  publication-title: Geomech Geoeng
  doi: 10.1080/17486025.2024.2438077
– volume: 4
  start-page: 1
  issue: 2
  year: 1999
  ident: 1093_CR29
  publication-title: Electron J Geotech Eng
– volume: 30
  start-page: 515
  issue: 8
  year: 1998
  ident: 1093_CR52
  publication-title: Opt Laser Technol
  doi: 10.1016/S0030-3992(99)00004-3
– ident: 1093_CR44
  doi: 10.4043/5227-MS
– volume: 690
  start-page: 121588
  year: 2025
  ident: 1093_CR47
  publication-title: Inf Sci (N Y)
  doi: 10.1016/j.ins.2024.121588
– volume: 9
  start-page: 2533
  issue: 2
  year: 2023
  ident: 1093_CR38
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-022-01637-7
– ident: 1093_CR28
– volume: 37
  start-page: 2111
  year: 2021
  ident: 1093_CR11
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00932-9
– volume: 38
  start-page: 2271
  issue: 2
  year: 2020
  ident: 1093_CR59
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-019-01085-8
– ident: 1093_CR42
– volume: 21
  start-page: 4021224
  issue: 11
  year: 2021
  ident: 1093_CR25
  publication-title: Int J Geomech
  doi: 10.1061/(ASCE)GM.1943-5622.0002215
– volume: 2
  start-page: 7
  issue: 1
  year: 2022
  ident: 1093_CR50
  publication-title: J Emerg Comput Technol
– ident: 1093_CR21
– ident: 1093_CR10
  doi: 10.31224/osf.io/jzdpq
– volume: 111
  start-page: 300
  year: 2020
  ident: 1093_CR55
  publication-title: Future Generation Comput Syst
  doi: 10.1016/j.future.2020.03.055
SSID ssj0002734780
ssib042110740
Score 2.3448365
Snippet The project discusses a modern approach to estimating pile-bearing capacity (PBC), a critical subject in geotechnical engineering that affects the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 28
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Bridge failure
Characterization and Evaluation of Materials
Decision trees
Engineering
Estimation
Expected values
Foundation failure
Geotechnical engineering
High rise buildings
Load
Machine learning
Mathematical Applications in the Physical Sciences
Mechanical Engineering
Modelling
Numerical and Computational Physics
Offshore structures
Optimization
Original Paper
Pile bearing capacities
Preliminary designs
Safety engineering
Simulation
Solid Mechanics
Title A quantitative approach to estimating pile bearing capacity using multidimensional datasets and novel modeling techniques
URI https://link.springer.com/article/10.1007/s41939-025-01093-7
https://www.proquest.com/docview/3271383318
Volume 9
WOSCitedRecordID wos001615550600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2520-8179
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002734780
  issn: 2520-8160
  databaseCode: RSV
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA46fdAHf4vTKXnwTQNt0yzp4xDFBxmCOvZWkjQZinRz7Qb-917SdlPRB30sDaHcXe7ua-6-Q-g8kUkWhAY0wIUkcRhmROjYEkWF1V3KKfe_sgd3vN8Xw2FyXzeFFU21e3Ml6T31otkthlwjIW78qrvOoYSvojXm2GYcRn8YNFYUe0hTM5i81AQu3I9QixhgJRF2g7p75udtv0aoZdr57abUB6Cb7f99-g7aqhNO3KssZBetmHwPbX6iIdxH7z38NpO5bzcD54cbnnFcjrEj4XBJbT7CE3AgWMHJcA8agqyGDB67wvkR9nWJmZsUULF8YFd5WpiywDLPcD6em1fsh-64xQve2OIAPd1cP17dknokA9ERj0pipenG3MZRrCPJrGJMAyIxjCuuEsZlJDRAai4ty4RgSkkmw0wxqyGNTGxm6CFq5ePcHCEMJhLoTCotAw0Y3SauyxUMigrNwIBkG100akgnFfNGuuBY9gJNQaCpF2jK26jTaCqtT2GR0ggguKDgttrostHM8vXvux3_bfkJ2ogAy1ZVLh3UKqczc4rW9bx8LqZn3jo_ABSm4DE
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gXrwLa7PHLxpoa9s0qOIorgugqt4K0maLIp01XYX_PdO0nZXRQ96LA2hzExm5mtmvgE4TESS-YFGDTAuvDgIMo-r2Hgy4ka1IxYx9yv7vsO6Xf7wkNzUTWFFU-3eXEk6Tz1udosx10g8O37VXudEHpuG2diO2bEY_fa-saLYQZqaweSpJnBhboRaSBEr8aDt190zP2_7NUJN0s5vN6UuAJ0v_-_TV2CpTjjJSWUhqzCl8zVY_ERDuA7vJ-R1KHLXbobOjzQ846QcEEvCYZPavE9e0IEQiSfDPigMsgozeGIL5_vE1SVmdlJAxfJBbOVpocuCiDwj-WCkn4kbumMXj3ljiw24Oz_rnV549UgGT4UsLD0jdDtmJg5jFQpqJKUKEYmmTDKZUCZCrhBSM2FoxjmVUlARZJIahWlkYjIdbcJMPsj1FhA0EV9lQirhK8ToJrFdrmhQEVcUDUi04KhRQ_pSMW-kY45lJ9AUBZo6gaasBbuNptL6FBZpFCIE5xG6rRYcN5qZvP59t-2_LT-A-YvedSftXHavdmAhRFxbVbzswkz5NtR7MKdG5WPxtu8s9QOfoeMV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB68EH3wFtczD75pcXtkkz6KuijKIl74VnKKIt3VVsF_7yRt1wN9EB9LQ6Azk5n5mplvALZTkep2aFADjIsgCUMdcJXYQMbcqk7MYuZ_Zd-csV6P396m55-6-H21e3MlWfU0OJamvNwbaLs3bHxLMO9IAzeK1V3txAEbhfEEkYwr6rq4vGksKvHwpmYzeajJXJgfpxZRxE087LTrTpqft_0arT5S0G-3pj4YdWf__xlzMFMnomS_spx5GDH5Akx_oidchLd98vQict-Ghk6RNPzjpOwTR87hkt38jgzQsRCJJ8Y9KAy-CjN74grq74ivV9RugkDF_kFcRWphyoKIXJO8_2oeiR_G4xYP-WSLJbjuHl0dHAf1qIZARSwqAytMJ2E2iRIVCWolpQqRiqFMMplSJiKuEGozYanmnEopqAi1pFZheplabeJlGMv7uVkBgqbTVlpIJdoKsbtNXfcrGlrMFUXDEi3YaVSSDSpGjmzIvewFmqFAMy_QjLVgvdFaVp_OIosjhOY8RnfWgt1GSx-vf99t9W_Lt2Dy_LCbnZ30TtdgKkK4WxXCrMNY-fxiNmBCvZb3xfOmN9p39HDr-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+quantitative+approach+to+estimating+pile+bearing+capacity+using+multidimensional+datasets+and+novel+modeling+techniques&rft.jtitle=Multiscale+and+Multidisciplinary+Modeling%2C+Experiments+and+Design&rft.au=Li%2C+Huijing&rft.au=Yang%2C+Zhangli&rft.date=2026-12-01&rft.pub=Springer+International+Publishing&rft.issn=2520-8160&rft.eissn=2520-8179&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1007%2Fs41939-025-01093-7&rft.externalDocID=10_1007_s41939_025_01093_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8160&client=summon