A quantitative approach to estimating pile bearing capacity using multidimensional datasets and novel modeling techniques
The project discusses a modern approach to estimating pile-bearing capacity (PBC), a critical subject in geotechnical engineering that affects the construction, design, and safety of a foundation. Particularly, PBC addresses the amount of load piling that can take and sustained without a risk of exc...
Gespeichert in:
| Veröffentlicht in: | Multiscale and Multidisciplinary Modeling, Experiments and Design Jg. 9; H. 1; S. 28 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.12.2026
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 2520-8160, 2520-8179 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The project discusses a modern approach to estimating pile-bearing capacity (PBC), a critical subject in geotechnical engineering that affects the construction, design, and safety of a foundation. Particularly, PBC addresses the amount of load piling that can take and sustained without a risk of excessive settlement or failure of the structure, including high-rise buildings, bridges, and offshore structures. Estimating this capacity is significant to the foundation. Its underestimation leads to foundation failure, while its overestimation leads to increased costs through material procurement or deeper foundations than are needed. In this work, two machine learning (ML) heuristics of decision tree regression (DTR) and voting regression (VR) have been applied to boost the prediction accuracy related to PBC, since traditional empirical and analytical methods generally do not provide adequate protection to the interaction complexities in soil-pile systems. Two innovative optimization algorithms have been implemented for the optimization of the modeling technique these are the arithmetic optimization algorithm (AOA) and the equilibrium slime mold algorithm (ESMA). The performances of the techniques were reviewed using five evaluation metrics, R² and RMSE (kN) being among them. Outcomes showed that the best model was the VR optimized with ESMA, VRES, which had an R² of 0.979 and an RMSE of 224.665. Hence, the scheme performed best in this study. These predictive schemes optimize engineering decision-making processes and thus can be used in preliminary design and safety assessment phases of foundation projects. Proper estimation of pile-bearing capacity by the engineer can minimize construction risks, optimize material use, and improve efficiency. |
|---|---|
| AbstractList | The project discusses a modern approach to estimating pile-bearing capacity (PBC), a critical subject in geotechnical engineering that affects the construction, design, and safety of a foundation. Particularly, PBC addresses the amount of load piling that can take and sustained without a risk of excessive settlement or failure of the structure, including high-rise buildings, bridges, and offshore structures. Estimating this capacity is significant to the foundation. Its underestimation leads to foundation failure, while its overestimation leads to increased costs through material procurement or deeper foundations than are needed. In this work, two machine learning (ML) heuristics of decision tree regression (DTR) and voting regression (VR) have been applied to boost the prediction accuracy related to PBC, since traditional empirical and analytical methods generally do not provide adequate protection to the interaction complexities in soil-pile systems. Two innovative optimization algorithms have been implemented for the optimization of the modeling technique these are the arithmetic optimization algorithm (AOA) and the equilibrium slime mold algorithm (ESMA). The performances of the techniques were reviewed using five evaluation metrics, R² and RMSE (kN) being among them. Outcomes showed that the best model was the VR optimized with ESMA, VRES, which had an R² of 0.979 and an RMSE of 224.665. Hence, the scheme performed best in this study. These predictive schemes optimize engineering decision-making processes and thus can be used in preliminary design and safety assessment phases of foundation projects. Proper estimation of pile-bearing capacity by the engineer can minimize construction risks, optimize material use, and improve efficiency. |
| ArticleNumber | 28 |
| Author | Li, Huijing Yang, Zhangli |
| Author_xml | – sequence: 1 givenname: Huijing surname: Li fullname: Li, Huijing email: hjli625@163.com organization: Architecture and Materials College, Chongqing Polytechnic University of Electronic Technology – sequence: 2 givenname: Zhangli surname: Yang fullname: Yang, Zhangli organization: Architecture and Materials College, Chongqing Polytechnic University of Electronic Technology |
| BookMark | eNp9kMtKxDAUhoMoeJsXcBVwXc2lmaRLEW8guNF1OE1PnQydpDapMG9va0V3rs6F_z-X75QchhiQkAvOrjhj-jqVvJJVwYQqGGeVLPQBORFKsMJwXR3-5mt2TFYpbRljQstSG3ZC9jf0Y4SQfYbsP5FC3w8R3IbmSDFlv5va4Z32vkNaIwxz4aAH5_Oejmkud2OXfeN3GJKPATraQIaEOVEIDQ3xEzu6iw12szij2wT_MWI6J0ctdAlXP_GMvN3fvd4-Fs8vD0-3N8-FE1rkogVcl7otRekEqLZWyqlKo9K1riulQRhnjNHQqsYYVdeggDe1ap2QvGoblGfkcpk7PTbvzXYbx2G6M1kpNJdGSm4mlVhUbogpDdjafpieH_aWMztTtgtlO1G235StnkxyMaV-BoPD3-h_XF8vh4TT |
| Cites_doi | 10.1016/j.trgeo.2020.100372 10.1063/5.0247333 10.1145/2939672.2939778 10.1002/nag.3152 10.1007/s00521-015-2072-z 10.1080/17486025.2024.2337702 10.1007/s12205-013-0315-z 10.1115/OMAE2007-29761 10.1061/AJGEB6.0001172 10.1080/1064119X.2020.1841861 10.15446/esrj.v19n1.38712 10.1016/j.istruc.2025.108519 10.1007/978-981-16-7160-9_117 10.1016/j.cma.2020.113609 10.1016/j.enggeo.2008.10.010 10.1016/j.enggeo.2016.07.010 10.1061/(ASCE)1090-0241(2004)130:9(935) 10.1016/j.compgeo.2013.08.001 10.20469/ijaps.2.50003-2 10.1007/s00500-020-05435-0 10.1016/j.istruc.2025.109791 10.1139/T09-094 10.1007/s00366-019-00849-3 10.1007/s00366-018-00694-w 10.1007/s11709-024-1085-z 10.1007/s40515-024-00411-9 10.1007/s41062-021-00568-z 10.22034/aeis.2024.483670.1241 10.1007/s00366-018-0674-7 10.1016/j.measurement.2014.08.007 10.1061/AJGEB6.0000243 10.1016/j.knosys.2019.105190 10.1016/j.enggeo.2012.05.006 10.1016/j.istruc.2024.107649 10.1080/17486025.2024.2438077 10.1016/S0030-3992(99)00004-3 10.4043/5227-MS 10.1016/j.ins.2024.121588 10.1007/s40808-022-01637-7 10.1007/s00366-019-00932-9 10.1007/s10706-019-01085-8 10.1061/(ASCE)GM.1943-5622.0002215 10.31224/osf.io/jzdpq 10.1016/j.future.2020.03.055 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s41939-025-01093-7 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2520-8179 |
| ExternalDocumentID | 10_1007_s41939_025_01093_7 |
| GrantInformation_xml | – fundername: Research on the Practice of Cultivating Excellent Technical and Skilled Talents in the Professional Group of Intelligent Architecture in Higher Vocational Education" of Chongqing Academy of Education Science grantid: K23YG3090303 – fundername: Scientific Research Project of Chongqing Polytechnic University of Electronic Technology grantid: XJZK201916 |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAIAL AAJBT AASML AATNV AATVU AAUYE ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABKCH ABMQK ABQBU ABRTQ ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AESKC AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AHPBZ AHWEU AIAKS AIGIU AILAN AITGF AIXLP AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ATHPR AXYYD AYFIA CSCUP DPUIP EBLON EBS FIGPU FNLPD GGCAI IKXTQ IWAJR J-C JZLTJ KOV LLZTM NPVJJ NQJWS O9J PT4 RLLFE ROL RSV SJYHP SNE SNPRN SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW ZMTXR AAAVM AAYXX ABJCF AEUYN AFFHD AFKRA ARAPS BENPR BGLVJ BGNMA CCPQU CITATION EJD FINBP FSGXE H13 HCIFZ M4Y M7S NU0 PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c272t-fae647f424c2a5fb55c597e57b7b957a28c8887af5d885bba5a1db5fc2319fde3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001615550600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2520-8160 |
| IngestDate | Fri Nov 14 03:53:22 EST 2025 Sat Nov 29 06:51:55 EST 2025 Thu Nov 13 04:39:13 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Predictive modeling Geotechnical engineering Pile bearing capacity Hybrid schemes Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-fae647f424c2a5fb55c597e57b7b957a28c8887af5d885bba5a1db5fc2319fde3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3271383318 |
| PQPubID | 7435034 |
| ParticipantIDs | proquest_journals_3271383318 crossref_primary_10_1007_s41939_025_01093_7 springer_journals_10_1007_s41939_025_01093_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2026-12-01 |
| PublicationDateYYYYMMDD | 2026-12-01 |
| PublicationDate_xml | – month: 12 year: 2026 text: 2026-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Multiscale and Multidisciplinary Modeling, Experiments and Design |
| PublicationTitleAbbrev | Multiscale and Multidiscip. Model. Exp. and Des |
| PublicationYear | 2026 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | 1093_CR23 A Dehghanbanadaki (1093_CR57) 2021; 25 1093_CR21 F Milad (1093_CR31) 2015; 19 AR Taghavi Khangah (1093_CR6) 2024; 003 S Alzabeebee (1093_CR40) 2022; 28 N Kardani (1093_CR59) 2020; 38 1093_CR28 CC Ikeagwuani (1093_CR27) 2021; 6 E Conte (1093_CR25) 2021; 21 A Eslami (1093_CR18) 2021; 39 1093_CR56 1093_CR10 S Alzabeebee (1093_CR41) 2024; 11 B Naeim (1093_CR4) 2024; 70 MY Abu-Farsakh (1093_CR24) 2004; 130 1093_CR51 M Kumar (1093_CR36) 2024; 18 S Li (1093_CR55) 2020; 111 A Eslami (1093_CR45) 2025; 20 W Yong (1093_CR11) 2021; 37 E Momeni (1093_CR19) 2014; 57 H Moayedi (1093_CR32) 2020; 36 FS Niazi (1093_CR12) 2016; 212 N Graine (1093_CR26) 2021; 45 GG Meyerhof (1093_CR15) 1976; 102 E Momeni (1093_CR1) 2015; 19 NO Nawari (1093_CR29) 1999; 4 1093_CR46 1093_CR44 1093_CR42 HM Coyle (1093_CR13) 1981; 107 1093_CR48 S Alzabeebee (1093_CR39) 2020; 24 D Beer (1093_CR20) 1945; 46 A Faramarzi (1093_CR54) 2020; 191 S Alzabeebee (1093_CR58) 2020; 24 L Abualigah (1093_CR53) 2021; 376 H Maizir (1093_CR2) 2016; 2 ZH Kilimci (1093_CR50) 2022; 2 1093_CR8 JB Hansen (1093_CR22) 1951; 12 1093_CR35 1093_CR7 L Hu (1093_CR47) 2025; 690 1093_CR30 A Kordjazi (1093_CR9) 2014; 55 H Harandizadeh (1093_CR34) 2021; 37 D Jahed Armaghani (1093_CR3) 2017; 28 G Cai (1093_CR16) 2009; 104 1093_CR37 MK Habib (1093_CR52) 1998; 30 G Cai (1093_CR17) 2012; 141 M Kumar (1093_CR38) 2023; 9 S Shaik (1093_CR33) 2019; 35 E Khajavi (1093_CR5) 2025; 74 MA Shahin (1093_CR14) 2010; 47 |
| References_xml | – volume: 24 start-page: 100372 year: 2020 ident: 1093_CR58 publication-title: Transp Geotechnics doi: 10.1016/j.trgeo.2020.100372 – ident: 1093_CR46 doi: 10.1063/5.0247333 – volume: 24 start-page: 100372 year: 2020 ident: 1093_CR39 publication-title: Transp Geotechnics doi: 10.1016/j.trgeo.2020.100372 – volume: 46 start-page: 229 year: 1945 ident: 1093_CR20 publication-title: Ann Des Travawe Publics Des Belgiwue – ident: 1093_CR56 doi: 10.1145/2939672.2939778 – volume: 45 start-page: 265 issue: 2 year: 2021 ident: 1093_CR26 publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.3152 – volume: 28 start-page: 391 year: 2017 ident: 1093_CR3 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-2072-z – ident: 1093_CR35 doi: 10.1080/17486025.2024.2337702 – volume: 19 start-page: 611 year: 2015 ident: 1093_CR31 publication-title: KSCE J Civ Eng doi: 10.1007/s12205-013-0315-z – ident: 1093_CR7 doi: 10.1115/OMAE2007-29761 – volume: 107 start-page: 965 issue: 7 year: 1981 ident: 1093_CR13 publication-title: J Geotech Eng Div doi: 10.1061/AJGEB6.0001172 – volume: 39 start-page: 1373 issue: 11 year: 2021 ident: 1093_CR18 publication-title: Mar Georesources Geotechnology doi: 10.1080/1064119X.2020.1841861 – volume: 19 start-page: 85 issue: 1 year: 2015 ident: 1093_CR1 publication-title: Earth Sci Res J doi: 10.15446/esrj.v19n1.38712 – volume: 74 start-page: 108519 year: 2025 ident: 1093_CR5 publication-title: Structures doi: 10.1016/j.istruc.2025.108519 – ident: 1093_CR37 doi: 10.1007/978-981-16-7160-9_117 – volume: 376 start-page: 113609 year: 2021 ident: 1093_CR53 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113609 – ident: 1093_CR30 – ident: 1093_CR51 – volume: 104 start-page: 3 year: 2009 ident: 1093_CR16 publication-title: Eng Geol doi: 10.1016/j.enggeo.2008.10.010 – volume: 212 start-page: 21 year: 2016 ident: 1093_CR12 publication-title: Eng Geol doi: 10.1016/j.enggeo.2016.07.010 – volume: 130 start-page: 935 issue: 9 year: 2004 ident: 1093_CR24 publication-title: J Geotech GeoEnviron Eng doi: 10.1061/(ASCE)1090-0241(2004)130:9(935) – volume: 55 start-page: 91 year: 2014 ident: 1093_CR9 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2013.08.001 – volume: 2 start-page: 45 year: 2016 ident: 1093_CR2 publication-title: Int J Appl Phys Sci doi: 10.20469/ijaps.2.50003-2 – volume: 25 start-page: 4103 year: 2021 ident: 1093_CR57 publication-title: Soft Comput doi: 10.1007/s00500-020-05435-0 – volume: 12 start-page: 14 year: 1951 ident: 1093_CR22 publication-title: Christ Nielsen Post – ident: 1093_CR48 doi: 10.1016/j.istruc.2025.109791 – volume: 47 start-page: 230 issue: 2 year: 2010 ident: 1093_CR14 publication-title: Can Geotech J doi: 10.1139/T09-094 – volume: 37 start-page: 685 issue: 1 year: 2021 ident: 1093_CR34 publication-title: Eng Comput doi: 10.1007/s00366-019-00849-3 – volume: 36 start-page: 227 issue: 1 year: 2020 ident: 1093_CR32 publication-title: Eng Comput doi: 10.1007/s00366-018-00694-w – ident: 1093_CR8 – volume: 18 start-page: 870 issue: 6 year: 2024 ident: 1093_CR36 publication-title: Front Struct Civil Eng doi: 10.1007/s11709-024-1085-z – volume: 11 start-page: 3160 issue: 5 year: 2024 ident: 1093_CR41 publication-title: Transp Infrastructure Geotechnology doi: 10.1007/s40515-024-00411-9 – volume: 6 start-page: 199 issue: 4 year: 2021 ident: 1093_CR27 publication-title: Innovative Infrastructure Solutions doi: 10.1007/s41062-021-00568-z – volume: 003 start-page: 124 issue: 04 year: 2024 ident: 1093_CR6 publication-title: Adv Eng Intell Syst doi: 10.22034/aeis.2024.483670.1241 – ident: 1093_CR23 – volume: 35 start-page: 1463 year: 2019 ident: 1093_CR33 publication-title: Eng Comput doi: 10.1007/s00366-018-0674-7 – volume: 57 start-page: 122 year: 2014 ident: 1093_CR19 publication-title: Measurement doi: 10.1016/j.measurement.2014.08.007 – volume: 102 start-page: 197 issue: 3 year: 1976 ident: 1093_CR15 publication-title: J Geotech Eng Div doi: 10.1061/AJGEB6.0000243 – volume: 191 start-page: 105190 year: 2020 ident: 1093_CR54 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2019.105190 – volume: 141 start-page: 84 year: 2012 ident: 1093_CR17 publication-title: Eng Geol doi: 10.1016/j.enggeo.2012.05.006 – volume: 28 start-page: 397 issue: 4 year: 2022 ident: 1093_CR40 publication-title: Geomech Eng – volume: 70 start-page: 107649 year: 2024 ident: 1093_CR4 publication-title: Structures doi: 10.1016/j.istruc.2024.107649 – volume: 20 start-page: 661 issue: 3 year: 2025 ident: 1093_CR45 publication-title: Geomech Geoeng doi: 10.1080/17486025.2024.2438077 – volume: 4 start-page: 1 issue: 2 year: 1999 ident: 1093_CR29 publication-title: Electron J Geotech Eng – volume: 30 start-page: 515 issue: 8 year: 1998 ident: 1093_CR52 publication-title: Opt Laser Technol doi: 10.1016/S0030-3992(99)00004-3 – ident: 1093_CR44 doi: 10.4043/5227-MS – volume: 690 start-page: 121588 year: 2025 ident: 1093_CR47 publication-title: Inf Sci (N Y) doi: 10.1016/j.ins.2024.121588 – volume: 9 start-page: 2533 issue: 2 year: 2023 ident: 1093_CR38 publication-title: Model Earth Syst Environ doi: 10.1007/s40808-022-01637-7 – ident: 1093_CR28 – volume: 37 start-page: 2111 year: 2021 ident: 1093_CR11 publication-title: Eng Comput doi: 10.1007/s00366-019-00932-9 – volume: 38 start-page: 2271 issue: 2 year: 2020 ident: 1093_CR59 publication-title: Geotech Geol Eng doi: 10.1007/s10706-019-01085-8 – ident: 1093_CR42 – volume: 21 start-page: 4021224 issue: 11 year: 2021 ident: 1093_CR25 publication-title: Int J Geomech doi: 10.1061/(ASCE)GM.1943-5622.0002215 – volume: 2 start-page: 7 issue: 1 year: 2022 ident: 1093_CR50 publication-title: J Emerg Comput Technol – ident: 1093_CR21 – ident: 1093_CR10 doi: 10.31224/osf.io/jzdpq – volume: 111 start-page: 300 year: 2020 ident: 1093_CR55 publication-title: Future Generation Comput Syst doi: 10.1016/j.future.2020.03.055 |
| SSID | ssj0002734780 ssib042110740 |
| Score | 2.3448365 |
| Snippet | The project discusses a modern approach to estimating pile-bearing capacity (PBC), a critical subject in geotechnical engineering that affects the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 28 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Bridge failure Characterization and Evaluation of Materials Decision trees Engineering Estimation Expected values Foundation failure Geotechnical engineering High rise buildings Load Machine learning Mathematical Applications in the Physical Sciences Mechanical Engineering Modelling Numerical and Computational Physics Offshore structures Optimization Original Paper Pile bearing capacities Preliminary designs Safety engineering Simulation Solid Mechanics |
| Title | A quantitative approach to estimating pile bearing capacity using multidimensional datasets and novel modeling techniques |
| URI | https://link.springer.com/article/10.1007/s41939-025-01093-7 https://www.proquest.com/docview/3271383318 |
| Volume | 9 |
| WOSCitedRecordID | wos001615550600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2520-8179 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002734780 issn: 2520-8160 databaseCode: RSV dateStart: 20180301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA46fdAHf4vTKXnwTQNt0yzp4xDFBxmCOvZWkjQZinRz7Qb-917SdlPRB30sDaHcXe7ua-6-Q-g8kUkWhAY0wIUkcRhmROjYEkWF1V3KKfe_sgd3vN8Xw2FyXzeFFU21e3Ml6T31otkthlwjIW78qrvOoYSvojXm2GYcRn8YNFYUe0hTM5i81AQu3I9QixhgJRF2g7p75udtv0aoZdr57abUB6Cb7f99-g7aqhNO3KssZBetmHwPbX6iIdxH7z38NpO5bzcD54cbnnFcjrEj4XBJbT7CE3AgWMHJcA8agqyGDB67wvkR9nWJmZsUULF8YFd5WpiywDLPcD6em1fsh-64xQve2OIAPd1cP17dknokA9ERj0pipenG3MZRrCPJrGJMAyIxjCuuEsZlJDRAai4ty4RgSkkmw0wxqyGNTGxm6CFq5ePcHCEMJhLoTCotAw0Y3SauyxUMigrNwIBkG100akgnFfNGuuBY9gJNQaCpF2jK26jTaCqtT2GR0ggguKDgttrostHM8vXvux3_bfkJ2ogAy1ZVLh3UKqczc4rW9bx8LqZn3jo_ABSm4DE |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gXrwLa7PHLxpoa9s0qOIorgugqt4K0maLIp01XYX_PdO0nZXRQ96LA2hzExm5mtmvgE4TESS-YFGDTAuvDgIMo-r2Hgy4ka1IxYx9yv7vsO6Xf7wkNzUTWFFU-3eXEk6Tz1udosx10g8O37VXudEHpuG2diO2bEY_fa-saLYQZqaweSpJnBhboRaSBEr8aDt190zP2_7NUJN0s5vN6UuAJ0v_-_TV2CpTjjJSWUhqzCl8zVY_ERDuA7vJ-R1KHLXbobOjzQ846QcEEvCYZPavE9e0IEQiSfDPigMsgozeGIL5_vE1SVmdlJAxfJBbOVpocuCiDwj-WCkn4kbumMXj3ljiw24Oz_rnV549UgGT4UsLD0jdDtmJg5jFQpqJKUKEYmmTDKZUCZCrhBSM2FoxjmVUlARZJIahWlkYjIdbcJMPsj1FhA0EV9lQirhK8ToJrFdrmhQEVcUDUi04KhRQ_pSMW-kY45lJ9AUBZo6gaasBbuNptL6FBZpFCIE5xG6rRYcN5qZvP59t-2_LT-A-YvedSftXHavdmAhRFxbVbzswkz5NtR7MKdG5WPxtu8s9QOfoeMV |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB68EH3wFtczD75pcXtkkz6KuijKIl74VnKKIt3VVsF_7yRt1wN9EB9LQ6Azk5n5mplvALZTkep2aFADjIsgCUMdcJXYQMbcqk7MYuZ_Zd-csV6P396m55-6-H21e3MlWfU0OJamvNwbaLs3bHxLMO9IAzeK1V3txAEbhfEEkYwr6rq4vGksKvHwpmYzeajJXJgfpxZRxE087LTrTpqft_0arT5S0G-3pj4YdWf__xlzMFMnomS_spx5GDH5Akx_oidchLd98vQict-Ghk6RNPzjpOwTR87hkt38jgzQsRCJJ8Y9KAy-CjN74grq74ivV9RugkDF_kFcRWphyoKIXJO8_2oeiR_G4xYP-WSLJbjuHl0dHAf1qIZARSwqAytMJ2E2iRIVCWolpQqRiqFMMplSJiKuEGozYanmnEopqAi1pFZheplabeJlGMv7uVkBgqbTVlpIJdoKsbtNXfcrGlrMFUXDEi3YaVSSDSpGjmzIvewFmqFAMy_QjLVgvdFaVp_OIosjhOY8RnfWgt1GSx-vf99t9W_Lt2Dy_LCbnZ30TtdgKkK4WxXCrMNY-fxiNmBCvZb3xfOmN9p39HDr-Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+quantitative+approach+to+estimating+pile+bearing+capacity+using+multidimensional+datasets+and+novel+modeling+techniques&rft.jtitle=Multiscale+and+Multidisciplinary+Modeling%2C+Experiments+and+Design&rft.au=Li%2C+Huijing&rft.au=Yang%2C+Zhangli&rft.date=2026-12-01&rft.pub=Springer+International+Publishing&rft.issn=2520-8160&rft.eissn=2520-8179&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1007%2Fs41939-025-01093-7&rft.externalDocID=10_1007_s41939_025_01093_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8160&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8160&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8160&client=summon |