Proof of a conjecture of Xiao and Zamora
A wheel, defined by Tutte, is the graph obtained from a circle by adding one new vertex and joining this vertex to all vertices of the circle. We determine the maximum number of edges in a graph which does not contain vertex-disjoint wheels. This confirms a conjecture posed by Xiao and Zamora in a s...
Uložené v:
| Vydané v: | Graphs and combinatorics Ročník 41; číslo 6; s. 114 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Tokyo
Springer Japan
01.12.2025
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0911-0119, 1435-5914 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | A wheel, defined by Tutte, is the graph obtained from a circle by adding one new vertex and joining this vertex to all vertices of the circle. We determine the maximum number of edges in a graph which does not contain vertex-disjoint wheels. This confirms a conjecture posed by Xiao and Zamora in a stronger form. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0911-0119 1435-5914 |
| DOI: | 10.1007/s00373-025-02972-z |