Proof of a conjecture of Xiao and Zamora
A wheel, defined by Tutte, is the graph obtained from a circle by adding one new vertex and joining this vertex to all vertices of the circle. We determine the maximum number of edges in a graph which does not contain vertex-disjoint wheels. This confirms a conjecture posed by Xiao and Zamora in a s...
Gespeichert in:
| Veröffentlicht in: | Graphs and combinatorics Jg. 41; H. 6; S. 114 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Tokyo
Springer Japan
01.12.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0911-0119, 1435-5914 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | A wheel, defined by Tutte, is the graph obtained from a circle by adding one new vertex and joining this vertex to all vertices of the circle. We determine the maximum number of edges in a graph which does not contain vertex-disjoint wheels. This confirms a conjecture posed by Xiao and Zamora in a stronger form. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0911-0119 1435-5914 |
| DOI: | 10.1007/s00373-025-02972-z |