Multi-objective optimization for the performance of task scheduling in homogeneous fog networks
The purpose is to accurately assess fog networks’ overall energy efficiency and spectrum efficiency. This model analyzes the tradeoff between performance improvements and energy consumption in joint task scheduling. The main contribution of this work is the development of an optimized job scheduling...
Uložené v:
| Vydané v: | Cluster computing Ročník 28; číslo 12; s. 796 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.11.2025
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1386-7857, 1573-7543 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The purpose is to accurately assess fog networks’ overall energy efficiency and spectrum efficiency. This model analyzes the tradeoff between performance improvements and energy consumption in joint task scheduling. The main contribution of this work is the development of an optimized job scheduling algorithm using the Sequential Quadratic Programming (SQP) method to maximize energy and spectrum efficiency in fog networks, significantly outperforming existing task scheduling strategies. It allows us to define the optimization problem of energy efficiency and spectrum efficiency for future smart IoT applications, considering practical limitations in the computational resources of assisting nodes and unused spectrum in nearby environments. Here, a thorough mathematical analysis is used to suggest a job scheduling method that maximizes energy and spectral efficiency. This algorithm aims to determine the most efficient scheduling decision between a node that holds a task and many surrounding nodes that provide assistance. This decision considers the current modulation schemes and time-access methods in use. In addition, our simulations show that the suggested method can achieve much higher energy and spectral efficiency levels than existing task scheduling algorithms across a range of network service settings and situations. The numerical results demonstrated that the SQP algorithm achieved an energy efficiency of 0.0027 bits per joule, outperforming the Augmented Lagrangian method, which achieved 0.0004 bits per joule, while both optimization methods showed higher variability than the traditional scheduling strategy. The proposed SQP algorithm significantly improves energy efficiency compared to current state-of-the-art methods, demonstrating a more advanced and effective solution for optimizing task scheduling in fog networks. This improvement highlights the algorithm’s ability to better balance computational load, energy consumption, and resource utilization, making it a valuable contribution to the field of fog computing and IoT applications. |
|---|---|
| AbstractList | The purpose is to accurately assess fog networks’ overall energy efficiency and spectrum efficiency. This model analyzes the tradeoff between performance improvements and energy consumption in joint task scheduling. The main contribution of this work is the development of an optimized job scheduling algorithm using the Sequential Quadratic Programming (SQP) method to maximize energy and spectrum efficiency in fog networks, significantly outperforming existing task scheduling strategies. It allows us to define the optimization problem of energy efficiency and spectrum efficiency for future smart IoT applications, considering practical limitations in the computational resources of assisting nodes and unused spectrum in nearby environments. Here, a thorough mathematical analysis is used to suggest a job scheduling method that maximizes energy and spectral efficiency. This algorithm aims to determine the most efficient scheduling decision between a node that holds a task and many surrounding nodes that provide assistance. This decision considers the current modulation schemes and time-access methods in use. In addition, our simulations show that the suggested method can achieve much higher energy and spectral efficiency levels than existing task scheduling algorithms across a range of network service settings and situations. The numerical results demonstrated that the SQP algorithm achieved an energy efficiency of 0.0027 bits per joule, outperforming the Augmented Lagrangian method, which achieved 0.0004 bits per joule, while both optimization methods showed higher variability than the traditional scheduling strategy. The proposed SQP algorithm significantly improves energy efficiency compared to current state-of-the-art methods, demonstrating a more advanced and effective solution for optimizing task scheduling in fog networks. This improvement highlights the algorithm’s ability to better balance computational load, energy consumption, and resource utilization, making it a valuable contribution to the field of fog computing and IoT applications. |
| ArticleNumber | 796 |
| Author | Rahmani, Amir Masoud Robatmily, Mohamad Momeny, Sajjad |
| Author_xml | – sequence: 1 givenname: Sajjad surname: Momeny fullname: Momeny, Sajjad organization: Department of Computer Engineering, SR.C., Islamic Azad University – sequence: 2 givenname: Mohamad surname: Robatmily fullname: Robatmily, Mohamad organization: Department of Computer Engineering, Islamic Azad University – sequence: 3 givenname: Amir Masoud surname: Rahmani fullname: Rahmani, Amir Masoud email: rahmania@yuntech.edu.tw organization: Future Technology Research Center, National Yunlin University of Science and Technology |
| BookMark | eNp9kEtPwzAQhC1UJNrCH-BkiXPAjzpOjqjiJRVxgbPlOus0bWMX2wHBr8cQJG6cdqT9ZlY7MzRx3gFC55RcUkLkVaREVGVBmCiIEKws-BGaUiF5IcWCT7LmeS0rIU_QLMYtIaSWrJ4i9TjsU1f49RZM6t4A-0Pq-u5Tp847bH3AaQP4ACHLXjuTAYuTjjsczQaaYd-5FncOb3zvW3Dgh5hdLXaQ3n3YxVN0bPU-wtnvnKOX25vn5X2xerp7WF6vCsMkS4XloqILAlYLXXNTlaXhgq552chGUMtKaDSBZg2cMSFrZrk1tYb8AtSGVg2fo4sx9xD86wAxqa0fgssnFWeCVIJwzjLFRsoEH2MAqw6h63X4UJSo7yLVWKTKRaqfIhXPJj6aYoZdC-Ev-h_XF3-Hebo |
| Cites_doi | 10.3390/sym14112340 10.1007/s10922-022-09664-6 10.1186/s13677-021-00264-4 10.3390/ma17184550 10.3390/electronics12030718 10.1109/TNSE.2020.3021792 10.1145/3513002 10.3390/s19051023 10.1016/j.jnca.2017.11.016 10.1007/s40430-022-03883-3 10.1108/K-10-2019-0666 10.1016/j.sasc.2025.200209 10.1109/TGCN.2021.3121961 10.1109/ISTEL.2016.7881932 10.1109/ACCESS.2024.3482987 10.1016/j.rico.2024.100462 10.1109/SMC42975.2020.9283211 10.37917/ijeee.16.2.11 10.1109/TGCN.2021.3111909 10.1007/s12083-021-01118-1 10.3390/a15110397 10.1007/s10586-021-03371-8 10.1016/j.future.2020.12.019 10.1186/s40510-024-00510-w 10.3390/s23052445 10.1016/j.future.2024.03.013 10.1109/ICISCAE52414.2021.9590674 10.1007/s00607-023-01171-z 10.1109/TII.2022.3165085 10.1109/TSC.2020.3028575 10.1109/TII.2023.3299624 10.1007/s10586-022-03809-7 10.1080/08839514.2021.2008149 10.1109/ACCESS.2022.3149955 10.1109/JIOT.2018.2846644 10.1016/j.dcan.2021.09.012 10.1016/j.future.2017.07.048 10.1137/1.9781611973365 10.1109/NCC52529.2021.9530077 10.1002/cpe.7701 10.1007/s10586-023-04071-1 10.12785/ijcds/150179 10.1002/dac.4583 10.1109/TCC.2018.2889482 10.1109/ACCESS.2023.3241240 10.1109/TGCN.2021.3067309 10.1109/ACCESS.2023.3337034 10.1016/j.comnet.2021.108752 10.1016/j.future.2021.05.026 10.1017/S0962492900002518 10.1109/WCSP.2018.8555532 10.1016/j.knosys.2023.110563 10.3390/fi16010016 10.1016/j.jocs.2022.101828 10.1109/JIOT.2018.2823000 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10586-025-05526-3 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7543 |
| ExternalDocumentID | 10_1007_s10586_025_05526_3 |
| GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 1N0 203 29B 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFDZB AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P9O PF0 PT4 PT5 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 -Y2 1SB 2P1 2VQ AAIAL AARHV AAYTO AAYXX ABQSL ABULA ACBXY ADHKG AEBTG AEKMD AFFHD AFGCZ AFKRA AGGDS AGQPQ AHSBF AJBLW ARAPS BDATZ BENPR BGLVJ CAG CCPQU CITATION COF EJD FINBP FSGXE H13 HCIFZ HZ~ IHE K7- N2Q O9- OVD PHGZM PHGZT PQGLB RNI RZC RZE RZK TEORI JQ2 |
| ID | FETCH-LOGICAL-c272t-f358140efa5a93c866c351b36d7d51f26eda0edbe3225792f3fc9ae729e9c18d3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001571701900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1386-7857 |
| IngestDate | Wed Nov 26 14:52:49 EST 2025 Sat Nov 29 06:57:14 EST 2025 Sat Nov 01 14:17:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Multi-objective optimization Augmented lagrangian SQP algorithm Fog networks IoT |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-f358140efa5a93c866c351b36d7d51f26eda0edbe3225792f3fc9ae729e9c18d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3250850332 |
| PQPubID | 2043865 |
| ParticipantIDs | proquest_journals_3250850332 crossref_primary_10_1007_s10586_025_05526_3 springer_journals_10_1007_s10586_025_05526_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-01 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | The Journal of Networks, Software Tools and Applications |
| PublicationTitle | Cluster computing |
| PublicationTitleAbbrev | Cluster Comput |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | M Salimian (5526_CR13) 2022; 36 H Jamil (5526_CR35) 2022; 54 A Alkhaldi (5526_CR58) 2023; 12 5526_CR50 Q Ren (5526_CR11) 2022; 8 5526_CR53 5526_CR12 FA Saif (5526_CR2) 2023; 11 5526_CR14 5526_CR9 Y Yang (5526_CR40) 2018; 5 5526_CR19 H Shahrjerdi (5526_CR34) 2024; 17 G Agarwal (5526_CR7) 2023; 272 X Yang (5526_CR51) 2021; 50 Z Zhou (5526_CR56) 2022; 18 M Jia (5526_CR52) 2021; 14 5526_CR20 V Sindhu (5526_CR43) 2022; 14 Z Zhou (5526_CR54) 2018; 86 5526_CR23 5526_CR24 S Midya (5526_CR39) 2018; 103 S Ghanavati (5526_CR36) 2020; 15 Z Zhou (5526_CR29) 2021; 5 N Sehgal (5526_CR44) 2024; 15 H Li (5526_CR25) 2023; 105 H Li (5526_CR26) 2023; 26 M Abd Elaziz (5526_CR57) 2021; 124 MN Abdulredha (5526_CR5) 2020; 16 C Wu (5526_CR22) 2021; 117 H Li (5526_CR16) 2024; 156 MS Kumar (5526_CR47) 2023; 23 H Li (5526_CR15) 2023; 35 Z Movahedi (5526_CR1) 2021; 10 5526_CR31 Kruekaew (5526_CR28) 2022; 10 G Singh (5526_CR21) 2024; 27 P Boozary (5526_CR38) 2025; 5 Y Yang (5526_CR4) 2018; 5 MR Alizadeh (5526_CR18) 2020; 33 Z Zhou (5526_CR55) 2021; 5 D Rahbari (5526_CR10) 2022; 15 H GhorbanTanhaei (5526_CR30) 2024; 17 A Najafizadeh (5526_CR3) 2022; 25 AS Abohamama (5526_CR6) 2022; 30 A Hazra (5526_CR17) 2020; 7 J Wang (5526_CR41) 2019; 19 PT Boggs (5526_CR49) 1995; 4 E Hosseini (5526_CR45) 2022; 206 Z Zhou (5526_CR37) 2022; 6 A Shahrjerdi (5526_CR33) 2023; 45 5526_CR42 5526_CR46 C Wu (5526_CR48) 2018; 9 MA Ibrahim (5526_CR8) 2023; 11 M Bocklet (5526_CR32) 2024; 25 SM Hussain (5526_CR27) 2022; 64 |
| References_xml | – volume: 14 start-page: 2340 issue: 11 year: 2022 ident: 5526_CR43 publication-title: Symmetry doi: 10.3390/sym14112340 – volume: 30 start-page: 54 issue: 4 year: 2022 ident: 5526_CR6 publication-title: J. Netw. Syst. Manage. doi: 10.1007/s10922-022-09664-6 – ident: 5526_CR23 doi: 10.1186/s13677-021-00264-4 – volume: 17 start-page: 4550 issue: 18 year: 2024 ident: 5526_CR34 publication-title: Materials doi: 10.3390/ma17184550 – volume: 12 start-page: 718 issue: 3 year: 2023 ident: 5526_CR58 publication-title: Electronics doi: 10.3390/electronics12030718 – volume: 7 start-page: 3266 issue: 4 year: 2020 ident: 5526_CR17 publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2020.3021792 – volume: 54 start-page: 1 issue: 11 year: 2022 ident: 5526_CR35 publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/3513002 – volume: 19 start-page: 1023 issue: 5 year: 2019 ident: 5526_CR41 publication-title: Sensors doi: 10.3390/s19051023 – volume: 103 start-page: 58 year: 2018 ident: 5526_CR39 publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2017.11.016 – volume: 45 start-page: 11 issue: 1 year: 2023 ident: 5526_CR33 publication-title: J. Brazilian Soc. Mech. Sci. Eng. doi: 10.1007/s40430-022-03883-3 – volume: 50 start-page: 22 issue: 1 year: 2021 ident: 5526_CR51 publication-title: Kybernetes doi: 10.1108/K-10-2019-0666 – ident: 5526_CR31 doi: 10.1016/j.sasc.2025.200209 – volume: 6 start-page: 238 issue: 1 year: 2022 ident: 5526_CR37 publication-title: IEEE Trans. Green. Commun. Netw. doi: 10.1109/TGCN.2021.3121961 – ident: 5526_CR24 doi: 10.1109/ISTEL.2016.7881932 – ident: 5526_CR53 doi: 10.1109/ACCESS.2024.3482987 – volume: 17 start-page: 100462 year: 2024 ident: 5526_CR30 publication-title: Results Control Optim. doi: 10.1016/j.rico.2024.100462 – ident: 5526_CR46 doi: 10.1109/SMC42975.2020.9283211 – volume: 16 start-page: 103 issue: 2 year: 2020 ident: 5526_CR5 publication-title: Iraqi J. Electr. Electron. Eng. doi: 10.37917/ijeee.16.2.11 – volume: 5 start-page: 1747 issue: 4 year: 2021 ident: 5526_CR55 publication-title: IEEE Trans. Green. Commun. Netw. doi: 10.1109/TGCN.2021.3111909 – volume: 14 start-page: 2139 issue: 4 year: 2021 ident: 5526_CR52 publication-title: Peer-to-Peer Netw. Appl. doi: 10.1007/s12083-021-01118-1 – volume: 15 start-page: 397 issue: 11 year: 2022 ident: 5526_CR10 publication-title: Algorithms doi: 10.3390/a15110397 – volume: 25 start-page: 141 issue: 1 year: 2022 ident: 5526_CR3 publication-title: Cluster Comput. doi: 10.1007/s10586-021-03371-8 – volume: 117 start-page: 498 year: 2021 ident: 5526_CR22 publication-title: Future Generation Comput. Syst. doi: 10.1016/j.future.2020.12.019 – volume: 25 start-page: 11 issue: 1 year: 2024 ident: 5526_CR32 publication-title: Prog. Orthodont. doi: 10.1186/s40510-024-00510-w – volume: 10 start-page: 53 issue: 1 year: 2021 ident: 5526_CR1 publication-title: J. Cloud Comput. doi: 10.1186/s13677-021-00264-4 – volume: 23 start-page: 2445 issue: 5 year: 2023 ident: 5526_CR47 publication-title: Sensors doi: 10.3390/s23052445 – volume: 156 start-page: 64 year: 2024 ident: 5526_CR16 publication-title: Future Generation Comput. Syst. doi: 10.1016/j.future.2024.03.013 – ident: 5526_CR20 doi: 10.1109/ICISCAE52414.2021.9590674 – volume: 105 start-page: 1717 issue: 8 year: 2023 ident: 5526_CR25 publication-title: Computing doi: 10.1007/s00607-023-01171-z – ident: 5526_CR12 – volume: 18 start-page: 8967 issue: 12 year: 2022 ident: 5526_CR56 publication-title: IEEE Trans. Industr. Inf. doi: 10.1109/TII.2022.3165085 – volume: 15 start-page: 2007 issue: 4 year: 2020 ident: 5526_CR36 publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2020.3028575 – ident: 5526_CR19 doi: 10.1109/TII.2023.3299624 – volume: 26 start-page: 4051 issue: 6 year: 2023 ident: 5526_CR26 publication-title: Cluster Comput. doi: 10.1007/s10586-022-03809-7 – volume: 36 start-page: 2008149 issue: 1 year: 2022 ident: 5526_CR13 publication-title: Appl. Artif. Intell. doi: 10.1080/08839514.2021.2008149 – volume: 10 start-page: 17803 year: 2022 ident: 5526_CR28 publication-title: IEEE Access. doi: 10.1109/ACCESS.2022.3149955 – volume: 5 start-page: 4076 issue: 5 year: 2018 ident: 5526_CR4 publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2018.2846644 – volume: 8 start-page: 825 issue: 5 year: 2022 ident: 5526_CR11 publication-title: Digit. Commun. Networks doi: 10.1016/j.dcan.2021.09.012 – volume: 86 start-page: 836 year: 2018 ident: 5526_CR54 publication-title: Future Generation Comput. Syst. doi: 10.1016/j.future.2017.07.048 – ident: 5526_CR42 doi: 10.1137/1.9781611973365 – ident: 5526_CR14 doi: 10.1109/NCC52529.2021.9530077 – volume: 5 start-page: 100331 issue: 1 year: 2025 ident: 5526_CR38 publication-title: Int. J. Inform. Manage. Data Insights – volume: 35 start-page: e7701 issue: 21 year: 2023 ident: 5526_CR15 publication-title: Concurrency Computation: Pract. Experience doi: 10.1002/cpe.7701 – volume: 27 start-page: 1947 issue: 2 year: 2024 ident: 5526_CR21 publication-title: Cluster Comput. doi: 10.1007/s10586-023-04071-1 – volume: 15 start-page: 1119 issue: 1 year: 2024 ident: 5526_CR44 publication-title: Int. J. Comput. Digit. Syst. doi: 10.12785/ijcds/150179 – volume: 33 start-page: e4583 issue: 16 year: 2020 ident: 5526_CR18 publication-title: Int. J. Commun Syst doi: 10.1002/dac.4583 – volume: 9 start-page: 641 issue: 2 year: 2018 ident: 5526_CR48 publication-title: IEEE Trans. Cloud Comput. doi: 10.1109/TCC.2018.2889482 – volume: 11 start-page: 20635 year: 2023 ident: 5526_CR2 publication-title: IEEE Access. doi: 10.1109/ACCESS.2023.3241240 – volume: 5 start-page: 658 issue: 2 year: 2021 ident: 5526_CR29 publication-title: IEEE Trans. Green. Commun. Netw. doi: 10.1109/TGCN.2021.3067309 – volume: 11 start-page: 133607 year: 2023 ident: 5526_CR8 publication-title: IEEE Access. doi: 10.1109/ACCESS.2023.3337034 – volume: 206 start-page: 108752 year: 2022 ident: 5526_CR45 publication-title: Comput. Netw. doi: 10.1016/j.comnet.2021.108752 – volume: 124 start-page: 142 year: 2021 ident: 5526_CR57 publication-title: Future Generation Comput. Syst. doi: 10.1016/j.future.2021.05.026 – volume: 4 start-page: 1 year: 1995 ident: 5526_CR49 publication-title: Acta Numerica doi: 10.1017/S0962492900002518 – ident: 5526_CR50 doi: 10.1109/WCSP.2018.8555532 – volume: 272 start-page: 110563 year: 2023 ident: 5526_CR7 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2023.110563 – ident: 5526_CR9 doi: 10.3390/fi16010016 – volume: 64 start-page: 101828 year: 2022 ident: 5526_CR27 publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2022.101828 – volume: 5 start-page: 2094 issue: 3 year: 2018 ident: 5526_CR40 publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2018.2823000 |
| SSID | ssj0009729 |
| Score | 2.3665032 |
| Snippet | The purpose is to accurately assess fog networks’ overall energy efficiency and spectrum efficiency. This model analyzes the tradeoff between performance... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 796 |
| SubjectTerms | Algorithms Computer Communication Networks Computer Science Current modulation Edge computing Energy consumption Energy efficiency Internet of Things Mathematical analysis Multiple objective analysis Networks Nodes Operating Systems Optimization Processor Architectures Quadratic programming Quality of service Resource utilization Task scheduling |
| Title | Multi-objective optimization for the performance of task scheduling in homogeneous fog networks |
| URI | https://link.springer.com/article/10.1007/s10586-025-05526-3 https://www.proquest.com/docview/3250850332 |
| Volume | 28 |
| WOSCitedRecordID | wos001571701900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: RSV dateStart: 19980101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAc2sNTYcRyPCFExoArxUjcrcWwoqEnVpPx-zm6iAIIBsuZyiu5t-b47hE5plHANDzFREpJQpimRwmYkhWRiRAY5K_RA4RsxGsXjsbytQWFl0-3eXEn6SP0J7MZj1zDLyYBzGhG2itYg3cXOHe_un9pRu8LvJgsYUIuYixoq8zOPr-morTG_XYv6bDPs_u8_t9BmXV3ii6U5bKMVk--gbrO5AdeOvIuUx92SIn1dxjtcQOSY1pBMDHUshroQz1pQAS4srpLyDcNhGJKTw7DjSY5fimkBFmiKRQlfPeN82VRe7qHH4dXD5TWpVy0QTQWtiHVj0MKBsQlPJNNxFGnGg5RFmch4YGlksmRgstQ4_xeSWma1TAxI2kgdxBnbR528yM0BwjwWmlqRwPHUhkDqSjyoWbSVVltGeQ-dNRJXs-VEDdXOTnayUyA75WWnWA_1G6Wo2rtKBVzcpD3GaA-dN0poX__O7fBv5Edogzo9euhhH3Wq-cIco3X9Xk3K-Ym3ug-y6NMU |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gV58i-szB28a2E2apj2KKCuui-gq3kKbJrrKtmKrv99JH1RFD9prp0OZd8h8MwAHzI-ExocaP_KoF8YxDaVNaIzJxMgEc5ZXAoUHcjgM7u_DqxoUljfd7s2VZBmpP4HdROAaZgXtCsF8yqdh1sOM5Rr5rm_u2lG7stxN1uNILQMha6jMzzy-pqO2xvx2LVpmm7Ol__3nMizW1SU5rsxhBaZMugpLzeYGUjvyGqgSd0uz-KmKdyTDyDGpIZkE61iCdSF5aUEFJLOkiPJngodhTE4Ow07GKXnMJhlaoMnecvzqgaRVU3m-Drdnp6OTPq1XLVDNJCuodWPQvK6xkYhCrgPf11z0Yu4nMhE9y3yTRF2TxMb5vwyZ5VaHkUFJm1D3goRvwEyapWYTiAikZlZGeDy1HpK6Eg9rFm1Dqy1nogOHjcTVSzVRQ7Wzk53sFMpOlbJTvAM7jVJU7V25Qi5u0h7nrANHjRLa179z2_ob-T7M90eXAzU4H15swwJzOi1hiDswU7y-mV2Y0-_FOH_dKy3wA6GP1fg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfHiW1yfOXjT4G7SNO1R1EVRFsEH3kKbJrqK7WK7_n4nfVAVPYi9djqUmck8yHwzAPvMj4TGhxo_8qgXxjENpU1ojMHEyARjllcCha_kcBg8PITXn1D8Zbd7cyVZYRrclKa0OBon9ugT8E0ErnlW0J4QzKd8GmY8tzTI1es39-3YXVnuKetzpJaBkDVs5mceX0NTm29-uyItI89g8f__vAQLddZJjiszWYYpk67AYrPRgdQHfBVUicelWfxc-UGSoUd5raGaBPNbgvkiGbdgA5JZUkT5C8EiGYOWw7aTUUqestcMLdNkkxy_eiRp1Wyer8Hd4Oz25JzWKxioZpIV1LrxaF7P2EhEIdeB72su-jH3E5mIvmW-SaKeSWLj_IIMmeVWh5FBqZtQ94OEr0MnzVKzAUQEUjMrIyxbrYekLvXDXEbb0GrLmejCQSN9Na4mbah2prKTnULZqVJ2indhu1GQqk9drpCLm8DHOevCYaOQ9vXv3Db_Rr4Hc9enA3V1MbzcgnnmVFqiE7ehU7xNzA7M6vdilL_tlsb4Ac8b3tw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+for+the+performance+of+task+scheduling+in+homogeneous+fog+networks&rft.jtitle=Cluster+computing&rft.au=Momeny%2C+Sajjad&rft.au=Robatmily%2C+Mohamad&rft.au=Rahmani%2C+Amir+Masoud&rft.date=2025-11-01&rft.pub=Springer+US&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=28&rft.issue=12&rft_id=info:doi/10.1007%2Fs10586-025-05526-3&rft.externalDocID=10_1007_s10586_025_05526_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon |