Multi-objective optimization for the performance of task scheduling in homogeneous fog networks

The purpose is to accurately assess fog networks’ overall energy efficiency and spectrum efficiency. This model analyzes the tradeoff between performance improvements and energy consumption in joint task scheduling. The main contribution of this work is the development of an optimized job scheduling...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Cluster computing Ročník 28; číslo 12; s. 796
Hlavní autori: Momeny, Sajjad, Robatmily, Mohamad, Rahmani, Amir Masoud
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.11.2025
Springer Nature B.V
Predmet:
ISSN:1386-7857, 1573-7543
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The purpose is to accurately assess fog networks’ overall energy efficiency and spectrum efficiency. This model analyzes the tradeoff between performance improvements and energy consumption in joint task scheduling. The main contribution of this work is the development of an optimized job scheduling algorithm using the Sequential Quadratic Programming (SQP) method to maximize energy and spectrum efficiency in fog networks, significantly outperforming existing task scheduling strategies. It allows us to define the optimization problem of energy efficiency and spectrum efficiency for future smart IoT applications, considering practical limitations in the computational resources of assisting nodes and unused spectrum in nearby environments. Here, a thorough mathematical analysis is used to suggest a job scheduling method that maximizes energy and spectral efficiency. This algorithm aims to determine the most efficient scheduling decision between a node that holds a task and many surrounding nodes that provide assistance. This decision considers the current modulation schemes and time-access methods in use. In addition, our simulations show that the suggested method can achieve much higher energy and spectral efficiency levels than existing task scheduling algorithms across a range of network service settings and situations. The numerical results demonstrated that the SQP algorithm achieved an energy efficiency of 0.0027 bits per joule, outperforming the Augmented Lagrangian method, which achieved 0.0004 bits per joule, while both optimization methods showed higher variability than the traditional scheduling strategy. The proposed SQP algorithm significantly improves energy efficiency compared to current state-of-the-art methods, demonstrating a more advanced and effective solution for optimizing task scheduling in fog networks. This improvement highlights the algorithm’s ability to better balance computational load, energy consumption, and resource utilization, making it a valuable contribution to the field of fog computing and IoT applications.
AbstractList The purpose is to accurately assess fog networks’ overall energy efficiency and spectrum efficiency. This model analyzes the tradeoff between performance improvements and energy consumption in joint task scheduling. The main contribution of this work is the development of an optimized job scheduling algorithm using the Sequential Quadratic Programming (SQP) method to maximize energy and spectrum efficiency in fog networks, significantly outperforming existing task scheduling strategies. It allows us to define the optimization problem of energy efficiency and spectrum efficiency for future smart IoT applications, considering practical limitations in the computational resources of assisting nodes and unused spectrum in nearby environments. Here, a thorough mathematical analysis is used to suggest a job scheduling method that maximizes energy and spectral efficiency. This algorithm aims to determine the most efficient scheduling decision between a node that holds a task and many surrounding nodes that provide assistance. This decision considers the current modulation schemes and time-access methods in use. In addition, our simulations show that the suggested method can achieve much higher energy and spectral efficiency levels than existing task scheduling algorithms across a range of network service settings and situations. The numerical results demonstrated that the SQP algorithm achieved an energy efficiency of 0.0027 bits per joule, outperforming the Augmented Lagrangian method, which achieved 0.0004 bits per joule, while both optimization methods showed higher variability than the traditional scheduling strategy. The proposed SQP algorithm significantly improves energy efficiency compared to current state-of-the-art methods, demonstrating a more advanced and effective solution for optimizing task scheduling in fog networks. This improvement highlights the algorithm’s ability to better balance computational load, energy consumption, and resource utilization, making it a valuable contribution to the field of fog computing and IoT applications.
ArticleNumber 796
Author Rahmani, Amir Masoud
Robatmily, Mohamad
Momeny, Sajjad
Author_xml – sequence: 1
  givenname: Sajjad
  surname: Momeny
  fullname: Momeny, Sajjad
  organization: Department of Computer Engineering, SR.C., Islamic Azad University
– sequence: 2
  givenname: Mohamad
  surname: Robatmily
  fullname: Robatmily, Mohamad
  organization: Department of Computer Engineering, Islamic Azad University
– sequence: 3
  givenname: Amir Masoud
  surname: Rahmani
  fullname: Rahmani, Amir Masoud
  email: rahmania@yuntech.edu.tw
  organization: Future Technology Research Center, National Yunlin University of Science and Technology
BookMark eNp9kEtPwzAQhC1UJNrCH-BkiXPAjzpOjqjiJRVxgbPlOus0bWMX2wHBr8cQJG6cdqT9ZlY7MzRx3gFC55RcUkLkVaREVGVBmCiIEKws-BGaUiF5IcWCT7LmeS0rIU_QLMYtIaSWrJ4i9TjsU1f49RZM6t4A-0Pq-u5Tp847bH3AaQP4ACHLXjuTAYuTjjsczQaaYd-5FncOb3zvW3Dgh5hdLXaQ3n3YxVN0bPU-wtnvnKOX25vn5X2xerp7WF6vCsMkS4XloqILAlYLXXNTlaXhgq552chGUMtKaDSBZg2cMSFrZrk1tYb8AtSGVg2fo4sx9xD86wAxqa0fgssnFWeCVIJwzjLFRsoEH2MAqw6h63X4UJSo7yLVWKTKRaqfIhXPJj6aYoZdC-Ev-h_XF3-Hebo
Cites_doi 10.3390/sym14112340
10.1007/s10922-022-09664-6
10.1186/s13677-021-00264-4
10.3390/ma17184550
10.3390/electronics12030718
10.1109/TNSE.2020.3021792
10.1145/3513002
10.3390/s19051023
10.1016/j.jnca.2017.11.016
10.1007/s40430-022-03883-3
10.1108/K-10-2019-0666
10.1016/j.sasc.2025.200209
10.1109/TGCN.2021.3121961
10.1109/ISTEL.2016.7881932
10.1109/ACCESS.2024.3482987
10.1016/j.rico.2024.100462
10.1109/SMC42975.2020.9283211
10.37917/ijeee.16.2.11
10.1109/TGCN.2021.3111909
10.1007/s12083-021-01118-1
10.3390/a15110397
10.1007/s10586-021-03371-8
10.1016/j.future.2020.12.019
10.1186/s40510-024-00510-w
10.3390/s23052445
10.1016/j.future.2024.03.013
10.1109/ICISCAE52414.2021.9590674
10.1007/s00607-023-01171-z
10.1109/TII.2022.3165085
10.1109/TSC.2020.3028575
10.1109/TII.2023.3299624
10.1007/s10586-022-03809-7
10.1080/08839514.2021.2008149
10.1109/ACCESS.2022.3149955
10.1109/JIOT.2018.2846644
10.1016/j.dcan.2021.09.012
10.1016/j.future.2017.07.048
10.1137/1.9781611973365
10.1109/NCC52529.2021.9530077
10.1002/cpe.7701
10.1007/s10586-023-04071-1
10.12785/ijcds/150179
10.1002/dac.4583
10.1109/TCC.2018.2889482
10.1109/ACCESS.2023.3241240
10.1109/TGCN.2021.3067309
10.1109/ACCESS.2023.3337034
10.1016/j.comnet.2021.108752
10.1016/j.future.2021.05.026
10.1017/S0962492900002518
10.1109/WCSP.2018.8555532
10.1016/j.knosys.2023.110563
10.3390/fi16010016
10.1016/j.jocs.2022.101828
10.1109/JIOT.2018.2823000
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10586-025-05526-3
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7543
ExternalDocumentID 10_1007_s10586_025_05526_3
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
1N0
203
29B
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFDZB
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I09
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P9O
PF0
PT4
PT5
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
-Y2
1SB
2P1
2VQ
AAIAL
AARHV
AAYTO
AAYXX
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEKMD
AFFHD
AFGCZ
AFKRA
AGGDS
AGQPQ
AHSBF
AJBLW
ARAPS
BDATZ
BENPR
BGLVJ
CAG
CCPQU
CITATION
COF
EJD
FINBP
FSGXE
H13
HCIFZ
HZ~
IHE
K7-
N2Q
O9-
OVD
PHGZM
PHGZT
PQGLB
RNI
RZC
RZE
RZK
TEORI
JQ2
ID FETCH-LOGICAL-c272t-f358140efa5a93c866c351b36d7d51f26eda0edbe3225792f3fc9ae729e9c18d3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001571701900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1386-7857
IngestDate Wed Nov 26 14:52:49 EST 2025
Sat Nov 29 06:57:14 EST 2025
Sat Nov 01 14:17:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Multi-objective optimization
Augmented lagrangian
SQP algorithm
Fog networks
IoT
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-f358140efa5a93c866c351b36d7d51f26eda0edbe3225792f3fc9ae729e9c18d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3250850332
PQPubID 2043865
ParticipantIDs proquest_journals_3250850332
crossref_primary_10_1007_s10586_025_05526_3
springer_journals_10_1007_s10586_025_05526_3
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle The Journal of Networks, Software Tools and Applications
PublicationTitle Cluster computing
PublicationTitleAbbrev Cluster Comput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References M Salimian (5526_CR13) 2022; 36
H Jamil (5526_CR35) 2022; 54
A Alkhaldi (5526_CR58) 2023; 12
5526_CR50
Q Ren (5526_CR11) 2022; 8
5526_CR53
5526_CR12
FA Saif (5526_CR2) 2023; 11
5526_CR14
5526_CR9
Y Yang (5526_CR40) 2018; 5
5526_CR19
H Shahrjerdi (5526_CR34) 2024; 17
G Agarwal (5526_CR7) 2023; 272
X Yang (5526_CR51) 2021; 50
Z Zhou (5526_CR56) 2022; 18
M Jia (5526_CR52) 2021; 14
5526_CR20
V Sindhu (5526_CR43) 2022; 14
Z Zhou (5526_CR54) 2018; 86
5526_CR23
5526_CR24
S Midya (5526_CR39) 2018; 103
S Ghanavati (5526_CR36) 2020; 15
Z Zhou (5526_CR29) 2021; 5
N Sehgal (5526_CR44) 2024; 15
H Li (5526_CR25) 2023; 105
H Li (5526_CR26) 2023; 26
M Abd Elaziz (5526_CR57) 2021; 124
MN Abdulredha (5526_CR5) 2020; 16
C Wu (5526_CR22) 2021; 117
H Li (5526_CR16) 2024; 156
MS Kumar (5526_CR47) 2023; 23
H Li (5526_CR15) 2023; 35
Z Movahedi (5526_CR1) 2021; 10
5526_CR31
Kruekaew (5526_CR28) 2022; 10
G Singh (5526_CR21) 2024; 27
P Boozary (5526_CR38) 2025; 5
Y Yang (5526_CR4) 2018; 5
MR Alizadeh (5526_CR18) 2020; 33
Z Zhou (5526_CR55) 2021; 5
D Rahbari (5526_CR10) 2022; 15
H GhorbanTanhaei (5526_CR30) 2024; 17
A Najafizadeh (5526_CR3) 2022; 25
AS Abohamama (5526_CR6) 2022; 30
A Hazra (5526_CR17) 2020; 7
J Wang (5526_CR41) 2019; 19
PT Boggs (5526_CR49) 1995; 4
E Hosseini (5526_CR45) 2022; 206
Z Zhou (5526_CR37) 2022; 6
A Shahrjerdi (5526_CR33) 2023; 45
5526_CR42
5526_CR46
C Wu (5526_CR48) 2018; 9
MA Ibrahim (5526_CR8) 2023; 11
M Bocklet (5526_CR32) 2024; 25
SM Hussain (5526_CR27) 2022; 64
References_xml – volume: 14
  start-page: 2340
  issue: 11
  year: 2022
  ident: 5526_CR43
  publication-title: Symmetry
  doi: 10.3390/sym14112340
– volume: 30
  start-page: 54
  issue: 4
  year: 2022
  ident: 5526_CR6
  publication-title: J. Netw. Syst. Manage.
  doi: 10.1007/s10922-022-09664-6
– ident: 5526_CR23
  doi: 10.1186/s13677-021-00264-4
– volume: 17
  start-page: 4550
  issue: 18
  year: 2024
  ident: 5526_CR34
  publication-title: Materials
  doi: 10.3390/ma17184550
– volume: 12
  start-page: 718
  issue: 3
  year: 2023
  ident: 5526_CR58
  publication-title: Electronics
  doi: 10.3390/electronics12030718
– volume: 7
  start-page: 3266
  issue: 4
  year: 2020
  ident: 5526_CR17
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2020.3021792
– volume: 54
  start-page: 1
  issue: 11
  year: 2022
  ident: 5526_CR35
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3513002
– volume: 19
  start-page: 1023
  issue: 5
  year: 2019
  ident: 5526_CR41
  publication-title: Sensors
  doi: 10.3390/s19051023
– volume: 103
  start-page: 58
  year: 2018
  ident: 5526_CR39
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2017.11.016
– volume: 45
  start-page: 11
  issue: 1
  year: 2023
  ident: 5526_CR33
  publication-title: J. Brazilian Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-022-03883-3
– volume: 50
  start-page: 22
  issue: 1
  year: 2021
  ident: 5526_CR51
  publication-title: Kybernetes
  doi: 10.1108/K-10-2019-0666
– ident: 5526_CR31
  doi: 10.1016/j.sasc.2025.200209
– volume: 6
  start-page: 238
  issue: 1
  year: 2022
  ident: 5526_CR37
  publication-title: IEEE Trans. Green. Commun. Netw.
  doi: 10.1109/TGCN.2021.3121961
– ident: 5526_CR24
  doi: 10.1109/ISTEL.2016.7881932
– ident: 5526_CR53
  doi: 10.1109/ACCESS.2024.3482987
– volume: 17
  start-page: 100462
  year: 2024
  ident: 5526_CR30
  publication-title: Results Control Optim.
  doi: 10.1016/j.rico.2024.100462
– ident: 5526_CR46
  doi: 10.1109/SMC42975.2020.9283211
– volume: 16
  start-page: 103
  issue: 2
  year: 2020
  ident: 5526_CR5
  publication-title: Iraqi J. Electr. Electron. Eng.
  doi: 10.37917/ijeee.16.2.11
– volume: 5
  start-page: 1747
  issue: 4
  year: 2021
  ident: 5526_CR55
  publication-title: IEEE Trans. Green. Commun. Netw.
  doi: 10.1109/TGCN.2021.3111909
– volume: 14
  start-page: 2139
  issue: 4
  year: 2021
  ident: 5526_CR52
  publication-title: Peer-to-Peer Netw. Appl.
  doi: 10.1007/s12083-021-01118-1
– volume: 15
  start-page: 397
  issue: 11
  year: 2022
  ident: 5526_CR10
  publication-title: Algorithms
  doi: 10.3390/a15110397
– volume: 25
  start-page: 141
  issue: 1
  year: 2022
  ident: 5526_CR3
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-021-03371-8
– volume: 117
  start-page: 498
  year: 2021
  ident: 5526_CR22
  publication-title: Future Generation Comput. Syst.
  doi: 10.1016/j.future.2020.12.019
– volume: 25
  start-page: 11
  issue: 1
  year: 2024
  ident: 5526_CR32
  publication-title: Prog. Orthodont.
  doi: 10.1186/s40510-024-00510-w
– volume: 10
  start-page: 53
  issue: 1
  year: 2021
  ident: 5526_CR1
  publication-title: J. Cloud Comput.
  doi: 10.1186/s13677-021-00264-4
– volume: 23
  start-page: 2445
  issue: 5
  year: 2023
  ident: 5526_CR47
  publication-title: Sensors
  doi: 10.3390/s23052445
– volume: 156
  start-page: 64
  year: 2024
  ident: 5526_CR16
  publication-title: Future Generation Comput. Syst.
  doi: 10.1016/j.future.2024.03.013
– ident: 5526_CR20
  doi: 10.1109/ICISCAE52414.2021.9590674
– volume: 105
  start-page: 1717
  issue: 8
  year: 2023
  ident: 5526_CR25
  publication-title: Computing
  doi: 10.1007/s00607-023-01171-z
– ident: 5526_CR12
– volume: 18
  start-page: 8967
  issue: 12
  year: 2022
  ident: 5526_CR56
  publication-title: IEEE Trans. Industr. Inf.
  doi: 10.1109/TII.2022.3165085
– volume: 15
  start-page: 2007
  issue: 4
  year: 2020
  ident: 5526_CR36
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2020.3028575
– ident: 5526_CR19
  doi: 10.1109/TII.2023.3299624
– volume: 26
  start-page: 4051
  issue: 6
  year: 2023
  ident: 5526_CR26
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-022-03809-7
– volume: 36
  start-page: 2008149
  issue: 1
  year: 2022
  ident: 5526_CR13
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2021.2008149
– volume: 10
  start-page: 17803
  year: 2022
  ident: 5526_CR28
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2022.3149955
– volume: 5
  start-page: 4076
  issue: 5
  year: 2018
  ident: 5526_CR4
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2018.2846644
– volume: 8
  start-page: 825
  issue: 5
  year: 2022
  ident: 5526_CR11
  publication-title: Digit. Commun. Networks
  doi: 10.1016/j.dcan.2021.09.012
– volume: 86
  start-page: 836
  year: 2018
  ident: 5526_CR54
  publication-title: Future Generation Comput. Syst.
  doi: 10.1016/j.future.2017.07.048
– ident: 5526_CR42
  doi: 10.1137/1.9781611973365
– ident: 5526_CR14
  doi: 10.1109/NCC52529.2021.9530077
– volume: 5
  start-page: 100331
  issue: 1
  year: 2025
  ident: 5526_CR38
  publication-title: Int. J. Inform. Manage. Data Insights
– volume: 35
  start-page: e7701
  issue: 21
  year: 2023
  ident: 5526_CR15
  publication-title: Concurrency Computation: Pract. Experience
  doi: 10.1002/cpe.7701
– volume: 27
  start-page: 1947
  issue: 2
  year: 2024
  ident: 5526_CR21
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-023-04071-1
– volume: 15
  start-page: 1119
  issue: 1
  year: 2024
  ident: 5526_CR44
  publication-title: Int. J. Comput. Digit. Syst.
  doi: 10.12785/ijcds/150179
– volume: 33
  start-page: e4583
  issue: 16
  year: 2020
  ident: 5526_CR18
  publication-title: Int. J. Commun Syst
  doi: 10.1002/dac.4583
– volume: 9
  start-page: 641
  issue: 2
  year: 2018
  ident: 5526_CR48
  publication-title: IEEE Trans. Cloud Comput.
  doi: 10.1109/TCC.2018.2889482
– volume: 11
  start-page: 20635
  year: 2023
  ident: 5526_CR2
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2023.3241240
– volume: 5
  start-page: 658
  issue: 2
  year: 2021
  ident: 5526_CR29
  publication-title: IEEE Trans. Green. Commun. Netw.
  doi: 10.1109/TGCN.2021.3067309
– volume: 11
  start-page: 133607
  year: 2023
  ident: 5526_CR8
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2023.3337034
– volume: 206
  start-page: 108752
  year: 2022
  ident: 5526_CR45
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2021.108752
– volume: 124
  start-page: 142
  year: 2021
  ident: 5526_CR57
  publication-title: Future Generation Comput. Syst.
  doi: 10.1016/j.future.2021.05.026
– volume: 4
  start-page: 1
  year: 1995
  ident: 5526_CR49
  publication-title: Acta Numerica
  doi: 10.1017/S0962492900002518
– ident: 5526_CR50
  doi: 10.1109/WCSP.2018.8555532
– volume: 272
  start-page: 110563
  year: 2023
  ident: 5526_CR7
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2023.110563
– ident: 5526_CR9
  doi: 10.3390/fi16010016
– volume: 64
  start-page: 101828
  year: 2022
  ident: 5526_CR27
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2022.101828
– volume: 5
  start-page: 2094
  issue: 3
  year: 2018
  ident: 5526_CR40
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2018.2823000
SSID ssj0009729
Score 2.3665032
Snippet The purpose is to accurately assess fog networks’ overall energy efficiency and spectrum efficiency. This model analyzes the tradeoff between performance...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 796
SubjectTerms Algorithms
Computer Communication Networks
Computer Science
Current modulation
Edge computing
Energy consumption
Energy efficiency
Internet of Things
Mathematical analysis
Multiple objective analysis
Networks
Nodes
Operating Systems
Optimization
Processor Architectures
Quadratic programming
Quality of service
Resource utilization
Task scheduling
Title Multi-objective optimization for the performance of task scheduling in homogeneous fog networks
URI https://link.springer.com/article/10.1007/s10586-025-05526-3
https://www.proquest.com/docview/3250850332
Volume 28
WOSCitedRecordID wos001571701900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: RSV
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAc2sNTYcRyPCFExoArxUjcrcWwoqEnVpPx-zm6iAIIBsuZyiu5t-b47hE5plHANDzFREpJQpimRwmYkhWRiRAY5K_RA4RsxGsXjsbytQWFl0-3eXEn6SP0J7MZj1zDLyYBzGhG2itYg3cXOHe_un9pRu8LvJgsYUIuYixoq8zOPr-morTG_XYv6bDPs_u8_t9BmXV3ii6U5bKMVk--gbrO5AdeOvIuUx92SIn1dxjtcQOSY1pBMDHUshroQz1pQAS4srpLyDcNhGJKTw7DjSY5fimkBFmiKRQlfPeN82VRe7qHH4dXD5TWpVy0QTQWtiHVj0MKBsQlPJNNxFGnGg5RFmch4YGlksmRgstQ4_xeSWma1TAxI2kgdxBnbR528yM0BwjwWmlqRwPHUhkDqSjyoWbSVVltGeQ-dNRJXs-VEDdXOTnayUyA75WWnWA_1G6Wo2rtKBVzcpD3GaA-dN0poX__O7fBv5Edogzo9euhhH3Wq-cIco3X9Xk3K-Ym3ug-y6NMU
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gV58i-szB28a2E2apj2KKCuui-gq3kKbJrrKtmKrv99JH1RFD9prp0OZd8h8MwAHzI-ExocaP_KoF8YxDaVNaIzJxMgEc5ZXAoUHcjgM7u_DqxoUljfd7s2VZBmpP4HdROAaZgXtCsF8yqdh1sOM5Rr5rm_u2lG7stxN1uNILQMha6jMzzy-pqO2xvx2LVpmm7Ol__3nMizW1SU5rsxhBaZMugpLzeYGUjvyGqgSd0uz-KmKdyTDyDGpIZkE61iCdSF5aUEFJLOkiPJngodhTE4Ow07GKXnMJhlaoMnecvzqgaRVU3m-Drdnp6OTPq1XLVDNJCuodWPQvK6xkYhCrgPf11z0Yu4nMhE9y3yTRF2TxMb5vwyZ5VaHkUFJm1D3goRvwEyapWYTiAikZlZGeDy1HpK6Eg9rFm1Dqy1nogOHjcTVSzVRQ7Wzk53sFMpOlbJTvAM7jVJU7V25Qi5u0h7nrANHjRLa179z2_ob-T7M90eXAzU4H15swwJzOi1hiDswU7y-mV2Y0-_FOH_dKy3wA6GP1fg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfHiW1yfOXjT4G7SNO1R1EVRFsEH3kKbJrqK7WK7_n4nfVAVPYi9djqUmck8yHwzAPvMj4TGhxo_8qgXxjENpU1ojMHEyARjllcCha_kcBg8PITXn1D8Zbd7cyVZYRrclKa0OBon9ugT8E0ErnlW0J4QzKd8GmY8tzTI1es39-3YXVnuKetzpJaBkDVs5mceX0NTm29-uyItI89g8f__vAQLddZJjiszWYYpk67AYrPRgdQHfBVUicelWfxc-UGSoUd5raGaBPNbgvkiGbdgA5JZUkT5C8EiGYOWw7aTUUqestcMLdNkkxy_eiRp1Wyer8Hd4Oz25JzWKxioZpIV1LrxaF7P2EhEIdeB72su-jH3E5mIvmW-SaKeSWLj_IIMmeVWh5FBqZtQ94OEr0MnzVKzAUQEUjMrIyxbrYekLvXDXEbb0GrLmejCQSN9Na4mbah2prKTnULZqVJ2indhu1GQqk9drpCLm8DHOevCYaOQ9vXv3Db_Rr4Hc9enA3V1MbzcgnnmVFqiE7ehU7xNzA7M6vdilL_tlsb4Ac8b3tw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+for+the+performance+of+task+scheduling+in+homogeneous+fog+networks&rft.jtitle=Cluster+computing&rft.au=Momeny%2C+Sajjad&rft.au=Robatmily%2C+Mohamad&rft.au=Rahmani%2C+Amir+Masoud&rft.date=2025-11-01&rft.pub=Springer+US&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=28&rft.issue=12&rft_id=info:doi/10.1007%2Fs10586-025-05526-3&rft.externalDocID=10_1007_s10586_025_05526_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon