A Multi-level Monte Carlo Simulation for Invariant Distribution of Markovian Switching Lévy-Driven SDEs with Super-Linearly Growth Coefficients
This paper concerns the numerical approximation for the invariant distribution of Markovian switching Lévy-driven stochastic differential equations. By combining the tamed-adaptive Euler-Maruyama scheme with the Multi-level Monte Carlo method, we propose an approximation scheme that can be applied t...
Gespeichert in:
| Veröffentlicht in: | Methodology and computing in applied probability Jg. 27; H. 4; S. 79 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.12.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1387-5841, 1573-7713 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper concerns the numerical approximation for the invariant distribution of Markovian switching Lévy-driven stochastic differential equations. By combining the tamed-adaptive Euler-Maruyama scheme with the Multi-level Monte Carlo method, we propose an approximation scheme that can be applied to stochastic differential equations with super-linear growth drift and diffusion coefficients. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1387-5841 1573-7713 |
| DOI: | 10.1007/s11009-025-10205-2 |