A Multi-level Monte Carlo Simulation for Invariant Distribution of Markovian Switching Lévy-Driven SDEs with Super-Linearly Growth Coefficients
This paper concerns the numerical approximation for the invariant distribution of Markovian switching Lévy-driven stochastic differential equations. By combining the tamed-adaptive Euler-Maruyama scheme with the Multi-level Monte Carlo method, we propose an approximation scheme that can be applied t...
Uloženo v:
| Vydáno v: | Methodology and computing in applied probability Ročník 27; číslo 4; s. 79 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.12.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1387-5841, 1573-7713 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper concerns the numerical approximation for the invariant distribution of Markovian switching Lévy-driven stochastic differential equations. By combining the tamed-adaptive Euler-Maruyama scheme with the Multi-level Monte Carlo method, we propose an approximation scheme that can be applied to stochastic differential equations with super-linear growth drift and diffusion coefficients. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1387-5841 1573-7713 |
| DOI: | 10.1007/s11009-025-10205-2 |