Feature selection based on multimodal multi-objective particle swarm optimization and prior information

Due to the conflicting objectives of classification accuracy and selected features size, feature selection is typically approached as a multi-objective optimization problem. However, traditional methods often overlook the inherent multimodal nature of feature selection. Additionally, these methods m...

Full description

Saved in:
Bibliographic Details
Published in:Pattern analysis and applications : PAA Vol. 28; no. 4; p. 181
Main Authors: Liu, Wenkai, Ling, Qinghua, Han, Fei, Han, Henry, Shi, Jinlong
Format: Journal Article
Language:English
Published: London Springer London 01.12.2025
Springer Nature B.V
Subjects:
ISSN:1433-7541, 1433-755X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Due to the conflicting objectives of classification accuracy and selected features size, feature selection is typically approached as a multi-objective optimization problem. However, traditional methods often overlook the inherent multimodal nature of feature selection. Additionally, these methods might ignore the importance of filter-based prior knowledge in forming equivalent feature subsets, weakening the ability to search for such subsets. An improved feature selection algorithm, named NRMOPSO, is proposed in this study, which is based on multimodal multi-objective particle swarm optimization and integrates a niche method with ReliefF. Initially, the Incrementally Expanding Niche Strategy (IENS) adjusts niche size for comprehensive initial exploration. Subsequently, the ReliefF algorithm evaluates feature importance, incorporating ReliefF-based prior information into the particle search to include significant unselected features while retaining essential ones. Experimental results on 14 UCI datasets indicate that the proposed algorithm effectively identifies multiple equivalent feature subsets and, on high-dimensional datasets, achieves smaller feature subsets without compromising classification accuracy when compared with five classical and advanced multimodal multi-objective optimization algorithms.
AbstractList Due to the conflicting objectives of classification accuracy and selected features size, feature selection is typically approached as a multi-objective optimization problem. However, traditional methods often overlook the inherent multimodal nature of feature selection. Additionally, these methods might ignore the importance of filter-based prior knowledge in forming equivalent feature subsets, weakening the ability to search for such subsets. An improved feature selection algorithm, named NRMOPSO, is proposed in this study, which is based on multimodal multi-objective particle swarm optimization and integrates a niche method with ReliefF. Initially, the Incrementally Expanding Niche Strategy (IENS) adjusts niche size for comprehensive initial exploration. Subsequently, the ReliefF algorithm evaluates feature importance, incorporating ReliefF-based prior information into the particle search to include significant unselected features while retaining essential ones. Experimental results on 14 UCI datasets indicate that the proposed algorithm effectively identifies multiple equivalent feature subsets and, on high-dimensional datasets, achieves smaller feature subsets without compromising classification accuracy when compared with five classical and advanced multimodal multi-objective optimization algorithms.
ArticleNumber 181
Author Han, Fei
Liu, Wenkai
Ling, Qinghua
Han, Henry
Shi, Jinlong
Author_xml – sequence: 1
  givenname: Wenkai
  surname: Liu
  fullname: Liu, Wenkai
  organization: School of Computer Science, Jiangsu University of Science and Technology
– sequence: 2
  givenname: Qinghua
  surname: Ling
  fullname: Ling, Qinghua
  email: jsjxy_lqh@just.edu.cn
  organization: School of Computer Science, Jiangsu University of Science and Technology
– sequence: 3
  givenname: Fei
  surname: Han
  fullname: Han, Fei
  organization: School of Computer Science and Communication Engineering, Jiangsu University
– sequence: 4
  givenname: Henry
  surname: Han
  fullname: Han, Henry
  organization: Department of Computer Science, Rogers School of Engineering and Computer Science, Baylor University
– sequence: 5
  givenname: Jinlong
  surname: Shi
  fullname: Shi, Jinlong
  organization: School of Computer Science, Jiangsu University of Science and Technology
BookMark eNp9kEFLxDAQhYOs4O7qH_BU8BydNsmmPcriqrDgRcFbSJvJ0qVtatIq-uvNbkVvXmYe4XtvwluQWec6JOQyhesUQN6EODmnkAkKqRArCidknnLGqBTidfareXpGFiHsARhjWT4nuw3qYfSYBGywGmrXJaUOaJIo2rEZ6tYZ3UySunJ_YN4x6bUf6qqJtg_t28T1Eay_9NGvO5P0vnY-qTvrfHt8PSenVjcBL372krxs7p7XD3T7dP-4vt3SKpPZQNEaA7xCY4zgubWa5xILVlkjtZZVAchFabhFxlMtRLFC0DplpYSSgbTAluRqyu29exsxDGrvRt_Fk4plosjZqoAiUtlEVd6F4NGq-OFW-0-VgjoUqqZCVSxUHQtVh2g2mUKEux36v-h_XN8WDn3a
Cites_doi 10.1007/s00500-016-2128-8
10.1016/j.eswa.2021.115620
10.1016/j.asoc.2023.109987
10.1109/TCBB.2015.2476796
10.1007/s11063-024-11553-9
10.1109/SPAC49953.2019.237884
10.1109/TELFOR56187.2022.9983668
10.1109/TEVC.2022.3168052
10.1016/j.eswa.2020.114444
10.1109/TEVC.2023.3292527
10.1109/ZINC55034.2022.9840700
10.1016/j.inffus.2023.102150
10.1007/978-3-540-31880-4_35
10.1109/TEVC.2017.2743016
10.1016/j.asoc.2019.105886
10.1145/1527125.1527138
10.1016/j.eswa.2018.07.013
10.1109/TEVC.2017.2754271
10.1109/TEVC.2015.2504420
10.1109/TCYB.2020.3042243
10.1016/0167-8655(94)90127-9
10.1109/ICARM54641.2022.9959479
10.1016/j.knosys.2023.110640
10.1016/j.asoc.2021.108381
10.1016/j.patcog.2009.06.009
10.1109/ICMSS.2009.5302726
10.1016/j.swevo.2021.100849
10.1016/j.ins.2019.01.084
10.2478/cait-2019-0001
10.1016/j.swevo.2021.100847
10.1016/j.eswa.2023.122707
10.1016/j.ins.2023.03.144
10.1023/A:1025667309714
10.1109/CEC55065.2022.9870227
10.1109/TEVC.2024.3373802
10.1109/TSMCB.2012.2227469
10.1080/03772063.2021.1962747
10.1016/j.asoc.2021.107887
10.1007/s10489-022-03465-9
10.1109/TCYB.2020.3015756
10.1016/j.knosys.2023.110361
10.1109/CEC.2016.7744093
10.1109/CIBCB.2017.8058550
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10044-025-01556-0
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
ExternalDocumentID 10_1007_s10044_025_01556_0
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62576154
  funderid: https://doi.org/10.13039/501100001809
– fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province
  grantid: KYCX24_4130
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
203
29O
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BSONS
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
MA-
N9A
NB0
NPVJJ
NQJWS
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
-Y2
1SB
2P1
2VQ
AARHV
AAYXX
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEKMD
AFGCZ
AGGDS
AGJBK
AGQPQ
AHSBF
AJBLW
BDATZ
BGNMA
CAG
CITATION
COF
EJD
FINBP
FSGXE
H13
M4Y
N2Q
NU0
O9-
RNI
RZK
AAYZH
AESKC
JQ2
ID FETCH-LOGICAL-c272t-efdd04ceddd548ffa487e93cfd7aa7c90e45bd4fe341a5596e0aa13b70b307f03
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001586624900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7541
IngestDate Sat Oct 11 06:55:12 EDT 2025
Sat Nov 29 07:21:02 EST 2025
Wed Dec 10 14:46:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Feature selection
Multimodal multiobjective optimization
Niching technique
Particle swarm optimization
ReliefF
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-efdd04ceddd548ffa487e93cfd7aa7c90e45bd4fe341a5596e0aa13b70b307f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3259836909
PQPubID 2043691
ParticipantIDs proquest_journals_3259836909
crossref_primary_10_1007_s10044_025_01556_0
springer_journals_10_1007_s10044_025_01556_0
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References B Qu (1556_CR17) 2020; 86
R Jiao (1556_CR15) 2023
1556_CR40
Y Hu (1556_CR12) 2023; 635
1556_CR41
M Robnik-Ikonja (1556_CR36) 2003; 53
1556_CR43
C Yue (1556_CR46) 2021; 62
M Shafipour (1556_CR26) 2021; 185
T Yin (1556_CR5) 2024; 104
1556_CR45
1556_CR48
IA Gheyas (1556_CR6) 2010; 43
Z Zhuang (1556_CR13) 2023; 275
X-M Hu (1556_CR28) 2021; 113
1556_CR29
F Han (1556_CR14) 2021; 62
E Zitzler (1556_CR47) 2001; 103
Y Xue (1556_CR11) 2023; 134
X Zhuang (1556_CR9) 2024; 241
R Jiao (1556_CR19) 2024
HB Nguyen (1556_CR23) 2016; 20
P Wang (1556_CR33) 2022; 27
Y Zhang (1556_CR24) 2017; 14
M Amoozegar (1556_CR25) 2018; 113
1556_CR31
1556_CR10
1556_CR35
R Ramaswamy (1556_CR2) 2023; 69
P Pudil (1556_CR7) 1994; 15
F Han (1556_CR27) 2023; 53
1556_CR37
B Xue (1556_CR22) 2013; 43
1556_CR39
S Agrawal (1556_CR32) 2023; 265
1556_CR38
Y Li (1556_CR16) 2019; 494
B Qu (1556_CR18) 2022; 117
1556_CR4
B Xue (1556_CR1) 2016; 20
AU Haq (1556_CR3) 2021; 168
F Han (1556_CR20) 2024; 56
Y Hu (1556_CR34) 2021; 51
C Yue (1556_CR30) 2018; 22
K Chen (1556_CR21) 2022; 52
B Venkatesh (1556_CR8) 2019; 19
Y Zhang (1556_CR44) 2017; 14
Q Yang (1556_CR42) 2018; 22
References_xml – volume: 20
  start-page: 3927
  issue: 10
  year: 2016
  ident: 1556_CR23
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2128-8
– volume: 185
  start-page: 115620
  year: 2021
  ident: 1556_CR26
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115620
– volume: 134
  start-page: 109987
  year: 2023
  ident: 1556_CR11
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2023.109987
– volume: 14
  start-page: 64
  issue: 1
  year: 2017
  ident: 1556_CR24
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2015.2476796
– volume: 56
  start-page: 110
  issue: 2
  year: 2024
  ident: 1556_CR20
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-024-11553-9
– ident: 1556_CR40
  doi: 10.1109/SPAC49953.2019.237884
– ident: 1556_CR10
  doi: 10.1109/TELFOR56187.2022.9983668
– volume: 27
  start-page: 296
  issue: 2
  year: 2022
  ident: 1556_CR33
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2022.3168052
– volume: 168
  start-page: 114444
  year: 2021
  ident: 1556_CR3
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2020.114444
– year: 2023
  ident: 1556_CR15
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2023.3292527
– ident: 1556_CR4
  doi: 10.1109/ZINC55034.2022.9840700
– volume: 103
  start-page: 21
  year: 2001
  ident: 1556_CR47
  publication-title: TIK Rep
– volume: 104
  start-page: 102150
  year: 2024
  ident: 1556_CR5
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2023.102150
– ident: 1556_CR39
  doi: 10.1007/978-3-540-31880-4_35
– volume: 22
  start-page: 578
  issue: 4
  year: 2018
  ident: 1556_CR42
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2017.2743016
– volume: 86
  start-page: 105886
  year: 2020
  ident: 1556_CR17
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105886
– ident: 1556_CR38
– ident: 1556_CR48
  doi: 10.1145/1527125.1527138
– volume: 113
  start-page: 499
  year: 2018
  ident: 1556_CR25
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2018.07.013
– volume: 22
  start-page: 805
  issue: 5
  year: 2018
  ident: 1556_CR30
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2017.2754271
– volume: 20
  start-page: 606
  issue: 4
  year: 2016
  ident: 1556_CR1
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2015.2504420
– volume: 52
  start-page: 7172
  issue: 7
  year: 2022
  ident: 1556_CR21
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2020.3042243
– volume: 15
  start-page: 1119
  issue: 11
  year: 1994
  ident: 1556_CR7
  publication-title: Pattern Recogn Lett
  doi: 10.1016/0167-8655(94)90127-9
– ident: 1556_CR37
– ident: 1556_CR29
  doi: 10.1109/ICARM54641.2022.9959479
– volume: 275
  start-page: 110640
  year: 2023
  ident: 1556_CR13
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2023.110640
– volume: 117
  start-page: 108381
  year: 2022
  ident: 1556_CR18
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.108381
– volume: 43
  start-page: 5
  issue: 1
  year: 2010
  ident: 1556_CR6
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2009.06.009
– ident: 1556_CR43
  doi: 10.1109/ICMSS.2009.5302726
– volume: 62
  start-page: 100849
  year: 2021
  ident: 1556_CR46
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2021.100849
– volume: 494
  start-page: 233
  year: 2019
  ident: 1556_CR16
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.01.084
– volume: 19
  start-page: 3
  issue: 1
  year: 2019
  ident: 1556_CR8
  publication-title: Cybern Inf Technol
  doi: 10.2478/cait-2019-0001
– volume: 62
  start-page: 100847
  year: 2021
  ident: 1556_CR14
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2021.100847
– volume: 241
  start-page: 122707
  year: 2024
  ident: 1556_CR9
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2023.122707
– volume: 635
  start-page: 279
  year: 2023
  ident: 1556_CR12
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2023.03.144
– volume: 53
  start-page: 23
  issue: 1/2
  year: 2003
  ident: 1556_CR36
  publication-title: Mach Learn
  doi: 10.1023/A:1025667309714
– ident: 1556_CR31
  doi: 10.1109/CEC55065.2022.9870227
– year: 2024
  ident: 1556_CR19
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2024.3373802
– volume: 43
  start-page: 1656
  issue: 6
  year: 2013
  ident: 1556_CR22
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TSMCB.2012.2227469
– volume: 69
  start-page: 9
  issue: 1
  year: 2023
  ident: 1556_CR2
  publication-title: IETE J Res
  doi: 10.1080/03772063.2021.1962747
– volume: 113
  start-page: 107887
  year: 2021
  ident: 1556_CR28
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107887
– volume: 53
  start-page: 3545
  issue: 3
  year: 2023
  ident: 1556_CR27
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-03465-9
– volume: 51
  start-page: 874
  issue: 2
  year: 2021
  ident: 1556_CR34
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2020.3015756
– ident: 1556_CR45
– volume: 265
  start-page: 110361
  year: 2023
  ident: 1556_CR32
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2023.110361
– ident: 1556_CR35
  doi: 10.1109/CEC.2016.7744093
– ident: 1556_CR41
  doi: 10.1109/CIBCB.2017.8058550
– volume: 14
  start-page: 64
  issue: 1
  year: 2017
  ident: 1556_CR44
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2015.2476796
SSID ssj0033328
Score 2.3980958
Snippet Due to the conflicting objectives of classification accuracy and selected features size, feature selection is typically approached as a multi-objective...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 181
SubjectTerms Accuracy
Algorithms
Archives & records
Artificial intelligence
Classification
Computer Science
Datasets
Equivalence
Feature selection
Genetic algorithms
Machine learning
Methods
Multiple objective analysis
Mutation
Optimization
Original Article
Particle swarm optimization
Pattern Recognition
Title Feature selection based on multimodal multi-objective particle swarm optimization and prior information
URI https://link.springer.com/article/10.1007/s10044-025-01556-0
https://www.proquest.com/docview/3259836909
Volume 28
WOSCitedRecordID wos001586624900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-755X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033328
  issn: 1433-7541
  databaseCode: RSV
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTwMhECVaPXixfsZqNRy8Kcm2sGU5GqPxYBrjR9PbBhYwmnS32W317ztQSNXoQW-E3RDCwLz3AjOD0GlmuQLUZaBNOCfMCkqUZYKwtFBqIJnhPtnz6JYPh9l4LO5CUFgTX7vHK0nvqT8FuyWMEVd-1eE86OBVtAZwl7mCDfcPo-h_KaW-oioQAUp4ynohVObnMb7C0ZJjfrsW9Whz3f7fPLfQZmCX-GKxHbbRiil3UDswTRzOcQNdsZhD7NtFz44MzmuDG18ZB8yFHcJpDA3_6nBSaRjaN0mlXheOEk_D1sPNu6wnuAIPNAmhnViWGsPcqxqH9Kyudw89XV89Xt6QUIWBFH3enxFjtU5YYbTWoG6slSBxjKCF1VxKXojEsFRpZg3goQR9MjCJlD2qeKLAf9iE7qNWWZXmAOGBlhLoYiZSA8RBKqGUzmzPCsOESTXroLNojHy6SLaRL9Mqu2XNYVlzv6x50kHdaK88HLwmpyDnMgqSX3TQebTP8vPvox3-7fcjtNF3JvYPW7qoNavn5hitF2-zl6Y-8RvyAzKg3RU
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CnrxLdZnDt40sG2yzeYoYlGsRXzhbUk2iSi0W3ar_n1n0yxV0YPeQnYJIZPM930kMwNwmDihEXU5ahMhKHeSUe24pDzOtO4oboVP9vzQE_1-8vgor0NQWFm_dq-vJL2n_hTsFnFOq_KrFc6jDp6FOY6IVWXMv7l9qP0vY8xXVEUiwKiIeSuEyvw8xlc4mnLMb9eiHm26y_-b5wosBXZJTibbYRVm7HANlgPTJOEcl9hVF3Oo-9bhqSKDr4Ulpa-Mg-YiFcIZgg3_6nCQGxzaN2muXyaOkozC1iPluyoGJEcPNAihnUQNDcG55wUJ6Vmr3g24757dnZ7TUIWBZm3RHlPrjIl4Zo0xqG6cUyhxrGSZM0IpkcnI8lgb7izioUJ90rGRUi2mRaTRf7iIbUJjmA_tFpCOUQrpYiJji8RBaam1SVzLSculjQ1vwlFtjHQ0SbaRTtMqV8ua4rKmflnTqAm7tb3ScPDKlKGcSxhKftmE49o-08-_j7b9t98PYOH87qqX9i76lzuw2K7M7R-57EJjXLzaPZjP3sbPZbHvN-cHmKXf-Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VLUJcyquILZT6wA0ssmtnHR8r2hWoaIXEQ9wiO7arIm2ySrLw9zv2OlpAcKh6s5zISmbsme-T5wFwlDmh0ety5CZCUO4ko9pxSXlaaD1S3IpQ7PnuUkwm2f29vHqWxR-i3bsryUVOg6_SVLanM-NOnyW-JZxT34rV-3zkxCvwkftAes_Xr-86W8wYC91VERQwKlI-iGkzb6_x0jUt8earK9LgecYb___Nm_Apok7yfbFNtuCDLbdhIyJQEs93g1Ndk4dubgd-e5A4ry1pQsccVCPxns8QHIRoxGllcOkwpJV-WBhQMotbkjRPqp6SCi3TNKZ8ElUagv9R1SSWbfWzn-F2_PPm7JzG7gy0GIphS60zJuGFNcYg63FOIfWxkhXOCKVEIRPLU224s-gnFfKWkU2UGjAtEo12xSVsF3plVdo9ICOjFMLITKYWAYXSUmuTuYGTlkubGt6H404x-WxRhCNfllv2Ys1RrHkQa5704aDTXR4PZJMzpHkZG8lE9uGk09Xy8furffm317_B2tWPcX55Mfm1D-tDr-0Q-3IAvbae26-wWjy2f5r6MOzTv58I6N0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+based+on+multimodal+multi-objective+particle+swarm+optimization+and+prior+information&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Liu%2C+Wenkai&rft.au=Ling%2C+Qinghua&rft.au=Han%2C+Fei&rft.au=Han%2C+Henry&rft.date=2025-12-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=28&rft.issue=4&rft_id=info:doi/10.1007%2Fs10044-025-01556-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_025_01556_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon