Multimodal Emotion Recognition based on Face and Speech using Deep Convolution Neural Network and Long Short Term Memory
Multimodal emotion recognition (MER) is crucial for analyzing a person’s mental behavior and health to enhance the performance of human–computer-interaction systems. Various deep learning-based MER systems have been presented in the last decade. However, the outcomes of the MER schemes are limited d...
Gespeichert in:
| Veröffentlicht in: | Circuits, systems, and signal processing Jg. 44; H. 9; S. 6622 - 6649 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.09.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0278-081X, 1531-5878 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Multimodal emotion recognition (MER) is crucial for analyzing a person’s mental behavior and health to enhance the performance of human–computer-interaction systems. Various deep learning-based MER systems have been presented in the last decade. However, the outcomes of the MER schemes are limited due to poor feature representation, lower correlation in short and long-term features, security issues, lower generalization capability, lower reliability of emotional modality systems, and higher computational intricacy of deep learning models. This paper presents the MER based on facial images and speech data using parallel deep convolution neural network (PDCNN) and bidirectional long short-term memory (BiLSTM) to improve the system’s reliability, security, and robustness. The PDCNN aims to offer superior generalization capability and feature depiction; however, BiLSTM offers better long-term dependency, temporal representation, and correlation between the multimodal data’s short and long-term attributes. The novel hybrid Particle Swarm Optimization based on Multi-Attribute Utility Theory and Archimedes Optimization Algorithm (PMA) is used to select crucial features of the facial expressions and speech data to minimize the computational intricacy of the PDCNN-LSTM framework. It offers an overall improved accuracy of 99.22%, precision of 0.9967, recall of 0.9933, and F1-score of 0.9949 for MER on the BAUM dataset compared to traditional techniques. |
|---|---|
| AbstractList | Multimodal emotion recognition (MER) is crucial for analyzing a person’s mental behavior and health to enhance the performance of human–computer-interaction systems. Various deep learning-based MER systems have been presented in the last decade. However, the outcomes of the MER schemes are limited due to poor feature representation, lower correlation in short and long-term features, security issues, lower generalization capability, lower reliability of emotional modality systems, and higher computational intricacy of deep learning models. This paper presents the MER based on facial images and speech data using parallel deep convolution neural network (PDCNN) and bidirectional long short-term memory (BiLSTM) to improve the system’s reliability, security, and robustness. The PDCNN aims to offer superior generalization capability and feature depiction; however, BiLSTM offers better long-term dependency, temporal representation, and correlation between the multimodal data’s short and long-term attributes. The novel hybrid Particle Swarm Optimization based on Multi-Attribute Utility Theory and Archimedes Optimization Algorithm (PMA) is used to select crucial features of the facial expressions and speech data to minimize the computational intricacy of the PDCNN-LSTM framework. It offers an overall improved accuracy of 99.22%, precision of 0.9967, recall of 0.9933, and F1-score of 0.9949 for MER on the BAUM dataset compared to traditional techniques. |
| Author | Taware, Shwetkranti Thakare, Anuradha D. |
| Author_xml | – sequence: 1 givenname: Shwetkranti surname: Taware fullname: Taware, Shwetkranti email: shweta.taware@gmail.com organization: Department of Computer Engineering, Pimpri Chinchwad College of Engineering – sequence: 2 givenname: Anuradha D. surname: Thakare fullname: Thakare, Anuradha D. organization: Department of Computer Engineering, Pimpri Chinchwad College of Engineering |
| BookMark | eNp9kE1PAjEURRujiYD-AVdNXI--tvO5NAhqApgIJu6aTucBg0w7tjMq_94BTNy5endxzn3J7ZNTYw0ScsXghgEktx4ARBgAjwIQkELAT0iPRYIFUZqkp6QHPEkDSNnbOel7vwFgWZjxHvmettumrGyhtnRU2aa0hr6gtitTHnKuPBa0C2OlkSpT0HmNqNe09aVZ0XvEmg6t-bTb9sDPsHVd1QybL-veD8LEduB8bV1DF-gqOsXKut0FOVuqrcfL3zsgr-PRYvgYTJ4fnoZ3k0DzhDcBFqnIcs5ini41FyyKFUIEsc5Enqk450rrZQFFiLnmOsrDMBSoUhQ6CRXTKAbk-thbO_vRom_kxrbOdC-l4GGUJHGW8I7iR0o7673DpaxdWSm3kwzkfmF5XFh2C8vDwnIviaPkO9is0P1V_2P9ABVigZI |
| Cites_doi | 10.3390/brainsci10100687 10.1109/BigData47090.2019.9005997 10.1016/j.jksuci.2018.09.002 10.1016/j.inffus.2023.102218 10.1016/j.knosys.2022.108580 10.1016/j.bspc.2021.103029 10.1038/s41598-017-00416-0 10.1007/s11042-023-16443-1 10.1016/j.inffus.2023.102019 10.1109/ICOSEC54921.2022.9951987 10.1109/TIE.2022.3150097 10.3390/electronics12040839 10.1007/s10489-020-01893-z 10.1016/j.bspc.2022.103970 10.1109/INMIC.2008.4777804 10.1007/s11042-014-1986-2 10.1016/j.seps.2022.101256 10.1016/j.eswa.2023.120639 10.3390/app11177962 10.1109/TCYB.2017.2714145 10.1007/s11334-022-00471-5 10.1088/1757-899X/1098/3/032055 10.1111/exsy.13403 10.1109/TCDS.2021.3071170 10.1007/s11042-024-19674-y 10.1007/s11277-022-09640-y 10.17694/bajece.1372107 10.1109/TAI.2024.3445325 10.1109/ACCESS.2022.3146729 10.1109/MWC.2019.1800419 10.1109/ACCESS.2020.3023871 10.1016/j.eswa.2023.122579 10.1109/INCET57972.2023.10170346 10.1007/s11042-022-13091-9 10.1007/s00034-023-02562-5 10.1016/j.jksuci.2020.03.011 10.1016/j.engappai.2023.107708 10.1007/s10489-021-02927-w 10.35940/ijitee.B8014.019320 10.1007/s40846-019-00505-7 10.1016/j.bspc.2024.106241 10.1109/ICBNMT.2011.6155939 10.1007/s10772-024-10138-0 10.1016/j.ins.2021.10.005 10.1007/s11760-021-01942-1 10.1016/j.bspc.2024.107039 10.1016/j.apacoust.2023.109613 10.1109/TCYB.2022.3185119 10.3390/s21155015 10.24432/C5HC8C 10.1109/TNSRE.2020.3040627 10.38094/jastt20291 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s00034-025-03080-2 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1531-5878 |
| EndPage | 6649 |
| ExternalDocumentID | 10_1007_s00034_025_03080_2 |
| GroupedDBID | -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29B 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 88I 8AO 8FE 8FG 8FW 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHQN ABJCF ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9P PF0 PHGZM PHGZT PQGLB PQQKQ PROAC PT4 PT5 PTHSS PUEGO Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 ~EX AAYXX AFFHD CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c272t-ed839b21628fc23156ae0506c93b9a6b2accfd0d4ebc2c5b4443ea8e3c74a1ce3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001475880300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-081X |
| IngestDate | Fri Nov 07 23:41:30 EST 2025 Sat Nov 29 07:33:50 EST 2025 Wed Sep 03 02:43:59 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Deep learning Affective computing Local binary pattern Multimodal emotion recognition Particle swarm optimization Deep Convolution neural network |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-ed839b21628fc23156ae0506c93b9a6b2accfd0d4ebc2c5b4443ea8e3c74a1ce3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3245776972 |
| PQPubID | 30136 |
| PageCount | 28 |
| ParticipantIDs | proquest_journals_3245776972 crossref_primary_10_1007_s00034_025_03080_2 springer_journals_10_1007_s00034_025_03080_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20250900 2025-09-00 20250901 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 9 year: 2025 text: 20250900 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Cambridge |
| PublicationSubtitle | CSSP |
| PublicationTitle | Circuits, systems, and signal processing |
| PublicationTitleAbbrev | Circuits Syst Signal Process |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | MA Hasnul (3080_CR6) 2021; 21 Y Cimtay (3080_CR25) 2020; 8 Y Tan (3080_CR26) 2021; 70 M Sharafi (3080_CR42) 2022; 78 L Fang (3080_CR53) 2023; 230 M Shamim Hossain (3080_CR33) 2019; 26 3080_CR30 3080_CR31 W Jinting (3080_CR10) 2022 T Meng (3080_CR34) 2024 K Bhangale (3080_CR46) 2023; 12 K Bhangale (3080_CR11) 2024; 43 C Dixit (3080_CR38) 2024; 240 I Taufik (3080_CR52) 2021; 1098 3080_CR21 Z He (3080_CR20) 2020; 10 Y Zhang (3080_CR50) 2017; 7 KB Bhangale (3080_CR12) 2023; 212 AI Middya (3080_CR47) 2022; 244 FA Hashim (3080_CR54) 2021; 51 MR Kose (3080_CR4) 2021; 15 U Bilotti (3080_CR37) 2024; 130 D Thiripurasundari (3080_CR17) 2024; 27 3080_CR18 A Kumar (3080_CR7) 2025; 100 W Liu (3080_CR40) 2021; 14 FZ Canal (3080_CR22) 2022; 582 3080_CR56 I Michael Revina (3080_CR23) 2021; 33 3080_CR57 PS Tomar (3080_CR36) 2024; 16 T Zhang (3080_CR24) 2020; 8 A Khalane (3080_CR35) 2025; 42 SM Saleem (3080_CR2) 2021; 2 U Akpan (3080_CR51) 2022; 82 C Marechal (3080_CR28) 2019; 11400 R Ghosh (3080_CR8) 2024; 20 M Soleimani (3080_CR29) 2020; 29 D Ayata (3080_CR32) 2020; 40 L Chen (3080_CR41) 2022; 70 F Chen (3080_CR43) 2022; 54 KB Bhangale (3080_CR16) 2022; 125 N Jia (3080_CR44) 2022; 81 MK Nammous (3080_CR55) 2022; 34 R Ketan Sarvakar (3080_CR9) 2023; 80 KB Bhangale (3080_CR13) 2024 KB Bhangale (3080_CR14) 2020; 9 P Koromilas (3080_CR3) 2021; 11 N Ahmed (3080_CR27) 2023; 17 AV Geetha (3080_CR1) 2024; 105 3080_CR48 B Tran (3080_CR49) 2017; 48 CE Erdem (3080_CR58) 2015; 74 MM Islam (3080_CR59) 2024; 94 P Kumar (3080_CR45) 2024; 83 KB Bhangale (3080_CR15) 2018; 8 J Chen (3080_CR5) 2022; 10 HFT Alsaadawı (3080_CR39) 2024; 12 SK Khare (3080_CR19) 2024; 102 |
| References_xml | – volume: 10 start-page: 687 issue: 10 year: 2020 ident: 3080_CR20 publication-title: Brain Sci. doi: 10.3390/brainsci10100687 – ident: 3080_CR56 doi: 10.1109/BigData47090.2019.9005997 – volume: 33 start-page: 619 issue: 6 year: 2021 ident: 3080_CR23 publication-title: J. King Saud Univ. -Computer Inf. Sci. doi: 10.1016/j.jksuci.2018.09.002 – volume: 105 start-page: 102218 year: 2024 ident: 3080_CR1 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.102218 – volume: 244 start-page: 108580 year: 2022 ident: 3080_CR47 publication-title: Knowl.-based Syst. doi: 10.1016/j.knosys.2022.108580 – volume: 70 start-page: 103029 year: 2021 ident: 3080_CR26 publication-title: Biomed. Signal Proc. Control doi: 10.1016/j.bspc.2021.103029 – volume: 80 start-page: 3560 year: 2023 ident: 3080_CR9 publication-title: Mater. Today: Proc. – volume: 7 start-page: 376 issue: 1 year: 2017 ident: 3080_CR50 publication-title: Sci. Rep. doi: 10.1038/s41598-017-00416-0 – volume: 83 start-page: 28373 issue: 10 year: 2024 ident: 3080_CR45 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-16443-1 – volume: 102 start-page: 102019 year: 2024 ident: 3080_CR19 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.102019 – ident: 3080_CR18 doi: 10.1109/ICOSEC54921.2022.9951987 – volume: 70 start-page: 1016 issue: 1 year: 2022 ident: 3080_CR41 publication-title: IEEE Trans. Industr. Electron. doi: 10.1109/TIE.2022.3150097 – volume: 12 start-page: 839 issue: 4 year: 2023 ident: 3080_CR46 publication-title: Electronics doi: 10.3390/electronics12040839 – volume: 51 start-page: 1531 year: 2021 ident: 3080_CR54 publication-title: Appl. Intel. doi: 10.1007/s10489-020-01893-z – volume: 78 start-page: 103970 year: 2022 ident: 3080_CR42 publication-title: Biomed. Signal Proc. Control doi: 10.1016/j.bspc.2022.103970 – ident: 3080_CR31 doi: 10.1109/INMIC.2008.4777804 – volume: 74 start-page: 7429 issue: 18 year: 2015 ident: 3080_CR58 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-014-1986-2 – volume: 17 start-page: 200171 year: 2023 ident: 3080_CR27 publication-title: Intel. Syst. Appl. – volume: 82 start-page: 101256 year: 2022 ident: 3080_CR51 publication-title: Socioecon. Plann. Sci. doi: 10.1016/j.seps.2022.101256 – volume: 230 start-page: 120639 year: 2023 ident: 3080_CR53 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120639 – volume: 11 start-page: 7962 issue: 17 year: 2021 ident: 3080_CR3 publication-title: Appl. Sci. doi: 10.3390/app11177962 – volume: 48 start-page: 1733 issue: 6 year: 2017 ident: 3080_CR49 publication-title: IEEE Trans. Cyb. doi: 10.1109/TCYB.2017.2714145 – volume: 20 start-page: 499 issue: 3 year: 2024 ident: 3080_CR8 publication-title: Innov. Syst. Softw. Eng. doi: 10.1007/s11334-022-00471-5 – volume: 1098 start-page: 032055 year: 2021 ident: 3080_CR52 publication-title: IOP Conf. Ser.: Mater. Sci. Eng. doi: 10.1088/1757-899X/1098/3/032055 – volume: 42 start-page: e13403 issue: 1 year: 2025 ident: 3080_CR35 publication-title: Expert. Syst. doi: 10.1111/exsy.13403 – volume: 8 start-page: 16002 issue: 21 year: 2020 ident: 3080_CR24 publication-title: IEEE Int. Things J. – volume: 14 start-page: 715 issue: 2 year: 2021 ident: 3080_CR40 publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2021.3071170 – year: 2024 ident: 3080_CR13 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-024-19674-y – volume: 125 start-page: 1913 issue: 2 year: 2022 ident: 3080_CR16 publication-title: Wire. Pers. Commun. doi: 10.1007/s11277-022-09640-y – volume: 12 start-page: 36 issue: 1 year: 2024 ident: 3080_CR39 publication-title: Balkan J. Electr. Computer Eng. doi: 10.17694/bajece.1372107 – year: 2024 ident: 3080_CR34 publication-title: IEEE Transa. Art. Intel. doi: 10.1109/TAI.2024.3445325 – volume: 10 start-page: 13229 year: 2022 ident: 3080_CR5 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3146729 – volume: 26 start-page: 62 issue: 3 year: 2019 ident: 3080_CR33 publication-title: IEEE Wirel. Commun. doi: 10.1109/MWC.2019.1800419 – volume: 11400 start-page: 307 year: 2019 ident: 3080_CR28 publication-title: High-Perf. Model. Simul. Big Data Appl. – volume: 8 start-page: 168865 year: 2020 ident: 3080_CR25 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3023871 – volume: 8 start-page: 1026 issue: 9 year: 2018 ident: 3080_CR15 publication-title: Int. J. Manag., Technol. Eng. – volume: 240 start-page: 122579 year: 2024 ident: 3080_CR38 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122579 – volume: 16 start-page: 1397 issue: 3 year: 2024 ident: 3080_CR36 publication-title: Int. J. Inf. Technol. – ident: 3080_CR21 doi: 10.1109/INCET57972.2023.10170346 – volume: 81 start-page: 32265 issue: 22 year: 2022 ident: 3080_CR44 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-13091-9 – volume: 43 start-page: 2341 issue: 4 year: 2024 ident: 3080_CR11 publication-title: Circuits Syst. Signal Proc. doi: 10.1007/s00034-023-02562-5 – volume: 34 start-page: 764 issue: 3 year: 2022 ident: 3080_CR55 publication-title: J. King Saud Univ. -Computer Inf. Sci. doi: 10.1016/j.jksuci.2020.03.011 – volume: 130 start-page: 107708 year: 2024 ident: 3080_CR37 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107708 – year: 2022 ident: 3080_CR10 publication-title: Appl. Intel. doi: 10.1007/s10489-021-02927-w – volume: 9 start-page: 1466 issue: 3 year: 2020 ident: 3080_CR14 publication-title: Int. J. Innov. Technol. Explor. Eng. doi: 10.35940/ijitee.B8014.019320 – ident: 3080_CR48 – volume: 40 start-page: 149 year: 2020 ident: 3080_CR32 publication-title: J. Med. Biol. Eng. doi: 10.1007/s40846-019-00505-7 – volume: 94 start-page: 106241 year: 2024 ident: 3080_CR59 publication-title: Biomed. Signal Proc. Control doi: 10.1016/j.bspc.2024.106241 – ident: 3080_CR30 doi: 10.1109/ICBNMT.2011.6155939 – volume: 27 start-page: 817 issue: 3 year: 2024 ident: 3080_CR17 publication-title: Int. J. Speech Technol. doi: 10.1007/s10772-024-10138-0 – volume: 582 start-page: 593 year: 2022 ident: 3080_CR22 publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.10.005 – volume: 15 start-page: 1863 issue: 8 year: 2021 ident: 3080_CR4 publication-title: Signal, Image Video Proc. doi: 10.1007/s11760-021-01942-1 – volume: 100 start-page: 107039 year: 2025 ident: 3080_CR7 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2024.107039 – volume: 212 start-page: 109613 year: 2023 ident: 3080_CR12 publication-title: Appl. Acoustics doi: 10.1016/j.apacoust.2023.109613 – volume: 54 start-page: 187 issue: 1 year: 2022 ident: 3080_CR43 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2022.3185119 – volume: 21 start-page: 5015 issue: 15 year: 2021 ident: 3080_CR6 publication-title: Sensors doi: 10.3390/s21155015 – ident: 3080_CR57 doi: 10.24432/C5HC8C – volume: 29 start-page: 163 year: 2020 ident: 3080_CR29 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.3040627 – volume: 2 start-page: 73 issue: 01 year: 2021 ident: 3080_CR2 publication-title: J. Appl. Sci. Technol. Trends doi: 10.38094/jastt20291 |
| SSID | ssj0019492 |
| Score | 2.3811474 |
| Snippet | Multimodal emotion recognition (MER) is crucial for analyzing a person’s mental behavior and health to enhance the performance of human–computer-interaction... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 6622 |
| SubjectTerms | Accuracy Artificial neural networks Circuits and Systems Convolution Datasets Deep learning Distance learning Electrical Engineering Electrocardiography Electromyography Electronics and Microelectronics Emotion recognition Emotions Engineering Feature selection Instrumentation Machine learning Neural networks Particle swarm optimization Physiology Real time Reliability Representations Security Semantics Signal,Image and Speech Processing Speech Utility theory |
| Title | Multimodal Emotion Recognition based on Face and Speech using Deep Convolution Neural Network and Long Short Term Memory |
| URI | https://link.springer.com/article/10.1007/s00034-025-03080-2 https://www.proquest.com/docview/3245776972 |
| Volume | 44 |
| WOSCitedRecordID | wos001475880300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1531-5878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019492 issn: 0278-081X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQMMDAG1Fe8sAGlvKw42REQMUAFaJQdYv8uAIDSdUWBP-es5O0gGCAzZIvp-jufPdJ9yLkKAMJibEBC0wsGddWMhXGwLjSUoSaG-2z570r2emk_X52UzeFjZtq9yYl6T31tNnNz1Jhbv2qm7ESMHS8CxjuUvccb7u9ae4g434VskupMQx4_bpV5mceX8PRDGN-S4v6aNNe_d9_rpGVGl3S08oc1skcFBtk-dPMwU3y5ltun0uLdBfVDh9621QR4dmFNUvx0FYGqCos7Q4BzCN1FfIP9BxgSM_K4rU2WeqmeyCrTlVO7j-4KpGw-4jAnt6h46fXrpr3fYvcty_uzi5ZvX6BmUhGEwYWwZOOwiRKBwZhoEgUBCJITBbrTCU6UsYMbGA5aBMZoTnnMagUYiO5Cg3E22S-KAvYIXSAchBKhUEGGDWtSJVQA2u5klygEcUtctxoIR9WUzby6TxlL88c5Zl7eeZRi-w3isrrFzfOERgKKZNM4vVJo5jZ9e_cdv9GvkeWIq9bV2a2T-Ynoxc4IIvmdfI0Hh16S_wAS7bZcg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwNBDB5EBfXgW3w7B286sI-Zne5RtEWxLWJr6W2ZR6oe3BZbRf-9meluq6IHvQ1MJixJNgnkS0LIcQoSEmMDFphYMq6tZCqMgXGlpQg1N9pXzzt12WxWut30pmgKG5Zo97Ik6T31pNnNz1Jhbv2qm7ESMHS8cxwjlgPy3bY6k9pByv0qZFdSYxjwukWrzM88voajaY75rSzqo01t5X_fuUqWi-ySno3NYY3MQL5Olj7NHNwgb77l9qlvka463uFDb0sUEZ5dWLMUDzVlgKrc0tYAwDxQh5C_pxcAA3rez18Lk6Vuugeyao7h5P5BvY-ErQdM7GkbHT9tODTv-ya5q1Xb55esWL_ATCSjEQOLyZOOwiSq9AymgSJREIggMWmsU5XoSBnTs4HloE1khOacx6AqEBvJVWgg3iKzeT-HbUJ7KAehVBikgFHTiooSqmctV5ILNKJ4h5yUWsgG4ykb2WSespdnhvLMvDyzaIfsl4rKij9umGFiKKRMUonXp6Vipte_c9v9G_kRWbhsN-pZ_ap5vUcWI69nBznbJ7Oj5xc4IPPmdfQ4fD70VvkBhfncVg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QIAQH3og3OXCDiD6SZj0iYAIxJsQA7Vbl4TIOdBMMBP8eJ23HQ3BA3CIlsSrbrb_K9mdCdlOQkBgbsMDEknFtJVNhDIwrLUWoudE-e37bku12o9tNLz918ftq9zolWfY0OJamYngwsPnBqPHN86owN4rV8a0EDD_CE9wNDXL_653bUR4h5X4sskuvMQx-3apt5mcZX0PTB978liL1kac59_9nniezFeqkh6WbLJAxKBbJzCcuwiXy6ltxH_oWz52Us33oVV1dhGsX7izFRVMZoKqwtDMAMD3qKufv6DHAgB71i5fKlalj_UBR7bLM3F9o9fFgp4eAn15jQKAXrsr3bZncNE-uj05ZNZaBmUhGQwYWQZWOwiRq5AbhoUgUBCJITBrrVCU6UsbkNrActImM0JzzGFQDYiO5Cg3EK2S86BewSmiOehBKhUEKGE2taCihcmu5klygc8VrZK-2SDYo2TeyEc-y12eG-sy8PrNojWzWRsuqN_EpQ8AopExSidv7tZE-tn-Xtv634ztk6vK4mbXO2ucbZDryZnaVaJtkfPj4DFtk0rwM758et72DvgNfueU6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+Emotion+Recognition+based+on+Face+and+Speech+using+Deep+Convolution+Neural+Network+and+Long+Short+Term+Memory&rft.jtitle=Circuits%2C+systems%2C+and+signal+processing&rft.au=Taware%2C+Shwetkranti&rft.au=Thakare%2C+Anuradha+D&rft.date=2025-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0278-081X&rft.eissn=1531-5878&rft.volume=44&rft.issue=9&rft.spage=6622&rft.epage=6649&rft_id=info:doi/10.1007%2Fs00034-025-03080-2&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-081X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-081X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-081X&client=summon |