A Novel General Feature Enhancement Method Based on Genetic Programming for Improving RF Circuit Fault Diagnosis Using Machine Learning
Radio frequency (RF) circuits play a crucial role in numerous fields such as communication, radar, and navigation. However, due to their high operating frequencies, they are prone to failures under the influence of environmental factors and parasitic parameters. Existing methods for diagnosing RF ci...
Gespeichert in:
| Veröffentlicht in: | Circuits, systems, and signal processing Jg. 44; H. 12; S. 8877 - 8900 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.12.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0278-081X, 1531-5878 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Radio frequency (RF) circuits play a crucial role in numerous fields such as communication, radar, and navigation. However, due to their high operating frequencies, they are prone to failures under the influence of environmental factors and parasitic parameters. Existing methods for diagnosing RF circuit faults are mainly based on deep learning approaches. But the limited number of internal measurement points and the large variety of fault patterns result in complex network structure design and difficulties in application. In this manuscript, a novel general feature enhancement method based on genetic programming (GP) is proposed to improve the machine learning-based RF circuit fault diagnosis. Firstly, the time-frequency analysis of the fault signal is carried out based on the Variable Mode Decomposition-Hilbert (VMD-Hilbert) transform to obtain the original feature set. Then, the feature reconstruction method based on GP is used to achieve feature enhancement. Finally, the enhanced features are combined with machine learning algorithms to realize the fault diagnosis of RF circuits. Taking the experiment of a low-noise amplifier circuit as an example, after adopting the feature enhancement method in this manuscript, the diagnostic accuracies of Support Vector Machine and Naive Bayes are increased by 10.48% and 10.21% respectively. The experimental results demonstrate that this feature enhancement method can significantly improve the accuracy and stability of RF circuit fault diagnosis. Moreover, this feature enhancement method can be combined with any machine learning algorithm and applied to the fields of fault diagnosis, prediction, etc. of other systems. |
|---|---|
| AbstractList | Radio frequency (RF) circuits play a crucial role in numerous fields such as communication, radar, and navigation. However, due to their high operating frequencies, they are prone to failures under the influence of environmental factors and parasitic parameters. Existing methods for diagnosing RF circuit faults are mainly based on deep learning approaches. But the limited number of internal measurement points and the large variety of fault patterns result in complex network structure design and difficulties in application. In this manuscript, a novel general feature enhancement method based on genetic programming (GP) is proposed to improve the machine learning-based RF circuit fault diagnosis. Firstly, the time-frequency analysis of the fault signal is carried out based on the Variable Mode Decomposition-Hilbert (VMD-Hilbert) transform to obtain the original feature set. Then, the feature reconstruction method based on GP is used to achieve feature enhancement. Finally, the enhanced features are combined with machine learning algorithms to realize the fault diagnosis of RF circuits. Taking the experiment of a low-noise amplifier circuit as an example, after adopting the feature enhancement method in this manuscript, the diagnostic accuracies of Support Vector Machine and Naive Bayes are increased by 10.48% and 10.21% respectively. The experimental results demonstrate that this feature enhancement method can significantly improve the accuracy and stability of RF circuit fault diagnosis. Moreover, this feature enhancement method can be combined with any machine learning algorithm and applied to the fields of fault diagnosis, prediction, etc. of other systems. |
| Author | Wang, Jingyuan Wu, Kunping Liu, Zhen Long, Bing Bu, Zhiyuan |
| Author_xml | – sequence: 1 givenname: Kunping surname: Wu fullname: Wu, Kunping organization: School of Automation and Engineering, University of Electronic Science and Technology of China – sequence: 2 givenname: Bing orcidid: 0000-0003-1876-9013 surname: Long fullname: Long, Bing email: longbing@uestc.edu.cn organization: School of Automation and Engineering, University of Electronic Science and Technology of China – sequence: 3 givenname: Zhiyuan surname: Bu fullname: Bu, Zhiyuan organization: School of Automation and Engineering, University of Electronic Science and Technology of China – sequence: 4 givenname: Jingyuan surname: Wang fullname: Wang, Jingyuan organization: School of Automation and Engineering, University of Electronic Science and Technology of China – sequence: 5 givenname: Zhen surname: Liu fullname: Liu, Zhen organization: School of Automation and Engineering, University of Electronic Science and Technology of China |
| BookMark | eNp9kM9KAzEQh4Mo2FZfwFPA8-ok2Wx2j1qtFuofxIK3kGZn25VuUpPdgk_ga7u1gjdPwwzfb2b4huTQeYeEnDG4YADqMgKASBPgMgHBBU_SAzJgUrBE5io_JAPgKk8gZ2_HZBjjOwAr0oIPyNcVffRbXNM7dBjMmk7QtF1AeutWxlls0LX0AduVL-m1iVhS737Ytrb0OfhlME1TuyWtfKDTZhP8dte9TOi4DrarWzox3bqlN7VZOh_rSOdxBzwYu6od0hma4PrBCTmqzDri6W8dkfnk9nV8n8ye7qbjq1liueJtggVTzJqM55UCZVNeMc5SK23JRQpgmS0ytUC1kFBgKq3JywIWpZSKZUWWF2JEzvd7-08_OoytfvddcP1JLbjKskwJIXuK7ykbfIwBK70JdWPCp2agd8L1Xrjuhesf4TrtQ2Ifij3slhj-Vv-T-gYte4T2 |
| Cites_doi | 10.1063/1.5120560 10.1162/neco.1997.9.8.1735 10.1007/s00034-023-02526-9 10.1109/AUTOTESTCON47464.2023.10296419 10.1109/TIT.1967.1053964 10.1109/TIM.2023.3323993 10.1007/s00034-023-02392-5 10.1016/j.compeleceng.2024.109520 10.1007/s00034-010-9160-1 10.1109/TIM.2025.3554872 10.1007/s00034-023-02524-x 10.3390/act13090379 10.1016/j.knosys.2020.105806 10.1007/s00034-020-01572-x 10.1109/SAFEPROCESS58597.2023.10295828 10.1016/j.engfailanal.2023.107714 10.19441/j.cnki.issn1006-009x.2014.04.027 10.1016/j.patcog.2019.05.006 10.1007/BF00994018 10.1007/s00034-016-0479-0 10.1016/j.engfailanal.2023.107213 10.1109/ATS.2010.57 10.1109/TEVC.2011.2166158 10.1109/TIM.2022.3147908 10.1007/s00521-012-0947-9 10.1016/j.knosys.2016.12.012 10.1371/journal.pone.0291660 10.1142/S0218339007002076 10.1007/s10462-011-9272-4 10.1016/j.engfailanal.2023.107625 10.1088/1361-6501/acfba0 10.1007/s00034-023-02432-0 10.1007/s10836-021-05938-0 10.1016/j.compeleceng.2024.109458 10.1016/j.measurement.2024.114785 10.1016/j.swevo.2023.101285 10.1016/j.knosys.2020.106097 10.1109/TPEL.2024.3362993 10.3390/s24134186 10.1109/72.80266 10.1016/j.compeleceng.2024.109650 10.1007/s00034-022-02056-w 10.1007/s10836-012-5301-8 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s00034-025-03232-4 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1531-5878 |
| EndPage | 8900 |
| ExternalDocumentID | 10_1007_s00034_025_03232_4 |
| GrantInformation_xml | – fundername: Sichuan Provincial Youth Science and Technology Foundation grantid: 2020JDTD0008 funderid: http://dx.doi.org/10.13039/100012556 |
| GroupedDBID | -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29B 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 88I 8AO 8FE 8FG 8FW 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHQN ABJCF ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFDZB AFEXP AFFHD AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9P PF0 PHGZM PHGZT PQGLB PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 ~EX AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c272t-e9171ca628f707c42f1214c5cd23400c1c967be7b509e45ca8d90bd5571696893 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001528383300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-081X |
| IngestDate | Mon Dec 01 04:42:18 EST 2025 Sat Nov 29 07:46:30 EST 2025 Sun Nov 30 01:10:36 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Fault diagnosis Feature enhancement Genetic programming (GP) Machine learning Radio frequency (RF) circuit |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-e9171ca628f707c42f1214c5cd23400c1c967be7b509e45ca8d90bd5571696893 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1876-9013 |
| PQID | 3276667335 |
| PQPubID | 30136 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_3276667335 crossref_primary_10_1007_s00034_025_03232_4 springer_journals_10_1007_s00034_025_03232_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20251200 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 20251200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Cambridge |
| PublicationSubtitle | CSSP |
| PublicationTitle | Circuits, systems, and signal processing |
| PublicationTitleAbbrev | Circuits Syst Signal Process |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | M Khanlari (3232_CR23) 2017; 36 T Li (3232_CR12) 2023; 148 S Han (3232_CR7) 2024; 120 S Biswas (3232_CR17) 2024; 43 X Huang (3232_CR15) 2023; 154 K Wu (3232_CR8) 2024; 234 Z Feng (3232_CR4) 2024; 118 J Li (3232_CR11) 2023; 154 B Tran (3232_CR25) 2019; 93 3232_CR30 B Gong (3232_CR32) 2024; 35 Q Zhang (3232_CR18) 2022; 71 C-F Tsai (3232_CR24) 2020; 203 K Neshatian (3232_CR35) 2012; 16 3232_CR13 J Huang (3232_CR5) 2024; 119 G Liang (3232_CR34) 2024; 24 P Yang (3232_CR3) 2023; 72 X Tang (3232_CR16) 2023; 42 J Ma (3232_CR31) 2020; 196 H Shao (3232_CR33) 2017; 119 S Srimani (3232_CR38) 2021; 40 Tian-yu Gao (3232_CR21) 2019; 90 B Long (3232_CR20) 2012; 28 SB Kotsiantis (3232_CR42) 2013; 39 L Xue-bin (3232_CR1) 2022; 19 L Sun (3232_CR26) 2021; 37 T Cover (3232_CR39) 1967; 13 C Cortes (3232_CR40) 1995; 20 J Ma (3232_CR36) 2023; 78 DW Ruck (3232_CR44) 1990; 1 Z Hong (3232_CR2) 2014; 31 C Zhang (3232_CR29) 2024; 13 H Yuming (3232_CR6) 2023; 42 3232_CR28 X Yuan (3232_CR37) 2024; 19 X Yan (3232_CR14) 2024; 39 X Tang (3232_CR19) 2025; 74 L Xu (3232_CR22) 2010; 29 Y Deng (3232_CR9) 2023; 42 X Liu (3232_CR10) 2024; 43 M Sheikhan (3232_CR27) 2013; 23 S Hochreiter (3232_CR43) 1997; 9 J Nahar (3232_CR41) 2007; 15 |
| References_xml | – volume: 90 issue: 10 year: 2019 ident: 3232_CR21 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5120560 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 3232_CR43 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 43 start-page: 711 issue: 2 year: 2024 ident: 3232_CR17 publication-title: Circ. Syst. Signal Process. doi: 10.1007/s00034-023-02526-9 – ident: 3232_CR28 doi: 10.1109/AUTOTESTCON47464.2023.10296419 – volume: 13 start-page: 21 issue: 1 year: 1967 ident: 3232_CR39 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1053964 – volume: 19 start-page: 46 issue: 4 year: 2022 ident: 3232_CR1 publication-title: Equip. Environ. Eng. – volume: 72 start-page: 1 year: 2023 ident: 3232_CR3 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2023.3323993 – volume: 42 start-page: 5761 issue: 10 year: 2023 ident: 3232_CR16 publication-title: Circ. Syst. Signal Process. doi: 10.1007/s00034-023-02392-5 – volume: 119 year: 2024 ident: 3232_CR5 publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2024.109520 – volume: 29 start-page: 577 issue: 4 year: 2010 ident: 3232_CR22 publication-title: Circ. Syst. Signal Process. doi: 10.1007/s00034-010-9160-1 – volume: 74 start-page: 1 year: 2025 ident: 3232_CR19 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2025.3554872 – volume: 43 start-page: 684 issue: 2 year: 2024 ident: 3232_CR10 publication-title: Circ. Syst. Signal Process. doi: 10.1007/s00034-023-02524-x – volume: 13 start-page: 379 issue: 9 year: 2024 ident: 3232_CR29 publication-title: Actuators doi: 10.3390/act13090379 – volume: 196 year: 2020 ident: 3232_CR31 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105806 – volume: 40 start-page: 2091 issue: 5 year: 2021 ident: 3232_CR38 publication-title: Circ. Syst. Signal Process. doi: 10.1007/s00034-020-01572-x – ident: 3232_CR13 doi: 10.1109/SAFEPROCESS58597.2023.10295828 – volume: 154 year: 2023 ident: 3232_CR11 publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2023.107714 – volume: 31 start-page: 110 issue: 4 year: 2014 ident: 3232_CR2 publication-title: Meteorol. Hydrol. Mar. Instrum. doi: 10.19441/j.cnki.issn1006-009x.2014.04.027 – volume: 93 start-page: 404 year: 2019 ident: 3232_CR25 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2019.05.006 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 3232_CR40 publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 36 start-page: 3491 issue: 9 year: 2017 ident: 3232_CR23 publication-title: Circ. Syst. Signal Process. doi: 10.1007/s00034-016-0479-0 – volume: 148 year: 2023 ident: 3232_CR12 publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2023.107213 – ident: 3232_CR30 doi: 10.1109/ATS.2010.57 – volume: 16 start-page: 645 issue: 5 year: 2012 ident: 3232_CR35 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2011.2166158 – volume: 71 start-page: 1 year: 2022 ident: 3232_CR18 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3147908 – volume: 23 start-page: 519 issue: 2 year: 2013 ident: 3232_CR27 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-0947-9 – volume: 119 start-page: 200 year: 2017 ident: 3232_CR33 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.12.012 – volume: 19 start-page: 1 issue: 2 year: 2024 ident: 3232_CR37 publication-title: PLoS ONE doi: 10.1371/journal.pone.0291660 – volume: 15 start-page: 17 issue: 01 year: 2007 ident: 3232_CR41 publication-title: J. Biol. Syst. doi: 10.1142/S0218339007002076 – volume: 39 start-page: 261 issue: 4 year: 2013 ident: 3232_CR42 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-011-9272-4 – volume: 154 year: 2023 ident: 3232_CR15 publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2023.107625 – volume: 35 issue: 1 year: 2024 ident: 3232_CR32 publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/acfba0 – volume: 42 start-page: 6460 issue: 11 year: 2023 ident: 3232_CR9 publication-title: Circ. Syst. Signal Process. doi: 10.1007/s00034-023-02432-0 – volume: 37 start-page: 215 issue: 2 year: 2021 ident: 3232_CR26 publication-title: J. Electron. Test. doi: 10.1007/s10836-021-05938-0 – volume: 118 year: 2024 ident: 3232_CR4 publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2024.109458 – volume: 234 year: 2024 ident: 3232_CR8 publication-title: Measurement doi: 10.1016/j.measurement.2024.114785 – volume: 78 year: 2023 ident: 3232_CR36 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101285 – volume: 203 year: 2020 ident: 3232_CR24 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106097 – volume: 39 start-page: 6654 issue: 6 year: 2024 ident: 3232_CR14 publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2024.3362993 – volume: 24 start-page: 4186 issue: 13 year: 2024 ident: 3232_CR34 publication-title: Sensors doi: 10.3390/s24134186 – volume: 1 start-page: 296 issue: 4 year: 1990 ident: 3232_CR44 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.80266 – volume: 120 year: 2024 ident: 3232_CR7 publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2024.109650 – volume: 42 start-page: 875 issue: 2 year: 2023 ident: 3232_CR6 publication-title: Circ. Syst. Signal Process. doi: 10.1007/s00034-022-02056-w – volume: 28 start-page: 745 issue: 5 year: 2012 ident: 3232_CR20 publication-title: J. Electron. Test. doi: 10.1007/s10836-012-5301-8 |
| SSID | ssj0019492 |
| Score | 2.3892643 |
| Snippet | Radio frequency (RF) circuits play a crucial role in numerous fields such as communication, radar, and navigation. However, due to their high operating... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 8877 |
| SubjectTerms | Accuracy Circuits Circuits and Systems Classification Deep learning Electrical Engineering Electronics and Microelectronics Engineering Failure Fault diagnosis Genetic algorithms Instrumentation Machine learning Methods Neural networks Physical properties Radio frequency Signal,Image and Speech Processing Support vector machines Time-frequency analysis |
| Title | A Novel General Feature Enhancement Method Based on Genetic Programming for Improving RF Circuit Fault Diagnosis Using Machine Learning |
| URI | https://link.springer.com/article/10.1007/s00034-025-03232-4 https://www.proquest.com/docview/3276667335 |
| Volume | 44 |
| WOSCitedRecordID | wos001528383300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Standard Collection customDbUrl: eissn: 1531-5878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019492 issn: 0278-081X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgcIADO6JsmgM3sNTYTpwcS2nEgVZVWdRblDgOVCopapP-Ar-N7SwFBAc4ZzSKPI7nxTPzHkIXWgDJjWSCaUhjzOy4hUMiBWZUOiSyhEIMhmf2jvf77mjkDcqhsHnV7V6VJM1JXQ-7GS4VrOVXW1ThAMxW0ZpKd64WbBjeP9W1A48ZKWRdUsMq4Y3KUZmffXxNR0uM-a0sarKNv_2_99xBWyW6hHaxHXbRikz30OYnzsF99N6G_nQhJ1ASToMGgflMQjd90TtA3xZCz-hKw7VKcTFMU2OrXMKg6OZ6VZ5AoV2oryRg6ENnPBP5OAM_zCcZ3BQ9fOM5mK4E6JmuTQkloevzAXr0uw-dW1yqMWBBOMmwVD92lggd4ia8xQUjiUUsJmwRE6oOAmEJz-GR5JGKiWS2CN3Ya0WxbWs-HkfBokPUSKepPNJz4jFTiZOGhEsmqbJ3E0a4Og8iKyGJbKLLKijBW0G6EdT0ymZ5A7W8gVnegDXRaRW3oPwA5wEl3NGKptRuoqsqTsvHv3s7_pv5CdogOtSmweUUNbJZLs_Qulhk4_ns3GzMD4Gh298 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT8IwEG4UTdQHfxtR1HvwTZuwtlvHIyIEIxCCaHhbtq7TJTgMDP4F_23bsoEafdDnXS7LXXf3rXf3HUKXegGSG8gIU5-GmNlhGftECsyodEhgCYUYDM9si3c67mBQ6WZDYZO82z0vSZpIvRh2M1wqWK9fLVOFAzBbRWtMZSzNmN97eFrUDirMrELWJTWsEt4gG5X5WcfXdLTEmN_KoibbNHb-9567aDtDl1CdH4c9tCKTfbT1iXPwAL1XoTOaySFkhNOgQeB0LKGevOgToG8LoW32SsONSnEhjBIjq1RCd97N9ao0gUK7sLiSgF4DavFYTOMUGv50mMLtvIcvnoDpSoC26dqUkBG6Ph-ix0a9X2vibBsDFoSTFEv1Y2cJ3yFuxMtcMBJZxGLCFiGhKhAIS1QcHkgeKAgimS18N6yUg9C2NR-Po2DRESoko0Qe6znxkKnESX3CJZNUybsRI1zFg8CKSCSL6Cp3ivc2J93wFvTKxryeMq9nzOuxIirlfvOyD3DiUcIdvdGU2kV0nftp-fh3bSd_E79AG81-u-W17jr3p2iTaLebZpcSKqTjqTxD62KWxpPxuTmkH9ju3sM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgIAQHdkShwBy4gdXEduL0CLQRiLaq2NRblDgOVCopalN-gd_GdtIFBAfEOdYo8tieZ8-bNwid6gZIXiQTTEMaY-bEFg6JFJhR6ZLIFgoxGJ3ZJm-3vW631pmr4jds90lKMq9p0CpNaVZ9i5PqtPDN6Kpg3YrVogoTYLaIlpgm0uv7-v3TNI9QY6Ytsk6vYRX8ukXZzM82voamGd78liI1kcff-P8_b6L1AnXCRb5MttCCTLfR2pwW4Q76uID24F32oRCiBg0Ox0MJjfRFrwz9iggt028aLlXoi2GQmrHKJHRyltersgQKBcP0qQLufLjqDcW4l4EfjvsZ1HNuX28Ehq0ALcPmlFAIvT7voke_8XB1jYsuDVgQTjIs1YXPFqFLvIRbXDCS2MRmwhExoeqAELaouTySPFLQRDJHhF5cs6LYcbROj6vg0h4qpYNU7uv68ZipgEpDwiWTVI33Eka4OiciOyGJLKOziYOCt1yMI5jKLpvpDdT0BmZ6A1ZGlYkPg2JjjgJKuKs7nVKnjM4nPpt9_t3awd-Gn6CVTt0Pmjft20O0SrTXDQemgkrZcCyP0LJ4z3qj4bFZr58wxuen |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+General+Feature+Enhancement+Method+Based+on+Genetic+Programming+for+Improving+RF+Circuit+Fault+Diagnosis+Using+Machine+Learning&rft.jtitle=Circuits%2C+systems%2C+and+signal+processing&rft.au=Wu%2C+Kunping&rft.au=Long%2C+Bing&rft.au=Bu%2C+Zhiyuan&rft.au=Wang%2C+Jingyuan&rft.date=2025-12-01&rft.pub=Springer+US&rft.issn=0278-081X&rft.eissn=1531-5878&rft.volume=44&rft.issue=12&rft.spage=8877&rft.epage=8900&rft_id=info:doi/10.1007%2Fs00034-025-03232-4&rft.externalDocID=10_1007_s00034_025_03232_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-081X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-081X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-081X&client=summon |