A Novel General Feature Enhancement Method Based on Genetic Programming for Improving RF Circuit Fault Diagnosis Using Machine Learning

Radio frequency (RF) circuits play a crucial role in numerous fields such as communication, radar, and navigation. However, due to their high operating frequencies, they are prone to failures under the influence of environmental factors and parasitic parameters. Existing methods for diagnosing RF ci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing Jg. 44; H. 12; S. 8877 - 8900
Hauptverfasser: Wu, Kunping, Long, Bing, Bu, Zhiyuan, Wang, Jingyuan, Liu, Zhen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.12.2025
Springer Nature B.V
Schlagworte:
ISSN:0278-081X, 1531-5878
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Radio frequency (RF) circuits play a crucial role in numerous fields such as communication, radar, and navigation. However, due to their high operating frequencies, they are prone to failures under the influence of environmental factors and parasitic parameters. Existing methods for diagnosing RF circuit faults are mainly based on deep learning approaches. But the limited number of internal measurement points and the large variety of fault patterns result in complex network structure design and difficulties in application. In this manuscript, a novel general feature enhancement method based on genetic programming (GP) is proposed to improve the machine learning-based RF circuit fault diagnosis. Firstly, the time-frequency analysis of the fault signal is carried out based on the Variable Mode Decomposition-Hilbert (VMD-Hilbert) transform to obtain the original feature set. Then, the feature reconstruction method based on GP is used to achieve feature enhancement. Finally, the enhanced features are combined with machine learning algorithms to realize the fault diagnosis of RF circuits. Taking the experiment of a low-noise amplifier circuit as an example, after adopting the feature enhancement method in this manuscript, the diagnostic accuracies of Support Vector Machine and Naive Bayes are increased by 10.48% and 10.21% respectively. The experimental results demonstrate that this feature enhancement method can significantly improve the accuracy and stability of RF circuit fault diagnosis. Moreover, this feature enhancement method can be combined with any machine learning algorithm and applied to the fields of fault diagnosis, prediction, etc. of other systems.
AbstractList Radio frequency (RF) circuits play a crucial role in numerous fields such as communication, radar, and navigation. However, due to their high operating frequencies, they are prone to failures under the influence of environmental factors and parasitic parameters. Existing methods for diagnosing RF circuit faults are mainly based on deep learning approaches. But the limited number of internal measurement points and the large variety of fault patterns result in complex network structure design and difficulties in application. In this manuscript, a novel general feature enhancement method based on genetic programming (GP) is proposed to improve the machine learning-based RF circuit fault diagnosis. Firstly, the time-frequency analysis of the fault signal is carried out based on the Variable Mode Decomposition-Hilbert (VMD-Hilbert) transform to obtain the original feature set. Then, the feature reconstruction method based on GP is used to achieve feature enhancement. Finally, the enhanced features are combined with machine learning algorithms to realize the fault diagnosis of RF circuits. Taking the experiment of a low-noise amplifier circuit as an example, after adopting the feature enhancement method in this manuscript, the diagnostic accuracies of Support Vector Machine and Naive Bayes are increased by 10.48% and 10.21% respectively. The experimental results demonstrate that this feature enhancement method can significantly improve the accuracy and stability of RF circuit fault diagnosis. Moreover, this feature enhancement method can be combined with any machine learning algorithm and applied to the fields of fault diagnosis, prediction, etc. of other systems.
Author Wang, Jingyuan
Wu, Kunping
Liu, Zhen
Long, Bing
Bu, Zhiyuan
Author_xml – sequence: 1
  givenname: Kunping
  surname: Wu
  fullname: Wu, Kunping
  organization: School of Automation and Engineering, University of Electronic Science and Technology of China
– sequence: 2
  givenname: Bing
  orcidid: 0000-0003-1876-9013
  surname: Long
  fullname: Long, Bing
  email: longbing@uestc.edu.cn
  organization: School of Automation and Engineering, University of Electronic Science and Technology of China
– sequence: 3
  givenname: Zhiyuan
  surname: Bu
  fullname: Bu, Zhiyuan
  organization: School of Automation and Engineering, University of Electronic Science and Technology of China
– sequence: 4
  givenname: Jingyuan
  surname: Wang
  fullname: Wang, Jingyuan
  organization: School of Automation and Engineering, University of Electronic Science and Technology of China
– sequence: 5
  givenname: Zhen
  surname: Liu
  fullname: Liu, Zhen
  organization: School of Automation and Engineering, University of Electronic Science and Technology of China
BookMark eNp9kM9KAzEQh4Mo2FZfwFPA8-ok2Wx2j1qtFuofxIK3kGZn25VuUpPdgk_ga7u1gjdPwwzfb2b4huTQeYeEnDG4YADqMgKASBPgMgHBBU_SAzJgUrBE5io_JAPgKk8gZ2_HZBjjOwAr0oIPyNcVffRbXNM7dBjMmk7QtF1AeutWxlls0LX0AduVL-m1iVhS737Ytrb0OfhlME1TuyWtfKDTZhP8dte9TOi4DrarWzox3bqlN7VZOh_rSOdxBzwYu6od0hma4PrBCTmqzDri6W8dkfnk9nV8n8ye7qbjq1liueJtggVTzJqM55UCZVNeMc5SK23JRQpgmS0ytUC1kFBgKq3JywIWpZSKZUWWF2JEzvd7-08_OoytfvddcP1JLbjKskwJIXuK7ykbfIwBK70JdWPCp2agd8L1Xrjuhesf4TrtQ2Ifij3slhj-Vv-T-gYte4T2
Cites_doi 10.1063/1.5120560
10.1162/neco.1997.9.8.1735
10.1007/s00034-023-02526-9
10.1109/AUTOTESTCON47464.2023.10296419
10.1109/TIT.1967.1053964
10.1109/TIM.2023.3323993
10.1007/s00034-023-02392-5
10.1016/j.compeleceng.2024.109520
10.1007/s00034-010-9160-1
10.1109/TIM.2025.3554872
10.1007/s00034-023-02524-x
10.3390/act13090379
10.1016/j.knosys.2020.105806
10.1007/s00034-020-01572-x
10.1109/SAFEPROCESS58597.2023.10295828
10.1016/j.engfailanal.2023.107714
10.19441/j.cnki.issn1006-009x.2014.04.027
10.1016/j.patcog.2019.05.006
10.1007/BF00994018
10.1007/s00034-016-0479-0
10.1016/j.engfailanal.2023.107213
10.1109/ATS.2010.57
10.1109/TEVC.2011.2166158
10.1109/TIM.2022.3147908
10.1007/s00521-012-0947-9
10.1016/j.knosys.2016.12.012
10.1371/journal.pone.0291660
10.1142/S0218339007002076
10.1007/s10462-011-9272-4
10.1016/j.engfailanal.2023.107625
10.1088/1361-6501/acfba0
10.1007/s00034-023-02432-0
10.1007/s10836-021-05938-0
10.1016/j.compeleceng.2024.109458
10.1016/j.measurement.2024.114785
10.1016/j.swevo.2023.101285
10.1016/j.knosys.2020.106097
10.1109/TPEL.2024.3362993
10.3390/s24134186
10.1109/72.80266
10.1016/j.compeleceng.2024.109650
10.1007/s00034-022-02056-w
10.1007/s10836-012-5301-8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s00034-025-03232-4
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1531-5878
EndPage 8900
ExternalDocumentID 10_1007_s00034_025_03232_4
GrantInformation_xml – fundername: Sichuan Provincial Youth Science and Technology Foundation
  grantid: 2020JDTD0008
  funderid: http://dx.doi.org/10.13039/100012556
GroupedDBID -Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29B
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
88I
8AO
8FE
8FG
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHQN
ABJCF
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
~EX
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c272t-e9171ca628f707c42f1214c5cd23400c1c967be7b509e45ca8d90bd5571696893
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001528383300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-081X
IngestDate Mon Dec 01 04:42:18 EST 2025
Sat Nov 29 07:46:30 EST 2025
Sun Nov 30 01:10:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Fault diagnosis
Feature enhancement
Genetic programming (GP)
Machine learning
Radio frequency (RF) circuit
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-e9171ca628f707c42f1214c5cd23400c1c967be7b509e45ca8d90bd5571696893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1876-9013
PQID 3276667335
PQPubID 30136
PageCount 24
ParticipantIDs proquest_journals_3276667335
crossref_primary_10_1007_s00034_025_03232_4
springer_journals_10_1007_s00034_025_03232_4
PublicationCentury 2000
PublicationDate 20251200
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 20251200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Cambridge
PublicationSubtitle CSSP
PublicationTitle Circuits, systems, and signal processing
PublicationTitleAbbrev Circuits Syst Signal Process
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References M Khanlari (3232_CR23) 2017; 36
T Li (3232_CR12) 2023; 148
S Han (3232_CR7) 2024; 120
S Biswas (3232_CR17) 2024; 43
X Huang (3232_CR15) 2023; 154
K Wu (3232_CR8) 2024; 234
Z Feng (3232_CR4) 2024; 118
J Li (3232_CR11) 2023; 154
B Tran (3232_CR25) 2019; 93
3232_CR30
B Gong (3232_CR32) 2024; 35
Q Zhang (3232_CR18) 2022; 71
C-F Tsai (3232_CR24) 2020; 203
K Neshatian (3232_CR35) 2012; 16
3232_CR13
J Huang (3232_CR5) 2024; 119
G Liang (3232_CR34) 2024; 24
P Yang (3232_CR3) 2023; 72
X Tang (3232_CR16) 2023; 42
J Ma (3232_CR31) 2020; 196
H Shao (3232_CR33) 2017; 119
S Srimani (3232_CR38) 2021; 40
Tian-yu Gao (3232_CR21) 2019; 90
B Long (3232_CR20) 2012; 28
SB Kotsiantis (3232_CR42) 2013; 39
L Xue-bin (3232_CR1) 2022; 19
L Sun (3232_CR26) 2021; 37
T Cover (3232_CR39) 1967; 13
C Cortes (3232_CR40) 1995; 20
J Ma (3232_CR36) 2023; 78
DW Ruck (3232_CR44) 1990; 1
Z Hong (3232_CR2) 2014; 31
C Zhang (3232_CR29) 2024; 13
H Yuming (3232_CR6) 2023; 42
3232_CR28
X Yuan (3232_CR37) 2024; 19
X Yan (3232_CR14) 2024; 39
X Tang (3232_CR19) 2025; 74
L Xu (3232_CR22) 2010; 29
Y Deng (3232_CR9) 2023; 42
X Liu (3232_CR10) 2024; 43
M Sheikhan (3232_CR27) 2013; 23
S Hochreiter (3232_CR43) 1997; 9
J Nahar (3232_CR41) 2007; 15
References_xml – volume: 90
  issue: 10
  year: 2019
  ident: 3232_CR21
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5120560
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 3232_CR43
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 43
  start-page: 711
  issue: 2
  year: 2024
  ident: 3232_CR17
  publication-title: Circ. Syst. Signal Process.
  doi: 10.1007/s00034-023-02526-9
– ident: 3232_CR28
  doi: 10.1109/AUTOTESTCON47464.2023.10296419
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 3232_CR39
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 19
  start-page: 46
  issue: 4
  year: 2022
  ident: 3232_CR1
  publication-title: Equip. Environ. Eng.
– volume: 72
  start-page: 1
  year: 2023
  ident: 3232_CR3
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2023.3323993
– volume: 42
  start-page: 5761
  issue: 10
  year: 2023
  ident: 3232_CR16
  publication-title: Circ. Syst. Signal Process.
  doi: 10.1007/s00034-023-02392-5
– volume: 119
  year: 2024
  ident: 3232_CR5
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2024.109520
– volume: 29
  start-page: 577
  issue: 4
  year: 2010
  ident: 3232_CR22
  publication-title: Circ. Syst. Signal Process.
  doi: 10.1007/s00034-010-9160-1
– volume: 74
  start-page: 1
  year: 2025
  ident: 3232_CR19
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2025.3554872
– volume: 43
  start-page: 684
  issue: 2
  year: 2024
  ident: 3232_CR10
  publication-title: Circ. Syst. Signal Process.
  doi: 10.1007/s00034-023-02524-x
– volume: 13
  start-page: 379
  issue: 9
  year: 2024
  ident: 3232_CR29
  publication-title: Actuators
  doi: 10.3390/act13090379
– volume: 196
  year: 2020
  ident: 3232_CR31
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105806
– volume: 40
  start-page: 2091
  issue: 5
  year: 2021
  ident: 3232_CR38
  publication-title: Circ. Syst. Signal Process.
  doi: 10.1007/s00034-020-01572-x
– ident: 3232_CR13
  doi: 10.1109/SAFEPROCESS58597.2023.10295828
– volume: 154
  year: 2023
  ident: 3232_CR11
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2023.107714
– volume: 31
  start-page: 110
  issue: 4
  year: 2014
  ident: 3232_CR2
  publication-title: Meteorol. Hydrol. Mar. Instrum.
  doi: 10.19441/j.cnki.issn1006-009x.2014.04.027
– volume: 93
  start-page: 404
  year: 2019
  ident: 3232_CR25
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2019.05.006
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 3232_CR40
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 36
  start-page: 3491
  issue: 9
  year: 2017
  ident: 3232_CR23
  publication-title: Circ. Syst. Signal Process.
  doi: 10.1007/s00034-016-0479-0
– volume: 148
  year: 2023
  ident: 3232_CR12
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2023.107213
– ident: 3232_CR30
  doi: 10.1109/ATS.2010.57
– volume: 16
  start-page: 645
  issue: 5
  year: 2012
  ident: 3232_CR35
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2011.2166158
– volume: 71
  start-page: 1
  year: 2022
  ident: 3232_CR18
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3147908
– volume: 23
  start-page: 519
  issue: 2
  year: 2013
  ident: 3232_CR27
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-0947-9
– volume: 119
  start-page: 200
  year: 2017
  ident: 3232_CR33
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.12.012
– volume: 19
  start-page: 1
  issue: 2
  year: 2024
  ident: 3232_CR37
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0291660
– volume: 15
  start-page: 17
  issue: 01
  year: 2007
  ident: 3232_CR41
  publication-title: J. Biol. Syst.
  doi: 10.1142/S0218339007002076
– volume: 39
  start-page: 261
  issue: 4
  year: 2013
  ident: 3232_CR42
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-011-9272-4
– volume: 154
  year: 2023
  ident: 3232_CR15
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2023.107625
– volume: 35
  issue: 1
  year: 2024
  ident: 3232_CR32
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/acfba0
– volume: 42
  start-page: 6460
  issue: 11
  year: 2023
  ident: 3232_CR9
  publication-title: Circ. Syst. Signal Process.
  doi: 10.1007/s00034-023-02432-0
– volume: 37
  start-page: 215
  issue: 2
  year: 2021
  ident: 3232_CR26
  publication-title: J. Electron. Test.
  doi: 10.1007/s10836-021-05938-0
– volume: 118
  year: 2024
  ident: 3232_CR4
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2024.109458
– volume: 234
  year: 2024
  ident: 3232_CR8
  publication-title: Measurement
  doi: 10.1016/j.measurement.2024.114785
– volume: 78
  year: 2023
  ident: 3232_CR36
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101285
– volume: 203
  year: 2020
  ident: 3232_CR24
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106097
– volume: 39
  start-page: 6654
  issue: 6
  year: 2024
  ident: 3232_CR14
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2024.3362993
– volume: 24
  start-page: 4186
  issue: 13
  year: 2024
  ident: 3232_CR34
  publication-title: Sensors
  doi: 10.3390/s24134186
– volume: 1
  start-page: 296
  issue: 4
  year: 1990
  ident: 3232_CR44
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.80266
– volume: 120
  year: 2024
  ident: 3232_CR7
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2024.109650
– volume: 42
  start-page: 875
  issue: 2
  year: 2023
  ident: 3232_CR6
  publication-title: Circ. Syst. Signal Process.
  doi: 10.1007/s00034-022-02056-w
– volume: 28
  start-page: 745
  issue: 5
  year: 2012
  ident: 3232_CR20
  publication-title: J. Electron. Test.
  doi: 10.1007/s10836-012-5301-8
SSID ssj0019492
Score 2.3892643
Snippet Radio frequency (RF) circuits play a crucial role in numerous fields such as communication, radar, and navigation. However, due to their high operating...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 8877
SubjectTerms Accuracy
Circuits
Circuits and Systems
Classification
Deep learning
Electrical Engineering
Electronics and Microelectronics
Engineering
Failure
Fault diagnosis
Genetic algorithms
Instrumentation
Machine learning
Methods
Neural networks
Physical properties
Radio frequency
Signal,Image and Speech Processing
Support vector machines
Time-frequency analysis
Title A Novel General Feature Enhancement Method Based on Genetic Programming for Improving RF Circuit Fault Diagnosis Using Machine Learning
URI https://link.springer.com/article/10.1007/s00034-025-03232-4
https://www.proquest.com/docview/3276667335
Volume 44
WOSCitedRecordID wos001528383300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Standard Collection
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgcIADO6JsmgM3sNTYTpwcS2nEgVZVWdRblDgOVCopapP-Ar-N7SwFBAc4ZzSKPI7nxTPzHkIXWgDJjWSCaUhjzOy4hUMiBWZUOiSyhEIMhmf2jvf77mjkDcqhsHnV7V6VJM1JXQ-7GS4VrOVXW1ThAMxW0ZpKd64WbBjeP9W1A48ZKWRdUsMq4Y3KUZmffXxNR0uM-a0sarKNv_2_99xBWyW6hHaxHXbRikz30OYnzsF99N6G_nQhJ1ASToMGgflMQjd90TtA3xZCz-hKw7VKcTFMU2OrXMKg6OZ6VZ5AoV2oryRg6ENnPBP5OAM_zCcZ3BQ9fOM5mK4E6JmuTQkloevzAXr0uw-dW1yqMWBBOMmwVD92lggd4ia8xQUjiUUsJmwRE6oOAmEJz-GR5JGKiWS2CN3Ya0WxbWs-HkfBokPUSKepPNJz4jFTiZOGhEsmqbJ3E0a4Og8iKyGJbKLLKijBW0G6EdT0ymZ5A7W8gVnegDXRaRW3oPwA5wEl3NGKptRuoqsqTsvHv3s7_pv5CdogOtSmweUUNbJZLs_Qulhk4_ns3GzMD4Gh298
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT8IwEG4UTdQHfxtR1HvwTZuwtlvHIyIEIxCCaHhbtq7TJTgMDP4F_23bsoEafdDnXS7LXXf3rXf3HUKXegGSG8gIU5-GmNlhGftECsyodEhgCYUYDM9si3c67mBQ6WZDYZO82z0vSZpIvRh2M1wqWK9fLVOFAzBbRWtMZSzNmN97eFrUDirMrELWJTWsEt4gG5X5WcfXdLTEmN_KoibbNHb-9567aDtDl1CdH4c9tCKTfbT1iXPwAL1XoTOaySFkhNOgQeB0LKGevOgToG8LoW32SsONSnEhjBIjq1RCd97N9ao0gUK7sLiSgF4DavFYTOMUGv50mMLtvIcvnoDpSoC26dqUkBG6Ph-ix0a9X2vibBsDFoSTFEv1Y2cJ3yFuxMtcMBJZxGLCFiGhKhAIS1QcHkgeKAgimS18N6yUg9C2NR-Po2DRESoko0Qe6znxkKnESX3CJZNUybsRI1zFg8CKSCSL6Cp3ivc2J93wFvTKxryeMq9nzOuxIirlfvOyD3DiUcIdvdGU2kV0nftp-fh3bSd_E79AG81-u-W17jr3p2iTaLebZpcSKqTjqTxD62KWxpPxuTmkH9ju3sM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgIAQHdkShwBy4gdXEduL0CLQRiLaq2NRblDgOVCopalN-gd_GdtIFBAfEOdYo8tieZ8-bNwid6gZIXiQTTEMaY-bEFg6JFJhR6ZLIFgoxGJ3ZJm-3vW631pmr4jds90lKMq9p0CpNaVZ9i5PqtPDN6Kpg3YrVogoTYLaIlpgm0uv7-v3TNI9QY6Ytsk6vYRX8ukXZzM82voamGd78liI1kcff-P8_b6L1AnXCRb5MttCCTLfR2pwW4Q76uID24F32oRCiBg0Ox0MJjfRFrwz9iggt028aLlXoi2GQmrHKJHRyltersgQKBcP0qQLufLjqDcW4l4EfjvsZ1HNuX28Ehq0ALcPmlFAIvT7voke_8XB1jYsuDVgQTjIs1YXPFqFLvIRbXDCS2MRmwhExoeqAELaouTySPFLQRDJHhF5cs6LYcbROj6vg0h4qpYNU7uv68ZipgEpDwiWTVI33Eka4OiciOyGJLKOziYOCt1yMI5jKLpvpDdT0BmZ6A1ZGlYkPg2JjjgJKuKs7nVKnjM4nPpt9_t3awd-Gn6CVTt0Pmjft20O0SrTXDQemgkrZcCyP0LJ4z3qj4bFZr58wxuen
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+General+Feature+Enhancement+Method+Based+on+Genetic+Programming+for+Improving+RF+Circuit+Fault+Diagnosis+Using+Machine+Learning&rft.jtitle=Circuits%2C+systems%2C+and+signal+processing&rft.au=Wu%2C+Kunping&rft.au=Long%2C+Bing&rft.au=Bu%2C+Zhiyuan&rft.au=Wang%2C+Jingyuan&rft.date=2025-12-01&rft.pub=Springer+US&rft.issn=0278-081X&rft.eissn=1531-5878&rft.volume=44&rft.issue=12&rft.spage=8877&rft.epage=8900&rft_id=info:doi/10.1007%2Fs00034-025-03232-4&rft.externalDocID=10_1007_s00034_025_03232_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-081X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-081X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-081X&client=summon