A new intelligent hybrid feature extraction model for automating cancer diagnosis: a focus on breast cancer

Cancer, or malignant tumor, is a group of diseases that arises from the abnormal proliferation of body cells, which have the ability to invade or spread to other parts of the body. Many researchers have proposed various methods to detect breast cancer; however, the accuracy of these methods has ofte...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of supercomputing Ročník 81; číslo 5; s. 651
Hlavní autoři: Rahmani, Roozbeh, Akbarpour, Shahin, Farzan, Ali, Anari, Babak, Afshord, Saeid Taghavi
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 24.03.2025
Springer Nature B.V
Témata:
ISSN:1573-0484, 0920-8542, 1573-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Cancer, or malignant tumor, is a group of diseases that arises from the abnormal proliferation of body cells, which have the ability to invade or spread to other parts of the body. Many researchers have proposed various methods to detect breast cancer; however, the accuracy of these methods has often been insufficient due to ineffective features selection and a lack of appropriate analytical techniques. To address this issue, we need an accurate feature extraction model. In this paper, we propose an intelligent hybrid feature extraction model for automating cancer diagnosis (IHFEACD) with high accuracy. This mathematical model generates more efficient features based on the structure of previous feature formulas. Furthermore, the proposed model combines new features with existing ones to create a new feature space for early cancer detection. Although this model can be applied to detect different types of cancer, we focus on breast cancer in women as our case study. To validate our approach, we investigated the mammographic image analysis society (MIAS) database and curated the breast imaging subset of digital database for screening mammography (CBIS-DDSM). The results indicate that the proposed method effectively classifies normal/abnormal and benign/malignant cases. By optimizing the feature structure in this new space, we have achieved improved accuracy in breast cancer diagnosis. The simulation results demonstrate high performance, showing an accuracy of 99.8%, sensitivity of 98%, and specificity of 99.4% using the naive bayes (NB) classifier on the MIAS database. Additionally, the proposed IHFEACD approach outperforms other methods in terms of accuracy metrics, achieving a 0.8 training test rate on the MIAS database, along with improvements of 0.3%, 1%, 6.8%, and 0.5% compared to IAIS-ABC-CDS, CADx, OKMT-SGO, and ANN-t-SNE approaches, respectively. For the CBIS-DDSM database, the performance results for breast cancer detection are also remarkable, with an accuracy of 99.5%, sensitivity of 98.8%, and specificity of 99.3% using both simple and naive bayes classifiers. This research provides a clearer picture of the robustness of the model across different databases. The proposed approach demonstrates significant improvements compared to previous methods from various comparative perspectives. Finally, this model has the potential to assist medical professionals in making informed decisions regarding breast cancer diagnosis.
AbstractList Cancer, or malignant tumor, is a group of diseases that arises from the abnormal proliferation of body cells, which have the ability to invade or spread to other parts of the body. Many researchers have proposed various methods to detect breast cancer; however, the accuracy of these methods has often been insufficient due to ineffective features selection and a lack of appropriate analytical techniques. To address this issue, we need an accurate feature extraction model. In this paper, we propose an intelligent hybrid feature extraction model for automating cancer diagnosis (IHFEACD) with high accuracy. This mathematical model generates more efficient features based on the structure of previous feature formulas. Furthermore, the proposed model combines new features with existing ones to create a new feature space for early cancer detection. Although this model can be applied to detect different types of cancer, we focus on breast cancer in women as our case study. To validate our approach, we investigated the mammographic image analysis society (MIAS) database and curated the breast imaging subset of digital database for screening mammography (CBIS-DDSM). The results indicate that the proposed method effectively classifies normal/abnormal and benign/malignant cases. By optimizing the feature structure in this new space, we have achieved improved accuracy in breast cancer diagnosis. The simulation results demonstrate high performance, showing an accuracy of 99.8%, sensitivity of 98%, and specificity of 99.4% using the naive bayes (NB) classifier on the MIAS database. Additionally, the proposed IHFEACD approach outperforms other methods in terms of accuracy metrics, achieving a 0.8 training test rate on the MIAS database, along with improvements of 0.3%, 1%, 6.8%, and 0.5% compared to IAIS-ABC-CDS, CADx, OKMT-SGO, and ANN-t-SNE approaches, respectively. For the CBIS-DDSM database, the performance results for breast cancer detection are also remarkable, with an accuracy of 99.5%, sensitivity of 98.8%, and specificity of 99.3% using both simple and naive bayes classifiers. This research provides a clearer picture of the robustness of the model across different databases. The proposed approach demonstrates significant improvements compared to previous methods from various comparative perspectives. Finally, this model has the potential to assist medical professionals in making informed decisions regarding breast cancer diagnosis.
ArticleNumber 651
Author Akbarpour, Shahin
Farzan, Ali
Afshord, Saeid Taghavi
Rahmani, Roozbeh
Anari, Babak
Author_xml – sequence: 1
  givenname: Roozbeh
  surname: Rahmani
  fullname: Rahmani, Roozbeh
  organization: Department of Computer Engineering, Shabestar Branch, Islamic Azad University
– sequence: 2
  givenname: Shahin
  surname: Akbarpour
  fullname: Akbarpour, Shahin
  email: Shahinakbarpour@iau.ac.ir
  organization: Department of Computer Engineering, Shabestar Branch, Islamic Azad University
– sequence: 3
  givenname: Ali
  surname: Farzan
  fullname: Farzan, Ali
  organization: Department of Computer Engineering, Shabestar Branch, Islamic Azad University
– sequence: 4
  givenname: Babak
  surname: Anari
  fullname: Anari, Babak
  organization: Department of Computer Engineering, Shabestar Branch, Islamic Azad University
– sequence: 5
  givenname: Saeid Taghavi
  surname: Afshord
  fullname: Afshord, Saeid Taghavi
  organization: Department of Computer Engineering, Shabestar Branch, Islamic Azad University
BookMark eNp9kE1LAzEQQINUsK3-AU8Bz6sz-5FsvZXiFwhe9Byy2Und2iY1yaL99662oCdPM4f3ZuBN2Mh5R4ydI1wigLyKiHkuM8irDCRImeERG2MliwzKuhz92U_YJMYVAJSFLMbsbc4dffDOJVqvuyW5xF93TehabkmnPhCnzxS0SZ13fONbWnPrA9d98hudOrfkRjtDgbedXjofu3jN9YCYPvLBaALpmA7MKTu2eh3p7DCn7OX25nlxnz0-3T0s5o-ZyWWeMioJhdUIQjTGyFlBgFWNddO21gipUdRQUWNQW5jZEhvK26IG0erKgkBTTNnF_u42-PeeYlIr3wc3vFRFXgkBFcpyoPI9ZYKPMZBV29BtdNgpBPUdVe2jqiGq-omqcJCKvRQH2C0p_J7-x_oCKyh9Mw
Cites_doi 10.1109/TSMC.1978.4309999
10.1016/S0146-664X(75)80008-6
10.1080/19393555.2022.2060879
10.1007/s11042-022-13807-x
10.1016/j.cie.2020.106854
10.3390/diagnostics13010089
10.1016/j.artmed.2020.101845
10.3390/biomedicines10112971
10.1007/s42452-023-05339-2
10.1007/s10044-018-0760-x
10.1016/B978-0-323-85240-1.00018-3
10.3390/fi14050153
10.1016/j.bspc.2018.10.010
10.3322/caac.21754
10.1007/s12652-020-02359-3
10.1109/34.531803
10.1007/978-981-19-9819-5_37
10.1016/j.compbiomed.2023.107023
10.1038/sdata.2017.177
10.1186/s12880-023-00964-0
10.1016/j.compbiomed.2015.06.012
10.1007/s10462-023-10631-z
10.1016/j.eswa.2022.117695
10.1007/s12652-022-04384-w
10.1016/j.patrec.2007.05.018
10.1007/s11227-022-04360-3
10.1007/978-3-030-17971-7-77
10.1109/TPAMI.2005.159
10.1016/j.compmedimag.2007.02.004
10.1007/s11042-022-13550-3
10.1016/j.patcog.2005.07.006
10.1007/s42979-022-01129-6
10.1016/j.compeleceng.2020.106958
10.1109/ACCESS.2023.3304628
10.3390/cancers15123075
10.1007/s12539-021-00467-y
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-025-07077-1
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
ExternalDocumentID 10_1007_s11227_025_07077_1
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAP
EBLON
EBS
EIOEI
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
MA-
N9A
NB0
NPVJJ
NQJWS
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCJ
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
ZMTXR
~EX
.4S
AAYXX
ABBRH
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
BGNMA
CCPQU
CITATION
M4Y
NU0
TUS
JQ2
ID FETCH-LOGICAL-c272t-e4e16fa1066bcc793e015818bddfc67a16805ebc1af09f41be2d3806da5f061c3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001450096600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1573-0484
0920-8542
IngestDate Sun Nov 30 05:05:56 EST 2025
Sat Nov 29 08:05:09 EST 2025
Mon Mar 24 04:17:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Simulated annealing random algorithm
Feature extraction
Feature space
Automatic cancer diagnosis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-e4e16fa1066bcc793e015818bddfc67a16805ebc1af09f41be2d3806da5f061c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3256605174
PQPubID 2043774
ParticipantIDs proquest_journals_3256605174
crossref_primary_10_1007_s11227_025_07077_1
springer_journals_10_1007_s11227_025_07077_1
PublicationCentury 2000
PublicationDate 2025-03-24
PublicationDateYYYYMMDD 2025-03-24
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-24
  day: 24
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References R Archana (7077_CR42) 2024; 57
A Isosalo (7077_CR20) 2023; 161
J Boutry (7077_CR2) 1877; 1
MM Srikantamurthy (7077_CR7) 2023; 23
ED Carvalho (7077_CR15) 2020; 105
S Sharmin (7077_CR12) 2023; 11
7077_CR16
T Kavitha (7077_CR21) 2022; 14
7077_CR37
DSK Nayak (7077_CR4) 2023
R Chaieb (7077_CR24) 2019; 22
Y Sahu (7077_CR17) 2023; 82
RC Gonzalez (7077_CR25) 2002
H Tamura (7077_CR27) 1978; 8
H Kode (7077_CR14) 2024; 15
L Li (7077_CR43) 2020; 149
S Punitha (7077_CR10) 2021; 90
I AlShorbajit (7077_CR18) 2022; 3
H Mojez (7077_CR35) 2022; 78
AM Al-Hejri (7077_CR41) 2023; 13
A Bisoyi (7077_CR3) 2022; 31
S Gupta (7077_CR9) 2023
I Keshta (7077_CR13) 2023
NK Younis (7077_CR19) 2022; 86
R Chaieb (7077_CR6) 2018; 22
D Singh (7077_CR23) 2023; 82
MA Talukder (7077_CR8) 2022; 205
7077_CR22
HD Cheng (7077_CR30) 2006; 39
RM Al-Tam (7077_CR39) 2022; 10
AN Giaquinto (7077_CR1) 2022; 72
S Manocha (7077_CR36) 2007; 28
RO Ogundokun (7077_CR11) 2022; 14
7077_CR29
R Lee (7077_CR38) 2017; 4
W Ayadi (7077_CR32) 2019; 48
BS Manjunath (7077_CR28) 1996; 18
JG Melekoodappattu (7077_CR5) 2023; 14
H Peng (7077_CR31) 2005; 27
Q Li (7077_CR40) 2007; 31
MM Galloway (7077_CR26) 1975; 4
S Dhahbi (7077_CR33) 2015; 64
H Mojez (7077_CR34) 2023; 14
References_xml – volume: 8
  start-page: 460
  issue: 6
  year: 1978
  ident: 7077_CR27
  publication-title: IEEE Trans Syst Man Cybernet Smc
  doi: 10.1109/TSMC.1978.4309999
– volume: 4
  start-page: 172
  year: 1975
  ident: 7077_CR26
  publication-title: Computing Graph Image Process
  doi: 10.1016/S0146-664X(75)80008-6
– volume: 31
  start-page: 377
  issue: 4
  year: 2022
  ident: 7077_CR3
  publication-title: Info Securit Jurnal
  doi: 10.1080/19393555.2022.2060879
– volume: 82
  start-page: 14055
  year: 2023
  ident: 7077_CR17
  publication-title: Multimedia Tools Applications
  doi: 10.1007/s11042-022-13807-x
– volume: 149
  year: 2020
  ident: 7077_CR43
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2020.106854
– ident: 7077_CR16
– volume: 13
  start-page: 89
  issue: 1
  year: 2023
  ident: 7077_CR41
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13010089
– ident: 7077_CR37
– volume: 105
  year: 2020
  ident: 7077_CR15
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2020.101845
– volume: 10
  start-page: 2971
  issue: 11
  year: 2022
  ident: 7077_CR39
  publication-title: Biomedicines
  doi: 10.3390/biomedicines10112971
– year: 2023
  ident: 7077_CR13
  publication-title: SN Appl
  doi: 10.1007/s42452-023-05339-2
– volume: 22
  start-page: 803
  year: 2018
  ident: 7077_CR6
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-018-0760-x
– volume: 86
  start-page: 1
  issue: 2
  year: 2022
  ident: 7077_CR19
  publication-title: Seminars in Cancer Biology journal
– start-page: 13
  volume-title: Computational intelligence in cancer diagnosis
  year: 2023
  ident: 7077_CR4
  doi: 10.1016/B978-0-323-85240-1.00018-3
– volume: 14
  start-page: 153
  issue: 5
  year: 2022
  ident: 7077_CR11
  publication-title: Future Internet
  doi: 10.3390/fi14050153
– volume: 48
  start-page: 144
  year: 2019
  ident: 7077_CR32
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2018.10.010
– volume: 72
  start-page: 524
  issue: 6
  year: 2022
  ident: 7077_CR1
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21754
– volume: 14
  start-page: 5489
  issue: 5
  year: 2023
  ident: 7077_CR5
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-020-02359-3
– volume: 18
  start-page: 837
  issue: 8
  year: 1996
  ident: 7077_CR28
  publication-title: IEEE Trans Pattern Anal Mach Intell (Spec Issue Digit Library)
  doi: 10.1109/34.531803
– ident: 7077_CR29
– start-page: 511
  volume-title: Computational Vision and bio-inspired computing: proceedings of ICCVBIC 2022
  year: 2023
  ident: 7077_CR9
  doi: 10.1007/978-981-19-9819-5_37
– volume: 161
  year: 2023
  ident: 7077_CR20
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.107023
– volume: 4
  year: 2017
  ident: 7077_CR38
  publication-title: Sci Data
  doi: 10.1038/sdata.2017.177
– volume: 23
  start-page: 1
  issue: 1
  year: 2023
  ident: 7077_CR7
  publication-title: BMC Med Imag
  doi: 10.1186/s12880-023-00964-0
– volume: 64
  start-page: 79
  year: 2015
  ident: 7077_CR33
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2015.06.012
– volume: 57
  start-page: 11
  year: 2024
  ident: 7077_CR42
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-023-10631-z
– volume: 205
  start-page: 117605
  year: 2022
  ident: 7077_CR8
  publication-title: Expert System Application
  doi: 10.1016/j.eswa.2022.117695
– volume: 1
  year: 1877
  ident: 7077_CR2
  publication-title: Biochim Biophys Acta Rev Cancer
– volume: 14
  start-page: 11039
  year: 2023
  ident: 7077_CR34
  publication-title: J Ambient Intell Human Comput
  doi: 10.1007/s12652-022-04384-w
– volume: 28
  start-page: 1818
  year: 2007
  ident: 7077_CR36
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2007.05.018
– volume: 78
  start-page: 13205
  year: 2022
  ident: 7077_CR35
  publication-title: J Supercomput
  doi: 10.1007/s11227-022-04360-3
– ident: 7077_CR22
  doi: 10.1007/978-3-030-17971-7-77
– start-page: 76
  volume-title: Digital image processing
  year: 2002
  ident: 7077_CR25
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: 7077_CR31
  publication-title: IEEE Trans Pattern Anal Mach Intelligence
  doi: 10.1109/TPAMI.2005.159
– volume: 31
  start-page: 338
  year: 2007
  ident: 7077_CR40
  publication-title: Computing Med Imaging Gr
  doi: 10.1016/j.compmedimag.2007.02.004
– volume: 82
  start-page: 8581
  year: 2023
  ident: 7077_CR23
  publication-title: Multimedia Tools Applicatios
  doi: 10.1007/s11042-022-13550-3
– volume: 39
  start-page: 646
  year: 2006
  ident: 7077_CR30
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2005.07.006
– volume: 3
  start-page: 229
  year: 2022
  ident: 7077_CR18
  publication-title: SN COMPUT SCI
  doi: 10.1007/s42979-022-01129-6
– volume: 90
  year: 2021
  ident: 7077_CR10
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2020.106958
– volume: 11
  start-page: 87694
  year: 2023
  ident: 7077_CR12
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3304628
– volume: 15
  start-page: 3075
  issue: 12
  year: 2024
  ident: 7077_CR14
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers15123075
– volume: 14
  start-page: 113
  year: 2022
  ident: 7077_CR21
  publication-title: Interdiscip Sci Comput Life Sci
  doi: 10.1007/s12539-021-00467-y
– volume: 22
  start-page: 803
  year: 2019
  ident: 7077_CR24
  publication-title: Pattern Anal Applic
  doi: 10.1007/s10044-018-0760-x
SSID ssj0004373
Score 2.3775346
Snippet Cancer, or malignant tumor, is a group of diseases that arises from the abnormal proliferation of body cells, which have the ability to invade or spread to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 651
SubjectTerms Accuracy
Algorithms
Automation
Back propagation
Breast cancer
Case studies
Compilers
Computer Science
Diagnosis
Feature extraction
Field programmable gate arrays
Fourier transforms
Image analysis
Image retrieval
Interpreters
Machine learning
Mammography
Medical diagnosis
Neural networks
Online data bases
Processor Architectures
Programming Languages
Sensitivity
Support vector machines
Tumors
Wavelet transforms
Title A new intelligent hybrid feature extraction model for automating cancer diagnosis: a focus on breast cancer
URI https://link.springer.com/article/10.1007/s11227-025-07077-1
https://www.proquest.com/docview/3256605174
Volume 81
WOSCitedRecordID wos001450096600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 1573-0484
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yevDi-sTVVXLwpoGmTZOut0VcPC3ii72VJE10EbpL2xX8907S1qLoQc-dhDKPzBcy8w1CZ4bKWEuliKWZJWzEFZFJYIhlKoEUqzLFtB82IabTZDYb3TZNYWVb7d4-SfqTumt2o2EoiBu_6ihqBIE7zzqku8QNbLi7f-q6ISMRNe0xP6_7moI6XPntKdRnmEn_f_-2jbYaRInHtQvsoDWT76J-O60BN8G7h17HGCA0nn9ycFb45d31a2FrPLsnhnO6qPscsB-QgwHQYrmqFg7V5s9YOw8pcFZX583LSyxBRK9KDCuUq26vGpl99Di5fri6Ic2oBaJDEVbEMEO5lXA_5EpriFkDMAFyucoyq7mQlCdBbJSm0gYjy6gyYRYlAc9kbAER6OgA9fJFbg4RtjpmxrmAtDETXCfUCB5r47jgtJF8gM5b7afLmlEj7biTnR5T0GPq9ZjSARq2Bkqb6CrTCHAa9xzbA3TRGqT7_PtuR38TP0abobdpREI2RL2qWJkTtKHfqnlZnHqv-wCFrdX3
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yBb04P3E6NQdvGmjaNOm8DXFMnEN0ym4lSRMdQidtJ_jfm6StRdGDnvsSyvvI-4W893sAnCjMQ8mFQBonGpEeFYhHnkKaiMikWJEIIt2wCTYeR9Np77ZqCsvravf6SdKd1E2zG_Z9huz4VUtRw5C58ywTk7EsY_7d_WPTDRmwoGqP-Xnd1xTU4MpvT6Euwwza__u3DbBeIUrYL11gEyypdAu062kNsArebfDShwZCw9knB2cBn99tvxbUyrF7QnNOZ2WfA3QDcqABtJAvirlFtekTlNZDMpiU1Xmz_BxyIyIXOTQrhK1uLyqZHfAwuJxcDFE1agFJn_kFUkRhqrm5H1IhpYlZZWCCyeUiSbSkjGMaeaESEnPt9TTBQvlJEHk04aE2iEAGu6CVzlO1B6CWIVHWBbgOCaMyworRUCrLBScVpx1wWms_fi0ZNeKGO9nqMTZ6jJ0eY9wB3dpAcRVdeRwYnEYdx3YHnNUGaT7_vtv-38SPwepwcjOKR1fj6wOw5jv7BsgnXdAqsoU6BCvyrZjl2ZHzwA-WsNjb
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iIl5cn7i6ag7eNGzTpmnX26IuirIs-GBvJU9dhO7SdgX_vUnaWhU9iOcmpcxMOt-Q-b4B4FhhFgrGOdJYakR6lCMWewppwmOTYrnkRLhhE9FwGI_HvdEnFr_rdq-vJEtOg1VpSovuTOpuQ3zDvh8hO4rVytVEyNQ_S8Q20tt6_e6xYUYGUVBRZX7e9zUdNRjz27WoyzaD1v-_cx2sVUgT9svQ2AALKt0ErXqKA6wO9RZ46UMDreHkQ5uzgM9vlscFtXKqn9D8v7OS_wDd4BxogC5k82Jq0W76BIWNnAzKsmtvkp9BZpaIeQ7NDm673otqzTZ4GFzen1-hagQDEn7kF0gRhalmpm6kXAhzlpWBDybHcym1oBHDNPZCxQVm2utpgrnyZRB7VLJQG6Qggh2wmE5TtQugFiFRNjSYDklERYxVREOhrEacUIy2wUntiWRWKm0kjaaytWNi7Jg4Oya4DTq1s5Lq1OVJYPAbddrbbXBaO6d5_Pvb9v62_AisjC4Gye318GYfrPrOvQHySQcsFtlcHYBl8VpM8uzQBeM77Cvhvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+intelligent+hybrid+feature+extraction+model+for+automating+cancer+diagnosis%3A+a+focus+on+breast+cancer&rft.jtitle=The+Journal+of+supercomputing&rft.au=Rahmani%2C+Roozbeh&rft.au=Akbarpour%2C+Shahin&rft.au=Farzan%2C+Ali&rft.au=Anari%2C+Babak&rft.date=2025-03-24&rft.pub=Springer+US&rft.eissn=1573-0484&rft.volume=81&rft.issue=5&rft_id=info:doi/10.1007%2Fs11227-025-07077-1&rft.externalDocID=10_1007_s11227_025_07077_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-0484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-0484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-0484&client=summon