A new intelligent hybrid feature extraction model for automating cancer diagnosis: a focus on breast cancer
Cancer, or malignant tumor, is a group of diseases that arises from the abnormal proliferation of body cells, which have the ability to invade or spread to other parts of the body. Many researchers have proposed various methods to detect breast cancer; however, the accuracy of these methods has ofte...
Uloženo v:
| Vydáno v: | The Journal of supercomputing Ročník 81; číslo 5; s. 651 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
24.03.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1573-0484, 0920-8542, 1573-0484 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Cancer, or malignant tumor, is a group of diseases that arises from the abnormal proliferation of body cells, which have the ability to invade or spread to other parts of the body. Many researchers have proposed various methods to detect breast cancer; however, the accuracy of these methods has often been insufficient due to ineffective features selection and a lack of appropriate analytical techniques. To address this issue, we need an accurate feature extraction model. In this paper, we propose an intelligent hybrid feature extraction model for automating cancer diagnosis (IHFEACD) with high accuracy. This mathematical model generates more efficient features based on the structure of previous feature formulas. Furthermore, the proposed model combines new features with existing ones to create a new feature space for early cancer detection. Although this model can be applied to detect different types of cancer, we focus on breast cancer in women as our case study. To validate our approach, we investigated the mammographic image analysis society (MIAS) database and curated the breast imaging subset of digital database for screening mammography (CBIS-DDSM). The results indicate that the proposed method effectively classifies normal/abnormal and benign/malignant cases. By optimizing the feature structure in this new space, we have achieved improved accuracy in breast cancer diagnosis. The simulation results demonstrate high performance, showing an accuracy of 99.8%, sensitivity of 98%, and specificity of 99.4% using the naive bayes (NB) classifier on the MIAS database. Additionally, the proposed IHFEACD approach outperforms other methods in terms of accuracy metrics, achieving a 0.8 training test rate on the MIAS database, along with improvements of 0.3%, 1%, 6.8%, and 0.5% compared to IAIS-ABC-CDS, CADx, OKMT-SGO, and ANN-t-SNE approaches, respectively. For the CBIS-DDSM database, the performance results for breast cancer detection are also remarkable, with an accuracy of 99.5%, sensitivity of 98.8%, and specificity of 99.3% using both simple and naive bayes classifiers. This research provides a clearer picture of the robustness of the model across different databases. The proposed approach demonstrates significant improvements compared to previous methods from various comparative perspectives. Finally, this model has the potential to assist medical professionals in making informed decisions regarding breast cancer diagnosis. |
|---|---|
| AbstractList | Cancer, or malignant tumor, is a group of diseases that arises from the abnormal proliferation of body cells, which have the ability to invade or spread to other parts of the body. Many researchers have proposed various methods to detect breast cancer; however, the accuracy of these methods has often been insufficient due to ineffective features selection and a lack of appropriate analytical techniques. To address this issue, we need an accurate feature extraction model. In this paper, we propose an intelligent hybrid feature extraction model for automating cancer diagnosis (IHFEACD) with high accuracy. This mathematical model generates more efficient features based on the structure of previous feature formulas. Furthermore, the proposed model combines new features with existing ones to create a new feature space for early cancer detection. Although this model can be applied to detect different types of cancer, we focus on breast cancer in women as our case study. To validate our approach, we investigated the mammographic image analysis society (MIAS) database and curated the breast imaging subset of digital database for screening mammography (CBIS-DDSM). The results indicate that the proposed method effectively classifies normal/abnormal and benign/malignant cases. By optimizing the feature structure in this new space, we have achieved improved accuracy in breast cancer diagnosis. The simulation results demonstrate high performance, showing an accuracy of 99.8%, sensitivity of 98%, and specificity of 99.4% using the naive bayes (NB) classifier on the MIAS database. Additionally, the proposed IHFEACD approach outperforms other methods in terms of accuracy metrics, achieving a 0.8 training test rate on the MIAS database, along with improvements of 0.3%, 1%, 6.8%, and 0.5% compared to IAIS-ABC-CDS, CADx, OKMT-SGO, and ANN-t-SNE approaches, respectively. For the CBIS-DDSM database, the performance results for breast cancer detection are also remarkable, with an accuracy of 99.5%, sensitivity of 98.8%, and specificity of 99.3% using both simple and naive bayes classifiers. This research provides a clearer picture of the robustness of the model across different databases. The proposed approach demonstrates significant improvements compared to previous methods from various comparative perspectives. Finally, this model has the potential to assist medical professionals in making informed decisions regarding breast cancer diagnosis. |
| ArticleNumber | 651 |
| Author | Akbarpour, Shahin Farzan, Ali Afshord, Saeid Taghavi Rahmani, Roozbeh Anari, Babak |
| Author_xml | – sequence: 1 givenname: Roozbeh surname: Rahmani fullname: Rahmani, Roozbeh organization: Department of Computer Engineering, Shabestar Branch, Islamic Azad University – sequence: 2 givenname: Shahin surname: Akbarpour fullname: Akbarpour, Shahin email: Shahinakbarpour@iau.ac.ir organization: Department of Computer Engineering, Shabestar Branch, Islamic Azad University – sequence: 3 givenname: Ali surname: Farzan fullname: Farzan, Ali organization: Department of Computer Engineering, Shabestar Branch, Islamic Azad University – sequence: 4 givenname: Babak surname: Anari fullname: Anari, Babak organization: Department of Computer Engineering, Shabestar Branch, Islamic Azad University – sequence: 5 givenname: Saeid Taghavi surname: Afshord fullname: Afshord, Saeid Taghavi organization: Department of Computer Engineering, Shabestar Branch, Islamic Azad University |
| BookMark | eNp9kE1LAzEQQINUsK3-AU8Bz6sz-5FsvZXiFwhe9Byy2Und2iY1yaL99662oCdPM4f3ZuBN2Mh5R4ydI1wigLyKiHkuM8irDCRImeERG2MliwzKuhz92U_YJMYVAJSFLMbsbc4dffDOJVqvuyW5xF93TehabkmnPhCnzxS0SZ13fONbWnPrA9d98hudOrfkRjtDgbedXjofu3jN9YCYPvLBaALpmA7MKTu2eh3p7DCn7OX25nlxnz0-3T0s5o-ZyWWeMioJhdUIQjTGyFlBgFWNddO21gipUdRQUWNQW5jZEhvK26IG0erKgkBTTNnF_u42-PeeYlIr3wc3vFRFXgkBFcpyoPI9ZYKPMZBV29BtdNgpBPUdVe2jqiGq-omqcJCKvRQH2C0p_J7-x_oCKyh9Mw |
| Cites_doi | 10.1109/TSMC.1978.4309999 10.1016/S0146-664X(75)80008-6 10.1080/19393555.2022.2060879 10.1007/s11042-022-13807-x 10.1016/j.cie.2020.106854 10.3390/diagnostics13010089 10.1016/j.artmed.2020.101845 10.3390/biomedicines10112971 10.1007/s42452-023-05339-2 10.1007/s10044-018-0760-x 10.1016/B978-0-323-85240-1.00018-3 10.3390/fi14050153 10.1016/j.bspc.2018.10.010 10.3322/caac.21754 10.1007/s12652-020-02359-3 10.1109/34.531803 10.1007/978-981-19-9819-5_37 10.1016/j.compbiomed.2023.107023 10.1038/sdata.2017.177 10.1186/s12880-023-00964-0 10.1016/j.compbiomed.2015.06.012 10.1007/s10462-023-10631-z 10.1016/j.eswa.2022.117695 10.1007/s12652-022-04384-w 10.1016/j.patrec.2007.05.018 10.1007/s11227-022-04360-3 10.1007/978-3-030-17971-7-77 10.1109/TPAMI.2005.159 10.1016/j.compmedimag.2007.02.004 10.1007/s11042-022-13550-3 10.1016/j.patcog.2005.07.006 10.1007/s42979-022-01129-6 10.1016/j.compeleceng.2020.106958 10.1109/ACCESS.2023.3304628 10.3390/cancers15123075 10.1007/s12539-021-00467-y |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11227-025-07077-1 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| ExternalDocumentID | 10_1007_s11227_025_07077_1 |
| GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDBE ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAP EBLON EBS EIOEI ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM MA- N9A NB0 NPVJJ NQJWS O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R89 R9I RHV ROL RPX RSV S16 S1Z S27 S3B SAP SCJ SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WH7 WK8 YLTOR Z45 ZMTXR ~EX .4S AAYXX ABBRH ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR BGNMA CCPQU CITATION M4Y NU0 TUS JQ2 |
| ID | FETCH-LOGICAL-c272t-e4e16fa1066bcc793e015818bddfc67a16805ebc1af09f41be2d3806da5f061c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001450096600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1573-0484 0920-8542 |
| IngestDate | Sun Nov 30 05:05:56 EST 2025 Sat Nov 29 08:05:09 EST 2025 Mon Mar 24 04:17:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Simulated annealing random algorithm Feature extraction Feature space Automatic cancer diagnosis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-e4e16fa1066bcc793e015818bddfc67a16805ebc1af09f41be2d3806da5f061c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3256605174 |
| PQPubID | 2043774 |
| ParticipantIDs | proquest_journals_3256605174 crossref_primary_10_1007_s11227_025_07077_1 springer_journals_10_1007_s11227_025_07077_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-24 |
| PublicationDateYYYYMMDD | 2025-03-24 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | R Archana (7077_CR42) 2024; 57 A Isosalo (7077_CR20) 2023; 161 J Boutry (7077_CR2) 1877; 1 MM Srikantamurthy (7077_CR7) 2023; 23 ED Carvalho (7077_CR15) 2020; 105 S Sharmin (7077_CR12) 2023; 11 7077_CR16 T Kavitha (7077_CR21) 2022; 14 7077_CR37 DSK Nayak (7077_CR4) 2023 R Chaieb (7077_CR24) 2019; 22 Y Sahu (7077_CR17) 2023; 82 RC Gonzalez (7077_CR25) 2002 H Tamura (7077_CR27) 1978; 8 H Kode (7077_CR14) 2024; 15 L Li (7077_CR43) 2020; 149 S Punitha (7077_CR10) 2021; 90 I AlShorbajit (7077_CR18) 2022; 3 H Mojez (7077_CR35) 2022; 78 AM Al-Hejri (7077_CR41) 2023; 13 A Bisoyi (7077_CR3) 2022; 31 S Gupta (7077_CR9) 2023 I Keshta (7077_CR13) 2023 NK Younis (7077_CR19) 2022; 86 R Chaieb (7077_CR6) 2018; 22 D Singh (7077_CR23) 2023; 82 MA Talukder (7077_CR8) 2022; 205 7077_CR22 HD Cheng (7077_CR30) 2006; 39 RM Al-Tam (7077_CR39) 2022; 10 AN Giaquinto (7077_CR1) 2022; 72 S Manocha (7077_CR36) 2007; 28 RO Ogundokun (7077_CR11) 2022; 14 7077_CR29 R Lee (7077_CR38) 2017; 4 W Ayadi (7077_CR32) 2019; 48 BS Manjunath (7077_CR28) 1996; 18 JG Melekoodappattu (7077_CR5) 2023; 14 H Peng (7077_CR31) 2005; 27 Q Li (7077_CR40) 2007; 31 MM Galloway (7077_CR26) 1975; 4 S Dhahbi (7077_CR33) 2015; 64 H Mojez (7077_CR34) 2023; 14 |
| References_xml | – volume: 8 start-page: 460 issue: 6 year: 1978 ident: 7077_CR27 publication-title: IEEE Trans Syst Man Cybernet Smc doi: 10.1109/TSMC.1978.4309999 – volume: 4 start-page: 172 year: 1975 ident: 7077_CR26 publication-title: Computing Graph Image Process doi: 10.1016/S0146-664X(75)80008-6 – volume: 31 start-page: 377 issue: 4 year: 2022 ident: 7077_CR3 publication-title: Info Securit Jurnal doi: 10.1080/19393555.2022.2060879 – volume: 82 start-page: 14055 year: 2023 ident: 7077_CR17 publication-title: Multimedia Tools Applications doi: 10.1007/s11042-022-13807-x – volume: 149 year: 2020 ident: 7077_CR43 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2020.106854 – ident: 7077_CR16 – volume: 13 start-page: 89 issue: 1 year: 2023 ident: 7077_CR41 publication-title: Diagnostics doi: 10.3390/diagnostics13010089 – ident: 7077_CR37 – volume: 105 year: 2020 ident: 7077_CR15 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2020.101845 – volume: 10 start-page: 2971 issue: 11 year: 2022 ident: 7077_CR39 publication-title: Biomedicines doi: 10.3390/biomedicines10112971 – year: 2023 ident: 7077_CR13 publication-title: SN Appl doi: 10.1007/s42452-023-05339-2 – volume: 22 start-page: 803 year: 2018 ident: 7077_CR6 publication-title: Pattern Anal Appl doi: 10.1007/s10044-018-0760-x – volume: 86 start-page: 1 issue: 2 year: 2022 ident: 7077_CR19 publication-title: Seminars in Cancer Biology journal – start-page: 13 volume-title: Computational intelligence in cancer diagnosis year: 2023 ident: 7077_CR4 doi: 10.1016/B978-0-323-85240-1.00018-3 – volume: 14 start-page: 153 issue: 5 year: 2022 ident: 7077_CR11 publication-title: Future Internet doi: 10.3390/fi14050153 – volume: 48 start-page: 144 year: 2019 ident: 7077_CR32 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2018.10.010 – volume: 72 start-page: 524 issue: 6 year: 2022 ident: 7077_CR1 publication-title: CA Cancer J Clin doi: 10.3322/caac.21754 – volume: 14 start-page: 5489 issue: 5 year: 2023 ident: 7077_CR5 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-020-02359-3 – volume: 18 start-page: 837 issue: 8 year: 1996 ident: 7077_CR28 publication-title: IEEE Trans Pattern Anal Mach Intell (Spec Issue Digit Library) doi: 10.1109/34.531803 – ident: 7077_CR29 – start-page: 511 volume-title: Computational Vision and bio-inspired computing: proceedings of ICCVBIC 2022 year: 2023 ident: 7077_CR9 doi: 10.1007/978-981-19-9819-5_37 – volume: 161 year: 2023 ident: 7077_CR20 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2023.107023 – volume: 4 year: 2017 ident: 7077_CR38 publication-title: Sci Data doi: 10.1038/sdata.2017.177 – volume: 23 start-page: 1 issue: 1 year: 2023 ident: 7077_CR7 publication-title: BMC Med Imag doi: 10.1186/s12880-023-00964-0 – volume: 64 start-page: 79 year: 2015 ident: 7077_CR33 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2015.06.012 – volume: 57 start-page: 11 year: 2024 ident: 7077_CR42 publication-title: Artif Intell Rev doi: 10.1007/s10462-023-10631-z – volume: 205 start-page: 117605 year: 2022 ident: 7077_CR8 publication-title: Expert System Application doi: 10.1016/j.eswa.2022.117695 – volume: 1 year: 1877 ident: 7077_CR2 publication-title: Biochim Biophys Acta Rev Cancer – volume: 14 start-page: 11039 year: 2023 ident: 7077_CR34 publication-title: J Ambient Intell Human Comput doi: 10.1007/s12652-022-04384-w – volume: 28 start-page: 1818 year: 2007 ident: 7077_CR36 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2007.05.018 – volume: 78 start-page: 13205 year: 2022 ident: 7077_CR35 publication-title: J Supercomput doi: 10.1007/s11227-022-04360-3 – ident: 7077_CR22 doi: 10.1007/978-3-030-17971-7-77 – start-page: 76 volume-title: Digital image processing year: 2002 ident: 7077_CR25 – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 7077_CR31 publication-title: IEEE Trans Pattern Anal Mach Intelligence doi: 10.1109/TPAMI.2005.159 – volume: 31 start-page: 338 year: 2007 ident: 7077_CR40 publication-title: Computing Med Imaging Gr doi: 10.1016/j.compmedimag.2007.02.004 – volume: 82 start-page: 8581 year: 2023 ident: 7077_CR23 publication-title: Multimedia Tools Applicatios doi: 10.1007/s11042-022-13550-3 – volume: 39 start-page: 646 year: 2006 ident: 7077_CR30 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2005.07.006 – volume: 3 start-page: 229 year: 2022 ident: 7077_CR18 publication-title: SN COMPUT SCI doi: 10.1007/s42979-022-01129-6 – volume: 90 year: 2021 ident: 7077_CR10 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2020.106958 – volume: 11 start-page: 87694 year: 2023 ident: 7077_CR12 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3304628 – volume: 15 start-page: 3075 issue: 12 year: 2024 ident: 7077_CR14 publication-title: Cancers (Basel) doi: 10.3390/cancers15123075 – volume: 14 start-page: 113 year: 2022 ident: 7077_CR21 publication-title: Interdiscip Sci Comput Life Sci doi: 10.1007/s12539-021-00467-y – volume: 22 start-page: 803 year: 2019 ident: 7077_CR24 publication-title: Pattern Anal Applic doi: 10.1007/s10044-018-0760-x |
| SSID | ssj0004373 |
| Score | 2.3775346 |
| Snippet | Cancer, or malignant tumor, is a group of diseases that arises from the abnormal proliferation of body cells, which have the ability to invade or spread to... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 651 |
| SubjectTerms | Accuracy Algorithms Automation Back propagation Breast cancer Case studies Compilers Computer Science Diagnosis Feature extraction Field programmable gate arrays Fourier transforms Image analysis Image retrieval Interpreters Machine learning Mammography Medical diagnosis Neural networks Online data bases Processor Architectures Programming Languages Sensitivity Support vector machines Tumors Wavelet transforms |
| Title | A new intelligent hybrid feature extraction model for automating cancer diagnosis: a focus on breast cancer |
| URI | https://link.springer.com/article/10.1007/s11227-025-07077-1 https://www.proquest.com/docview/3256605174 |
| Volume | 81 |
| WOSCitedRecordID | wos001450096600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 1573-0484 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yevDi-sTVVXLwpoGmaZvU2yIuHmQRX-ytpHnoIuxK2xX8907S1qLoQc9NQpmZZL6Q-b5B6CSRitoo0MRplZFI0IgInTMipZBUBSmPqScKX_PJREyn6U1DCivbavf2SdKf1B3ZjYYhJ679qpOo4QTuPKuQ7oRr2HB799ixIRlnDT3m53lfU1CHK789hfoMM-7_79820UaDKPGoDoEttGLm26jfdmvAzebdQS8jDBAazz41OCv8_O74Wtgar-6J4Zwuap4D9g1yMABaLJfVwqHa-RNWLkIKrOvqvFl5jiUMUcsSw4zcVbdXzZhd9DC-vL-4Ik2rBaJCHlbERIYmVsL9MMmVgj1rACZALs-1tirhkiYiiE2uqLRBaiOam1AzESRaxhYQgWJ7qDdfzM0-wpAVWQxrCZgeaQWR6vqahTzm1qYyjQfotLV-9loramSddrKzYwZ2zLwdMzpAw9ZBWbO7yowBTku8xvYAnbUO6T7_vtrB34YfovXQ-5RBKA9RryqW5gitqbdqVhbHPuo-AB6X0_I |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yBb04f-J0ag7eNNA0bdN6G-KYOIfolN1KmiY6hE7WTvC_9yVtLYoe9NwklPde8r6Q930PoZNASKo9JyVGq4x4IfVImCaMCBEKKp2I-9QShYd8NAonk-i2IoXldbV7_SRpT-qG7EZdlxPTftVI1HACd55lDzKWUcy_u39s2JCMs4oe8_O8rymowZXfnkJthum3__dvG2i9QpS4V4bAJlpS2RZq190acLV5t9FLDwOExtNPDc4CP78bvhbWyqp7Yjin5yXPAdsGORgALRaLYmZQbfaEpYmQOU7L6rxpfo4FDJGLHMOMxFS3F9WYHfTQvxxfDEjVaoFIl7sFUZ6igRZwPwwSKWHPKoAJkMuTNNUy4IIGoeOrRFKhnUh7NFFuykInSIWvARFItota2SxTewhDVmQ-rBXCdC-VEKmmr5nLfa51JCK_g05r68evpaJG3GgnGzvGYMfY2jGmHdStHRRXuyuPGeC0wGpsd9BZ7ZDm8--r7f9t-DFaHYxvhvHwanR9gNZc618GYd1FrWK-UIdoRb4V03x-ZCPwAxde1tY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SRbxYn1itmoM3Dd3sK7veiloUSyn4oLclm4cWYVvareC_d5LddVX0IJ43CUtmJvOFzPcNQichF1T7jiRGq4z4EfVJJFOPcB5xKpyYBdQShftsMIhGo3j4icVvq92rJ8mC02BUmrK8M5W6UxPfqOsyYlqxGrkaRuD-s-ybQnpzX797rJmRHvNKqszP876moxpjfnsWtdmm1_z_f26g9RJp4m7hGptoSWVbqFl1ccBlUG-jly4GaI3HH9qcOX5-MzwurJVV_cRwfs8K_gO2jXMwAF3MF_nEoN3sCQvjOTMsi6q98fwccxgiFnMMM1JT9Z6XY3bQQ-_q_uKalC0YiHCZmxPlKxpqDvfGMBUCYlkBfIAcn0qpRcg4DSMnUKmgXDux9mmqXOlFTih5oAEpCG8XNbJJpvYQhmzpBbBWBNN9KcCDTb8zlwVM65jHQQudVpZIpoXSRlJrKpt9TGAfE7uPCW2hdmWspIy6eeIBfgut9nYLnVXGqT__vtr-34Yfo9XhZS_p3wxuD9Caa83rgbe3USOfLdQhWhGv-Xg-O7LO-A5PXt-6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+intelligent+hybrid+feature+extraction+model+for+automating+cancer+diagnosis%3A+a+focus+on+breast+cancer&rft.jtitle=The+Journal+of+supercomputing&rft.au=Rahmani%2C+Roozbeh&rft.au=Akbarpour%2C+Shahin&rft.au=Farzan%2C+Ali&rft.au=Anari%2C+Babak&rft.date=2025-03-24&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=81&rft.issue=5&rft.spage=651&rft_id=info:doi/10.1007%2Fs11227-025-07077-1&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-0484&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-0484&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-0484&client=summon |