On Solving Sparse Polynomial Factorization Related Problems

In a recent result of Bhargava, Saraf and Volkovich [FOCS’18; JACM’20], the first factor sparsity bound for constant individual degree polynomials was shown. In particular, it was shown that any factor of a polynomial with at most s terms and individual degree bounded by d can itself have at most s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational complexity Jg. 34; H. 1; S. 7
Hauptverfasser: Bisht, Pranav, Volkovich, Ilya
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.06.2025
Springer Nature B.V
Schlagworte:
ISSN:1016-3328, 1420-8954
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In a recent result of Bhargava, Saraf and Volkovich [FOCS’18; JACM’20], the first factor sparsity bound for constant individual degree polynomials was shown. In particular, it was shown that any factor of a polynomial with at most s terms and individual degree bounded by d can itself have at most s O ( d 2 log n ) terms. It is conjectured, though, that the ``true'' sparsity bound should be polynomial (i.e., s poly ( d ) ). In this paper we provide supporting evidence for this conjecture by presenting polynomial-time algorithms for several problems that would be implied by a polynomial-size sparsity bound. In particular, we give efficient (deterministic) algorithms for identity testing of Σ [ 2 ] Π Σ Π [ ind - deg d ] circuits and testing if a sparse polynomial is an exact power. Hence, our algorithms rely on different techniques.
AbstractList In a recent result of Bhargava, Saraf and Volkovich [FOCS’18; JACM’20], the first factor sparsity bound for constant individual degree polynomials was shown. In particular, it was shown that any factor of a polynomial with at most s terms and individual degree bounded by d can itself have at most s O ( d 2 log n ) terms. It is conjectured, though, that the ``true'' sparsity bound should be polynomial (i.e., s poly ( d ) ). In this paper we provide supporting evidence for this conjecture by presenting polynomial-time algorithms for several problems that would be implied by a polynomial-size sparsity bound. In particular, we give efficient (deterministic) algorithms for identity testing of Σ [ 2 ] Π Σ Π [ ind - deg d ] circuits and testing if a sparse polynomial is an exact power. Hence, our algorithms rely on different techniques.
In a recent result of Bhargava, Saraf and Volkovich [FOCS’18; JACM’20], the first factor sparsity bound for constant individual degree polynomials was shown. In particular, it was shown that any factor of a polynomial with at most s terms and individual degree bounded by d can itself have at most sO(d2logn) terms. It is conjectured, though, that the ``true'' sparsity bound should be polynomial (i.e., spoly(d)). In this paper we provide supporting evidence for this conjecture by presenting polynomial-time algorithms for several problems that would be implied by a polynomial-size sparsity bound. In particular, we give efficient (deterministic) algorithms for identity testing of Σ[2]ΠΣΠ[ind-degd] circuits and testing if a sparse polynomial is an exact power. Hence, our algorithms rely on different techniques.
ArticleNumber 7
Author Bisht, Pranav
Volkovich, Ilya
Author_xml – sequence: 1
  givenname: Pranav
  surname: Bisht
  fullname: Bisht, Pranav
  email: pranav@iitism.ac.in
  organization: Department of Computer Science and Engineering , IIT(ISM) Dhanbad
– sequence: 2
  givenname: Ilya
  surname: Volkovich
  fullname: Volkovich, Ilya
  organization: Computer Science Department, Boston College
BookMark eNp9kEFLAzEQhYNUsK3-AU8LnqOTZLObxZMUq0Khxeo5pLuzZctuUpOtUH-9qSt4c-Ywc3jvzfBNyMg6i4RcM7hlAPldAACRU-CSAvBMUXlGxizlQFUh01HcgWVUCK4uyCSEHQCTSqRjcr-0ydq1n43dJuu98QGTlWuP1nWNaZO5KXvnmy_TN84mr9iaHqtk5d2mxS5ckvPatAGvfueUvM8f32bPdLF8epk9LGjJc95TTDOR1ayKDbIqUoi_lBslpcFMZXldGigBc6xErJpx4FjkEouiihpVVGJKbobcvXcfBwy93rmDt_GkFlzKTKhCyajig6r0LgSPtd77pjP-qBnoEyQ9QNIRkv6BpE8mMZhCFNst-r_of1zfgdtqVQ
Cites_doi 10.1561/0400000039
10.1007/978-3-642-14165-2_35
10.1016/S0747-7171(02)00135-9
10.1007/s00037-012-0054-4
10.1515/crll.1973.264.184
10.1109/18.782097
10.1006/jcom.1997.0439
10.1017/S0963548398003411
10.1006/jcss.2000.1730
10.1007/978-3-319-16721-3
10.1109/FOCS.2015.35
10.1016/0022-0000(85)90044-3
10.1073/pnas.1901272116
10.1137/1.9781611977912.137
10.1007/s00037-004-0182-6
10.1007/b102438
10.1145/3618260.3649743
10.1007/3-540-09519-5_73
10.1016/S0747-7171(08)80015-6
10.1145/3406325.3451013
10.1145/3365667
10.1007/s00037-021-00215-0
10.1109/FOCS.2008.32
10.1016/j.ipl.2010.07.012
10.1145/322217.322225
10.1145/62212.62241
10.1145/3611094
10.1145/380752.380801
10.1016/0020-0190(78)90067-4
10.1007/BF01457454
10.1109/18.21214
10.1007/s00493-016-3460-4
10.1007/s00037-015-0105-8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00037-025-00268-5
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1420-8954
ExternalDocumentID 10_1007_s00037_025_00268_5
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
MA-
MBV
N9A
NPVJJ
NQJWS
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
5VS
AAOBN
AARHV
AAYTO
AAYXX
ABJCF
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEFIE
AEKMD
AFEXP
AFFHD
AFGCZ
AFKRA
AGGDS
AGQPQ
AJBLW
ARAPS
AZQEC
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
CITATION
COF
DWQXO
EJD
FINBP
FSGXE
GNUQQ
H13
HCIFZ
HZ~
IHE
K7-
KOW
M2P
M4Y
M7S
N2Q
NDZJH
NU0
O9-
PHGZM
PHGZT
PQGLB
PTHSS
R4E
RNI
RZK
S26
S28
SCJ
SCLPG
T16
UZXMN
VFIZW
JQ2
ID FETCH-LOGICAL-c272t-e4636f1d1d105d940101cb855ae6867fca0c0e7ed3333f1202e975e99d85589d3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001525375900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1016-3328
IngestDate Wed Oct 08 04:50:07 EDT 2025
Sat Nov 29 07:42:03 EST 2025
Tue Jul 22 01:11:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Multivariate Polynomial Factorization
Identity Testing
Pseudorandomness and derandomization
Factor Sparsity
Theory of computation- Algebraic complexity theory
Sparse Polynomials
Derandomization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-e4636f1d1d105d940101cb855ae6867fca0c0e7ed3333f1202e975e99d85589d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3255638985
PQPubID 2044003
ParticipantIDs proquest_journals_3255638985
crossref_primary_10_1007_s00037_025_00268_5
springer_journals_10_1007_s00037_025_00268_5
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Computational complexity
PublicationTitleAbbrev comput. complex
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References 268_CR8
268_CR9
268_CR6
268_CR30
268_CR7
268_CR4
268_CR5
268_CR2
268_CR3
268_CR14
268_CR36
268_CR1
268_CR13
268_CR35
268_CR16
268_CR38
268_CR15
268_CR37
268_CR10
268_CR32
268_CR31
268_CR12
268_CR34
268_CR11
268_CR33
268_CR29
268_CR28
268_CR41
268_CR40
268_CR25
268_CR24
268_CR27
268_CR26
268_CR21
268_CR43
268_CR20
268_CR42
268_CR23
268_CR45
268_CR22
268_CR44
268_CR18
268_CR17
268_CR39
268_CR19
References_xml – ident: 268_CR38
  doi: 10.1561/0400000039
– ident: 268_CR36
  doi: 10.1007/978-3-642-14165-2_35
– ident: 268_CR24
  doi: 10.1016/S0747-7171(02)00135-9
– ident: 268_CR33
  doi: 10.1007/s00037-012-0054-4
– ident: 268_CR8
– ident: 268_CR40
  doi: 10.1515/crll.1973.264.184
– ident: 268_CR22
  doi: 10.1109/18.782097
– ident: 268_CR41
  doi: 10.1006/jcom.1997.0439
– ident: 268_CR3
  doi: 10.1017/S0963548398003411
– ident: 268_CR42
  doi: 10.1006/jcss.2000.1730
– ident: 268_CR12
  doi: 10.1007/978-3-319-16721-3
– ident: 268_CR44
– ident: 268_CR17
  doi: 10.1109/FOCS.2015.35
– ident: 268_CR19
  doi: 10.1016/0022-0000(85)90044-3
– ident: 268_CR1
  doi: 10.1073/pnas.1901272116
– ident: 268_CR29
  doi: 10.1137/1.9781611977912.137
– ident: 268_CR4
– ident: 268_CR23
  doi: 10.1007/s00037-004-0182-6
– ident: 268_CR20
  doi: 10.1007/b102438
– ident: 268_CR6
  doi: 10.1145/3618260.3649743
– ident: 268_CR28
  doi: 10.1137/1.9781611977912.137
– ident: 268_CR15
– ident: 268_CR45
  doi: 10.1007/3-540-09519-5_73
– ident: 268_CR26
  doi: 10.1016/S0747-7171(08)80015-6
– ident: 268_CR32
  doi: 10.1145/3406325.3451013
– ident: 268_CR14
– ident: 268_CR10
– ident: 268_CR7
  doi: 10.1145/3365667
– ident: 268_CR9
– ident: 268_CR39
  doi: 10.1007/s00037-021-00215-0
– ident: 268_CR2
  doi: 10.1109/FOCS.2008.32
– ident: 268_CR21
  doi: 10.1016/j.ipl.2010.07.012
– ident: 268_CR35
  doi: 10.1145/322217.322225
– ident: 268_CR43
– ident: 268_CR5
  doi: 10.1145/62212.62241
– ident: 268_CR31
  doi: 10.1145/3611094
– ident: 268_CR25
– ident: 268_CR27
  doi: 10.1145/380752.380801
– ident: 268_CR13
  doi: 10.1016/0020-0190(78)90067-4
– ident: 268_CR30
  doi: 10.1007/BF01457454
– ident: 268_CR11
  doi: 10.1109/18.21214
– ident: 268_CR34
  doi: 10.1007/s00493-016-3460-4
– ident: 268_CR18
– ident: 268_CR16
– ident: 268_CR37
  doi: 10.1007/s00037-015-0105-8
SSID ssj0015834
Score 2.3580883
Snippet In a recent result of Bhargava, Saraf and Volkovich [FOCS’18; JACM’20], the first factor sparsity bound for constant individual degree polynomials was shown....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 7
SubjectTerms Algebra
Algorithm Analysis and Problem Complexity
Algorithms
Circuits
Computational Mathematics and Numerical Analysis
Computer Science
Polynomials
Sparsity
Title On Solving Sparse Polynomial Factorization Related Problems
URI https://link.springer.com/article/10.1007/s00037-025-00268-5
https://www.proquest.com/docview/3255638985
Volume 34
WOSCitedRecordID wos001525375900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1420-8954
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015834
  issn: 1016-3328
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9KAHp1NxOiUHbxpo0yVN8CTi8OIcTmW30uYDhNGNdQr-9ybpx1D0oO2lkPRRXpP3XvLyfj-A89QQZhSjOA01w30t7BPPMqxYlEmZKS6N9GQT8XDIJxMxqorCivq0e52S9Ja6KXbzWCnY0a-6hQPHdB02rLvjjrDhcfzS5A4oL3PJNpjBUUR4VSrzs4yv7mgVY35Li3pvM2j_7zt3YaeKLtF1ORz2YE3nHWjXzA2omsgd2L5v0FqLfbh6yNF4NnVbC2g8tytdjUaz6YcrWLbCBp6RpyrXRP7wnFZoVBLRFAfwPLh9urnDFakCliQmS6wdQpgJlb0DqkTfYczJjFOaasZZbGQayEDHWkX2MiEJiBYx1UIo24cLFR1CK5_l-ggQZTK19sG-o4K-CXmWBoHimhgZM2s7ZBcuat0m8xI7I2lQkr2WEqulxGspoV3o1epPqnlUJJFDSLMxFbfNl7W6V82_Szv-W_cT2CL-j7ntlR60los3fQqb8n35WizO_Pj6BMfxyWU
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD06k4P_Pgmwb6saQpPok4Jm5zuCl7C22SgjC6sU7B_94k_RiKPmj7Ukh6lF-Tu0su9zuAiyjxaCIpwZGrKG6pUD-xOMaS-rEQsWQiEbbYRNDvs_E4HBRJYVl52r0MSVpNXSW7Wa4UbMqvmoUDw2QV1lraYhnG_KfhSxU7ICyPJWtnBvu-x4pUmZ9lfDVHSx_zW1jUWpt2_X_fuQPbhXeJbvLhsAsrKm1AvazcgIqJ3ICtXsXWmu3B9WOKhtOJ2VpAw5le6So0mE4-TMKyFta2FXmKdE1kD88piQZ5IZpsH57bd6PbDi6KKmDhBd4CK8MQlrhS3w6RYctwzImYERIpymiQiMgRjgqU9PWVuJ7jqTAgKgyl7sNC6R9ALZ2m6hAQoSLS-kG_I51W4rI4chzJlJeIgGrdIZpwWWLLZzl3Bq9Yki1KXKPELUqcNOGkhJ8X8yjjvmFI0z4V081XJdzL5t-lHf2t-zlsdEa9Lu_e9x-OYdOzf89stZxAbTF_U6ewLt4Xr9n8zI61T0K4zEk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBalWsVs3Bmy7Na5MNnkQNiloDVektJPsAoaSliYL_3t3Noyp6EJNLYDfLMvua2Zn5PoDjRNieYB5GicU95PJAfpE0RcxzUkpTRqigmmzCHwzIaBREn7L4dbR77ZIscxoUSlNW9KdM9JvEN42bghQVqzIiCMKLsOSqQHplrw-fGz8CJqVfWSo2yHFsUqXN_NzG16Nprm9-c5Hqkyds_7_PG7BeaZ3GeTlNNmGBZx1o14wORrXAO7B236C45ltw9pAZw8lYXTkYw6m0gLkRTcbvKpFZNhZqpp4qjdPQQXWcGVFJUJNvw1N49XhxjSqyBURt3y4QV8hhwmLyNTELXIU9R1OCccI94vmCJiY1uc-ZIx9h2abNAx_zIGCyDgmYswOtbJLxXTCwRxO5b8h_mOkKi6SJaTLCbUF9T-4ptAsntZzjaYmpETfoyVpKsZRSrKUU4y706qGIq_WVx45CTpO6FpHFp7Xo58W_t7b3t-pHsBJdhvHdzeB2H1ZtPXjqBqYHrWL2yg9gmb4VL_nsUE-7D72w1S0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Solving+Sparse+Polynomial+Factorization+Related+Problems&rft.jtitle=Computational+complexity&rft.au=Bisht%2C+Pranav&rft.au=Volkovich%2C+Ilya&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1016-3328&rft.eissn=1420-8954&rft.volume=34&rft.issue=1&rft.spage=7&rft_id=info:doi/10.1007%2Fs00037-025-00268-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-3328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-3328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-3328&client=summon