Phase aware speech enhancement based on depthwise deep convolutional network

Deep neural network-based Speech Enhancement (SE) techniques aim to improve the clarity and quality of speech signals where neural models are trained to recover clean speech from noisy mixtures. Most of these techniques focus on estimating the magnitude of the spectrogram while reusing the phase com...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Signal, image and video processing Ročník 19; číslo 9; s. 757
Hlavní autoři: Iqbal, Yasir, Zhang, Tao, Iqbal, Anjum, Azaz, Ikram, Sadique, Umar, Fahad, Muhammad, Zhao, Xin, Geng, Yanzhang
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.09.2025
Springer Nature B.V
Témata:
ISSN:1863-1703, 1863-1711
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Deep neural network-based Speech Enhancement (SE) techniques aim to improve the clarity and quality of speech signals where neural models are trained to recover clean speech from noisy mixtures. Most of these techniques focus on estimating the magnitude of the spectrogram while reusing the phase component, which limits performance, especially under severe noise distortion. Additionally, high computational demands remain a major challenge for state-of-the-art deep learning models. This paper presents a framework called Depthwise Deep Convolutional Network (DDCN) method for single-channel speech enhancement, leveraging the time-frequency characteristics of speech signals through simultaneous phase and magnitude processing with reduced computations. By incorporating depthwise convolutions in both encoder and decoder architecture the model achieves enhanced computational efficiency. The DDCN SE system adopts parallel processing of the denoised real and imaginary spectrograms which correspond to the magnitude and phase information resulting in superior enhancement performance. The model is trained using a Signal-to-Distortion Ratio (SDR) loss function to minimize distortion and refine phase and magnitude estimation. This ensures that enhanced real and imaginary spectrograms closely match clean speech, improving spectral mapping, and refining the model’s spectral mapping capability. Experimental results demonstrate that the proposed DDCN model, with only 1.28 M parameters, achieves 45.42 FLOPS and RTF of 0.073 outperforms recent deep learning benchmarks, achieving superior speech quality and intelligibility. Specifically, when tested on the WSJ + DNS dataset, the DDCN model outperforms all baselines, achieving a notable SDR improvement of 2.14 dB over the best baseline, CTSNet, across various noise types. Additionally, DDCN surpasses advanced speech enhancement models like ZipEnhancer(S) and MP-SENetUp, achieving WB-PESQ of 3.74 and STOI of 97% on the public VoiceBank + DEMAND dataset.
AbstractList Deep neural network-based Speech Enhancement (SE) techniques aim to improve the clarity and quality of speech signals where neural models are trained to recover clean speech from noisy mixtures. Most of these techniques focus on estimating the magnitude of the spectrogram while reusing the phase component, which limits performance, especially under severe noise distortion. Additionally, high computational demands remain a major challenge for state-of-the-art deep learning models. This paper presents a framework called Depthwise Deep Convolutional Network (DDCN) method for single-channel speech enhancement, leveraging the time-frequency characteristics of speech signals through simultaneous phase and magnitude processing with reduced computations. By incorporating depthwise convolutions in both encoder and decoder architecture the model achieves enhanced computational efficiency. The DDCN SE system adopts parallel processing of the denoised real and imaginary spectrograms which correspond to the magnitude and phase information resulting in superior enhancement performance. The model is trained using a Signal-to-Distortion Ratio (SDR) loss function to minimize distortion and refine phase and magnitude estimation. This ensures that enhanced real and imaginary spectrograms closely match clean speech, improving spectral mapping, and refining the model’s spectral mapping capability. Experimental results demonstrate that the proposed DDCN model, with only 1.28 M parameters, achieves 45.42 FLOPS and RTF of 0.073 outperforms recent deep learning benchmarks, achieving superior speech quality and intelligibility. Specifically, when tested on the WSJ + DNS dataset, the DDCN model outperforms all baselines, achieving a notable SDR improvement of 2.14 dB over the best baseline, CTSNet, across various noise types. Additionally, DDCN surpasses advanced speech enhancement models like ZipEnhancer(S) and MP-SENetUp, achieving WB-PESQ of 3.74 and STOI of 97% on the public VoiceBank + DEMAND dataset.
Deep neural network-based Speech Enhancement (SE) techniques aim to improve the clarity and quality of speech signals where neural models are trained to recover clean speech from noisy mixtures. Most of these techniques focus on estimating the magnitude of the spectrogram while reusing the phase component, which limits performance, especially under severe noise distortion. Additionally, high computational demands remain a major challenge for state-of-the-art deep learning models. This paper presents a framework called Depthwise Deep Convolutional Network (DDCN) method for single-channel speech enhancement, leveraging the time-frequency characteristics of speech signals through simultaneous phase and magnitude processing with reduced computations. By incorporating depthwise convolutions in both encoder and decoder architecture the model achieves enhanced computational efficiency. The DDCN SE system adopts parallel processing of the denoised real and imaginary spectrograms which correspond to the magnitude and phase information resulting in superior enhancement performance. The model is trained using a Signal-to-Distortion Ratio (SDR) loss function to minimize distortion and refine phase and magnitude estimation. This ensures that enhanced real and imaginary spectrograms closely match clean speech, improving spectral mapping, and refining the model’s spectral mapping capability. Experimental results demonstrate that the proposed DDCN model, with only 1.28 M parameters, achieves 45.42 FLOPS and RTF of 0.073 outperforms recent deep learning benchmarks, achieving superior speech quality and intelligibility. Specifically, when tested on the WSJ + DNS dataset, the DDCN model outperforms all baselines, achieving a notable SDR improvement of 2.14 dB over the best baseline, CTSNet, across various noise types. Additionally, DDCN surpasses advanced speech enhancement models like ZipEnhancer(S) and MP-SENetUp, achieving WB-PESQ of 3.74 and STOI of 97% on the public VoiceBank + DEMAND dataset.
ArticleNumber 757
Author Fahad, Muhammad
Azaz, Ikram
Iqbal, Anjum
Zhao, Xin
Iqbal, Yasir
Geng, Yanzhang
Zhang, Tao
Sadique, Umar
Author_xml – sequence: 1
  givenname: Yasir
  surname: Iqbal
  fullname: Iqbal, Yasir
  organization: School of Electrical and Information Engineering, Tianjin University
– sequence: 2
  givenname: Tao
  surname: Zhang
  fullname: Zhang, Tao
  organization: School of Electrical and Information Engineering, Tianjin University
– sequence: 3
  givenname: Anjum
  surname: Iqbal
  fullname: Iqbal, Anjum
  organization: School of Software Technology, Dalian University of Technology
– sequence: 4
  givenname: Ikram
  surname: Azaz
  fullname: Azaz, Ikram
  organization: School of Electrical and Information Engineering, Tianjin University
– sequence: 5
  givenname: Umar
  surname: Sadique
  fullname: Sadique, Umar
  organization: School of Electrical and Information Engineering, Tianjin University
– sequence: 6
  givenname: Muhammad
  surname: Fahad
  fullname: Fahad, Muhammad
  organization: School of Electrical and Information Engineering, Tianjin University
– sequence: 7
  givenname: Xin
  surname: Zhao
  fullname: Zhao, Xin
  organization: School of Electrical and Information Engineering, Tianjin University
– sequence: 8
  givenname: Yanzhang
  surname: Geng
  fullname: Geng, Yanzhang
  email: gregory@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University
BookMark eNp9kE1LAzEQhoMoWGv_gKeA5-gk2d1sj1L8goIe9Byy2Ynb2iZrsrX4742u6M25ZCDP-zI8J-TQB4-EnHG44ADqMnGuKmAgSgaFlMD4AZnwupKMK84Pf3eQx2SW0hrySKHqqp6Q5WNnElKzNxFp6hFtR9F3xlvcoh9ok39bGjxtsR-6_SqzLWJPbfDvYbMbVsGbDfU47EN8PSVHzmwSzn7eKXm-uX5a3LHlw-394mrJrFBiYChRNLIBZ6q6laWqXYUCeDGfGyhQWiuMqOZNzcE1TevQAGa0sI6XrpQtyCk5H3v7GN52mAa9DruYD0lailLlqgJUpsRI2RhSiuh0H1dbEz80B_0lTo_idBanv8VpnkNyDKUM-xeMf9X_pD4BhX1y8Q
Cites_doi 10.1007/s11277-021-08313-6
10.1142/s0219467825500019
10.1007/s10115-022-01818-x
10.1109/ICASSP49660.2025.10888703
10.21437/Interspeech.2021-2207
10.1109/ICASSP40776.2020.9053188
10.1109/TASSP.1978.1163086
10.1109/AISP57993.2023.10134933
10.1109/ICASSP49357.2023.10096208
10.32604/iasc.2023.028090
10.1609/aaai.v34i05.6489
10.1121/1.4799597
10.1109/ICASSP39728.2021.9414177
10.1109/ICASSP43922.2022.9747120
10.1177/23312165231209913
10.1016/j.apacoust.2023.109385
10.1007/s11760-024-03500-x
10.1109/ICASSP39728.2021.9414878
10.1109/TASSP.1985.1164550
10.3233/IDT-230211
10.21437/Interspeech.2020-2537
10.3115/1075527.1075614
10.1016/j.specom.2010.12.003
10.1109/TASLP.2019.2955276
10.1016/j.dsp.2024.104408
10.24963/ijcai.2022/582
10.1109/ICASSP39728.2021.9414062
10.1109/ICSDA.2013.6709856
10.1007/s00034-023-02455-7
10.1109/ICPR56361.2022.9956638
10.21437/Interspeech.2020-2143
10.1121/1.5055562
10.1109/ICASSP.2019.8682834
10.1016/j.neunet.2025.107562
10.1109/ICASSP49660.2025.10890034
10.21437/Interspeech.2021-1609
10.1109/TASSP.1979.1163209
10.1016/0167-6393(93)90095-3
10.1142/S0219467825500676
10.1109/TASLP.2021.3079813
10.1109/LSP.2025.3558690
10.1016/j.apacoust.2023.109592
10.3991/ijoe.v19i04.37577
10.1016/j.specom.2023.103008
10.21437/SSW.2016-24
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11760-025-04330-1
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1863-1711
ExternalDocumentID 10_1007_s11760_025_04330_1
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62271344
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID .VR
06D
0R~
123
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHWEU
AHYZX
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
AYJHY
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
ZMTXR
~A9
-Y2
2VQ
AARHV
AAYXX
ABRTQ
ABULA
ACBXY
AEBTG
AFFHD
AFGCZ
AFKRA
AGJBK
AHSBF
AIAKS
AJBLW
ARAPS
BDATZ
BENPR
BGLVJ
CAG
CCPQU
CITATION
COF
EJD
FINBP
FSGXE
H13
HCIFZ
K7-
O9-
PHGZM
PHGZT
PQGLB
JQ2
ID FETCH-LOGICAL-c272t-e3e2b3b0fa68d3578f6e201499a04e3cc2a269b810fbbdfea0efa64cf15f53d03
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001512019700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1863-1703
IngestDate Sat Oct 11 06:55:55 EDT 2025
Sat Nov 29 07:47:04 EST 2025
Fri Jul 04 01:22:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Speech enhancement
Depthwise separable Convolution
Signal-to-Distortion ratio (SDR)
Complex-Valued spectrograms
Depthwise deep convolutional network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-e3e2b3b0fa68d3578f6e201499a04e3cc2a269b810fbbdfea0efa64cf15f53d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3257014407
PQPubID 2044169
ParticipantIDs proquest_journals_3257014407
crossref_primary_10_1007_s11760_025_04330_1
springer_journals_10_1007_s11760_025_04330_1
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Signal, image and video processing
PublicationTitleAbbrev SIViP
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References J Lim (4330_CR4) 1978; 26
C Jannu (4330_CR27) 2023; 42
4330_CR41
4330_CR1
4330_CR40
S Sivapatham (4330_CR14) 2023; 212
C Zheng (4330_CR43) 2023; 27
4330_CR45
4330_CR44
4330_CR42
4330_CR49
4330_CR47
4330_CR46
C Jannu (4330_CR7) 2025; 25
N Saleem (4330_CR12) 2024; 147
4330_CR30
Y Zhao (4330_CR48) 2018; 144
4330_CR34
4330_CR33
4330_CR32
4330_CR31
4330_CR38
4330_CR37
4330_CR36
4330_CR35
C Jannu (4330_CR28) 2023; 45
FE Wahab (4330_CR25) 2024; 156
A Karthik (4330_CR13) 2021; 119
A Li (4330_CR24) 2021; 29
4330_CR23
4330_CR22
4330_CR21
4330_CR20
4330_CR26
V Parisae (4330_CR29) 2024; 46
H Guo (4330_CR39) 2023; 209
RR Rai (4330_CR9) 2024; 18
4330_CR50
4330_CR5
4330_CR11
4330_CR10
4330_CR3
4330_CR8
4330_CR16
4330_CR15
4330_CR6
4330_CR19
4330_CR18
K Tan (4330_CR2) 2019; 28
4330_CR17
References_xml – volume: 119
  start-page: 1959
  issue: 3
  year: 2021
  ident: 4330_CR13
  publication-title: Wireless Pers. Commun.
  doi: 10.1007/s11277-021-08313-6
– volume: 25
  start-page: 2550001
  issue: 01
  year: 2025
  ident: 4330_CR7
  publication-title: Int. J. Image Graphics
  doi: 10.1142/s0219467825500019
– ident: 4330_CR31
  doi: 10.1007/s10115-022-01818-x
– ident: 4330_CR49
  doi: 10.1109/ICASSP49660.2025.10888703
– ident: 4330_CR1
  doi: 10.21437/Interspeech.2021-2207
– ident: 4330_CR6
  doi: 10.1109/ICASSP40776.2020.9053188
– volume: 26
  start-page: 197
  issue: 3
  year: 1978
  ident: 4330_CR4
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1978.1163086
– ident: 4330_CR26
  doi: 10.1109/AISP57993.2023.10134933
– ident: 4330_CR20
  doi: 10.1109/ICASSP49357.2023.10096208
– ident: 4330_CR21
– ident: 4330_CR11
  doi: 10.32604/iasc.2023.028090
– ident: 4330_CR19
  doi: 10.1609/aaai.v34i05.6489
– ident: 4330_CR35
  doi: 10.1121/1.4799597
– ident: 4330_CR44
  doi: 10.1109/ICASSP39728.2021.9414177
– ident: 4330_CR40
  doi: 10.1109/ICASSP43922.2022.9747120
– volume: 27
  start-page: 233121652312099
  year: 2023
  ident: 4330_CR43
  publication-title: Trends Hear.
  doi: 10.1177/23312165231209913
– volume: 209
  start-page: 109385
  year: 2023
  ident: 4330_CR39
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2023.109385
– ident: 4330_CR18
  doi: 10.1007/s11760-024-03500-x
– ident: 4330_CR47
  doi: 10.1109/ICASSP39728.2021.9414878
– ident: 4330_CR22
– ident: 4330_CR5
  doi: 10.1109/TASSP.1985.1164550
– volume: 18
  start-page: 123
  year: 2024
  ident: 4330_CR9
  publication-title: Intell. Decis. Technol.
  doi: 10.3233/IDT-230211
– ident: 4330_CR17
  doi: 10.21437/Interspeech.2020-2537
– ident: 4330_CR36
  doi: 10.3115/1075527.1075614
– ident: 4330_CR16
  doi: 10.1016/j.specom.2010.12.003
– volume: 28
  start-page: 380
  year: 2019
  ident: 4330_CR2
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2019.2955276
– volume: 147
  start-page: 104408
  year: 2024
  ident: 4330_CR12
  publication-title: Digit. Signal Proc.
  doi: 10.1016/j.dsp.2024.104408
– ident: 4330_CR46
  doi: 10.24963/ijcai.2022/582
– ident: 4330_CR45
  doi: 10.1109/ICASSP39728.2021.9414062
– ident: 4330_CR34
  doi: 10.1109/ICSDA.2013.6709856
– volume: 42
  start-page: 7467
  issue: 12
  year: 2023
  ident: 4330_CR27
  publication-title: Circuits Syst. Signal. Process.
  doi: 10.1007/s00034-023-02455-7
– volume: 46
  start-page: 10907
  issue: 4
  year: 2024
  ident: 4330_CR29
  publication-title: J. Intell. Fuzzy Syst.
– ident: 4330_CR32
  doi: 10.1109/ICPR56361.2022.9956638
– ident: 4330_CR8
  doi: 10.21437/Interspeech.2020-2143
– volume: 144
  start-page: 1627
  issue: 3
  year: 2018
  ident: 4330_CR48
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.5055562
– ident: 4330_CR23
  doi: 10.1109/ICASSP.2019.8682834
– ident: 4330_CR50
  doi: 10.1016/j.neunet.2025.107562
– ident: 4330_CR41
  doi: 10.1109/ICASSP49660.2025.10890034
– ident: 4330_CR37
  doi: 10.21437/Interspeech.2021-1609
– ident: 4330_CR3
  doi: 10.1109/TASSP.1979.1163209
– ident: 4330_CR38
  doi: 10.1016/0167-6393(93)90095-3
– ident: 4330_CR10
– ident: 4330_CR30
  doi: 10.1142/S0219467825500676
– volume: 29
  start-page: 1829
  year: 2021
  ident: 4330_CR24
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2021.3079813
– ident: 4330_CR42
  doi: 10.1109/LSP.2025.3558690
– volume: 212
  start-page: 109592
  year: 2023
  ident: 4330_CR14
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2023.109592
– ident: 4330_CR15
  doi: 10.3991/ijoe.v19i04.37577
– volume: 156
  start-page: 103008
  year: 2024
  ident: 4330_CR25
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2023.103008
– volume: 45
  start-page: 1195
  issue: 1
  year: 2023
  ident: 4330_CR28
  publication-title: J. Intell. Fuzzy Syst.
– ident: 4330_CR33
  doi: 10.21437/SSW.2016-24
SSID ssj0000327868
Score 2.343887
Snippet Deep neural network-based Speech Enhancement (SE) techniques aim to improve the clarity and quality of speech signals where neural models are trained to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 757
SubjectTerms Artificial neural networks
Computer Imaging
Computer Science
Datasets
Deep learning
Distortion
Estimation
Fourier transforms
Image Processing and Computer Vision
Intelligibility
Machine learning
Mapping
Multimedia Information Systems
Neural networks
Noise
Original Paper
Parallel processing
Pattern Recognition and Graphics
Signal quality
Signal,Image and Speech Processing
Software radio
Spectrograms
Speech
Speech processing
Vision
Title Phase aware speech enhancement based on depthwise deep convolutional network
URI https://link.springer.com/article/10.1007/s11760-025-04330-1
https://www.proquest.com/docview/3257014407
Volume 19
WOSCitedRecordID wos001512019700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: RSV
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVQYYCBQgFRKMgDG0Ry7CR2R4SoGKqq4qPqFjn2WWVJo6bA38dOHAIIBphzcqK7c-7su3sPoQvJNU8yEQYhTVyZMVOBTIAEQkUgTJx5IO3ZmE8mYj4fTv1QWNl0uzclyepP3Q67hTwhgaNfdaBbJLBnnk0b7oQjbLh_mH3crBBGuahn4ETi8DcJ89MyPy_zNSK1aea3ymgVcEbd_33qHtr1CSa-rj1iH21A3kPdhrwB-73cQzufkAgP0Hi6sOEMyze5AlwWAGqBIV84l3DXh9gFO42XOdZQOPp1K6sBCuya1r3z2pfmdU_5IXoa3T7e3AWeaCFQlNN1AAxoxjJiZCK0g78xCVB3dhpKEgFTikprSWtRYrJMG5AErGikTBibmGnCjlAnX-ZwjHDMjY5iFRqIhhGRUiibF2t7LGMMONW0jy4bZadFjaeRtsjJTm2pVVtaqS0N-2jQ2CP1e6tMmSPeczVp3kdXjf7bx7-vdvI38VO0TSsTuoayAeqsVy9whrbU6_q5XJ1XPvcO_k_QwA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTsMwDLXQQAIODAaIwYAcuEGlNGmb7ogQE4gxTTCm3ao0cTQu3bQO-H2SrmWA4ADnWGlkO7Ud288AZ1JoEaWx7_kscmnGVHkyQurFKsDYhGkJpD3sil4vHo3a_bIpLK-q3auUZPGnXja7-SKinhu_6kC3qGdjntXAWiyHmP_wOPx4WaGciXjRAxdHDn-T8rJb5udtvlqkpZv5LTNaGJxO_X9H3Yat0sEklwuN2IEVzBpQr4Y3kPIuN2DzExLhLnT7Y2vOiHyTMyT5FFGNCWZjpxLu-ZA4Y6fJJCMap278uqXViFPiitZL5bUfzRY15Xvw1LkeXN145aAFTzHB5h5yZClPqZFRrB38jYmQudipLWmAXCkmrSStRKlJU21QUrSkgTJ-aEKuKd-HWjbJ8ABIKIwOQuUbDNoBlTJW1i_WNizjHAXTrAnnFbOT6QJPI1kiJzu2JZZtScG2xG9Cq5JHUt6tPOFu8J7LSYsmXFT8Xy7_vtvh38hPYf1mcN9Nure9uyPYYIU4XXFZC2rz2Qsew5p6nT_ns5NC_94B0L7TpA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxsxDLcQQxN7GJ_TCgzysLcRNZfcXa6PaFs1RFVVYkN9O-USR-Xlemo7-PeJ74N203hAe46VRLYj27H9M8Bno51OiyzikUwpzVhYblIUPLMxZj4pWiDtu5Eej7PpdDDZ6OKvq927lGTT00AoTeWqXznfXze-RToVnEaxEgCX4CH-eRNTIT3F67d3z78sQkmdNf1wWUpYnEK1nTP_3uZP67R2Of_KktbGZ7j3_9feh_et48muGk05gC0sD2GvG-rA2jd-CO82EAqPYDSZBTPHzKNZIFtWiHbGsJyRqtC3IiMj6Ni8ZA4rGsseaB1ixaiYvVXqcGjZ1Jofw6_h959ff_B2AAO3UssVR4WyUIXwJs0cweL4FCXFVAMjYlTWShMkHCQtfFE4j0ZgII2tjxKfKCfUB9gu5yV-BJZo7-LERh7jQSyMyWzwl10I15RCLZ3swZeO8XnV4Gzka0RlYlse2JbXbMujHpx1ssnbN7fMFQ3ko1y17sFlJ4v18su7nbyO_ALeTr4N89H1-OYUdmUtTao5O4Pt1eI3foId-7C6Xy7Oa1V8Atvs3Ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+aware+speech+enhancement+based+on+depthwise+deep+convolutional+network&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Iqbal%2C+Yasir&rft.au=Zhang%2C+Tao&rft.au=Iqbal%2C+Anjum&rft.au=Azaz%2C+Ikram&rft.date=2025-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=19&rft.issue=9&rft.spage=757&rft_id=info:doi/10.1007%2Fs11760-025-04330-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon