Iterated Resultants and Rational Functions in Real Quantifier Elimination
This paper builds and extends on the authors’ previous work related to the algorithmic tool, Cylindrical Algebraic Decomposition (CAD), and one of its core applications, Real Quantifier Elimination (QE). These topics are at the heart of symbolic computation and were first implemented in computer alg...
Saved in:
| Published in: | Mathematics in computer science Vol. 19; no. 1; p. 12 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Heidelberg
Springer Nature B.V
01.12.2025
|
| Subjects: | |
| ISSN: | 1661-8270, 1661-8289 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper builds and extends on the authors’ previous work related to the algorithmic tool, Cylindrical Algebraic Decomposition (CAD), and one of its core applications, Real Quantifier Elimination (QE). These topics are at the heart of symbolic computation and were first implemented in computer algebra systems decades ago, but have recently received renewed interest as part of the ongoing development of SMT solvers for non-linear real arithmetic. First, we consider the use of iterated univariate resultants in traditional CAD, and how this leads to inefficiencies, especially in the case of an input with multiple equational constraints. We reproduce the workshop paper [Davenport & England, 2023], adding important clarifications to our suggestions first made there to make use of multivariate resultants in the projection phase of CAD. We then consider an alternative approach to this problem first documented in [McCallum & Brown, 2009] which redefines the actual object under construction, albeit only in the case of two equational constraints. We correct an unhelpful typo and provide a proof missing from that paper. We finish by revising the topic of how to deal with SMT or Real QE problems expressed using rational functions (as opposed to the usual polynomial ones) noting that these are often found in industrial applications. We revisit a proposal made in [Uncu, Davenport and England, 2023] for doing this in the case of satisfiability, explaining why such an approach does not trivially extend to more complicated quantification structure and giving a suitable alternative. |
|---|---|
| AbstractList | This paper builds and extends on the authors’ previous work related to the algorithmic tool, Cylindrical Algebraic Decomposition (CAD), and one of its core applications, Real Quantifier Elimination (QE). These topics are at the heart of symbolic computation and were first implemented in computer algebra systems decades ago, but have recently received renewed interest as part of the ongoing development of SMT solvers for non-linear real arithmetic. First, we consider the use of iterated univariate resultants in traditional CAD, and how this leads to inefficiencies, especially in the case of an input with multiple equational constraints. We reproduce the workshop paper [Davenport & England, 2023], adding important clarifications to our suggestions first made there to make use of multivariate resultants in the projection phase of CAD. We then consider an alternative approach to this problem first documented in [McCallum & Brown, 2009] which redefines the actual object under construction, albeit only in the case of two equational constraints. We correct an unhelpful typo and provide a proof missing from that paper. We finish by revising the topic of how to deal with SMT or Real QE problems expressed using rational functions (as opposed to the usual polynomial ones) noting that these are often found in industrial applications. We revisit a proposal made in [Uncu, Davenport and England, 2023] for doing this in the case of satisfiability, explaining why such an approach does not trivially extend to more complicated quantification structure and giving a suitable alternative. |
| ArticleNumber | 12 |
| Author | Uncu, Ali K. Davenport, James H. McCallum, Scott England, Matthew |
| Author_xml | – sequence: 1 givenname: James H. surname: Davenport fullname: Davenport, James H. – sequence: 2 givenname: Matthew surname: England fullname: England, Matthew – sequence: 3 givenname: Scott surname: McCallum fullname: McCallum, Scott – sequence: 4 givenname: Ali K. surname: Uncu fullname: Uncu, Ali K. |
| BookMark | eNo9kMFKAzEQhoNUsK2-gKcFz6uTZDvJHqW0WiiIoueQ3U4gZZutye7BtzdtxbnMP8PHMHwzNgl9IMbuOTxyAPWUOFcaSxCLEgABy-qKTTkiL7XQ9eQ_K7hhs5T2GRK84lO22QwU7UC74oPS2A02DKmwIY928H2wXbEeQ3uKqfAhQ3nzPmbKO0-xWHX-4MMZvWXXznaJ7v76nH2tV5_L13L79rJZPm_LVigxlCQboVXTLlA1GlqknWgIKwJFUiKh0OgIdxaqmnTlnGqhtc7lWAPW6OScPVzuHmP_PVIazL4fY_40GSmUBJ4LMyUuVBv7lCI5c4z-YOOP4WBOysxFmcnKzFmZqeQvYotg5A |
| Cites_doi | 10.1145/800204.806289 10.1006/jsco.1998.0257 10.1007/978-3-319-96418-8_55 10.1016/S0747-7171(88)80010-5 10.1016/0001-8708(91)90031-2 10.1007/978-3-642-31365-3_27 10.1007/3-540-15984-3_277 10.1145/220346.220370 10.1145/1073884.1073897 10.1016/j.jsc.2017.12.002 10.1051/itmconf/20182001005 10.1145/384101.384132 10.1016/j.jsc.2019.07.019 10.1007/978-1-4757-6911-1 10.1007/978-3-031-14788-3_17 10.1007/978-3-319-56932-1_19 10.1090/surv/035 10.1007/978-3-7091-9459-1 10.1090/S0025-5718-08-02111-X 10.1007/978-1-4757-2693-0 10.1016/j.jlamp.2020.100633 10.1145/2755996.2756654 10.1145/2755996.2756678 10.1016/j.jsc.2008.05.006 10.1145/309831.309892 10.1145/3597066.3597090 10.1145/1576702.1576715 10.4204/EPTCS.352.18 10.1016/j.jsc.2019.07.017 10.1016/j.jsc.2019.07.018 10.1007/978-3-319-42547-4_3 10.1007/3-540-07407-4_17 10.4230/DagRep.12.2.67 10.1145/1277548.1277557 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11786-025-00606-4 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1661-8289 |
| ExternalDocumentID | 10_1007_s11786_025_00606_4 |
| GroupedDBID | -Y2 .86 .VR 06D 0R~ 0VY 1N0 203 29M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ATHPR AXYYD AYFIA AYJHY B-. BA0 BAPOH BDATZ BGNMA CAG CITATION COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9R PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~A9 JQ2 |
| ID | FETCH-LOGICAL-c272t-e3b287bc567b80c6ed2be64e07e336e6286fe6da049e84ff7c0caff84f90696f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001617479600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1661-8270 |
| IngestDate | Thu Nov 20 04:31:04 EST 2025 Thu Nov 27 00:58:19 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-e3b287bc567b80c6ed2be64e07e336e6286fe6da049e84ff7c0caff84f90696f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s11786-025-00606-4.pdf |
| PQID | 3273011116 |
| PQPubID | 2044127 |
| ParticipantIDs | proquest_journals_3273011116 crossref_primary_10_1007_s11786_025_00606_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-01 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Heidelberg |
| PublicationPlace_xml | – name: Heidelberg |
| PublicationTitle | Mathematics in computer science |
| PublicationYear | 2025 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| References | GE Collins (606_CR13) 1971; 18 JP Jouanolou (606_CR23) 1991; 90 606_CR1 S McCallum (606_CR31) 1988; 5 606_CR30 606_CR19 606_CR17 606_CR39 606_CR18 D Lazard (606_CR28) 2009; 44 606_CR12 S McCallum (606_CR33) 1999; 27 606_CR34 606_CR10 606_CR32 606_CR15 606_CR16 606_CR38 606_CR35 606_CR14 606_CR36 606_CR40 606_CR41 L Busé (606_CR11) 2009; 78 S McCallum (606_CR37) 2019; 92 606_CR29 606_CR8 606_CR22 606_CR44 606_CR9 606_CR45 606_CR6 606_CR20 606_CR42 606_CR7 606_CR21 606_CR43 606_CR4 606_CR26 606_CR48 606_CR5 606_CR27 606_CR2 606_CR24 606_CR46 606_CR3 606_CR25 606_CR47 |
| References_xml | – volume: 18 start-page: 515 year: 1971 ident: 606_CR13 publication-title: J. ACM doi: 10.1145/800204.806289 – volume: 27 start-page: 367 year: 1999 ident: 606_CR33 publication-title: J. Symbolic Comp. doi: 10.1006/jsco.1998.0257 – ident: 606_CR44 doi: 10.1007/978-3-319-96418-8_55 – ident: 606_CR32 doi: 10.1016/S0747-7171(88)80010-5 – volume: 90 start-page: 117 year: 1991 ident: 606_CR23 publication-title: Adv. Math. doi: 10.1016/0001-8708(91)90031-2 – ident: 606_CR24 doi: 10.1007/978-3-642-31365-3_27 – ident: 606_CR30 doi: 10.1007/3-540-15984-3_277 – ident: 606_CR25 doi: 10.1145/220346.220370 – ident: 606_CR47 – ident: 606_CR45 – ident: 606_CR10 doi: 10.1145/1073884.1073897 – ident: 606_CR41 – volume: 92 start-page: 52 year: 2019 ident: 606_CR37 publication-title: J. Symbolic Comp. doi: 10.1016/j.jsc.2017.12.002 – ident: 606_CR39 – ident: 606_CR38 doi: 10.1051/itmconf/20182001005 – ident: 606_CR35 doi: 10.1145/384101.384132 – ident: 606_CR43 – ident: 606_CR22 doi: 10.1016/j.jsc.2019.07.019 – ident: 606_CR15 doi: 10.1007/978-1-4757-6911-1 – ident: 606_CR20 doi: 10.1007/978-3-031-14788-3_17 – ident: 606_CR40 doi: 10.1007/978-3-319-56932-1_19 – ident: 606_CR1 doi: 10.1090/surv/035 – ident: 606_CR12 doi: 10.1007/978-3-7091-9459-1 – volume: 78 start-page: 345 year: 2009 ident: 606_CR11 publication-title: Math. Comp. doi: 10.1090/S0025-5718-08-02111-X – ident: 606_CR16 doi: 10.1007/978-1-4757-2693-0 – ident: 606_CR3 doi: 10.1016/j.jlamp.2020.100633 – ident: 606_CR6 doi: 10.1145/2755996.2756654 – ident: 606_CR21 doi: 10.1145/2755996.2756678 – ident: 606_CR29 – ident: 606_CR27 – volume: 44 start-page: 1176 year: 2009 ident: 606_CR28 publication-title: Iterated Discriminants. J. Symbolic Comp. doi: 10.1016/j.jsc.2008.05.006 – ident: 606_CR48 – ident: 606_CR34 doi: 10.1145/309831.309892 – ident: 606_CR46 – ident: 606_CR7 – ident: 606_CR5 – ident: 606_CR19 doi: 10.1145/3597066.3597090 – ident: 606_CR36 doi: 10.1145/1576702.1576715 – ident: 606_CR9 doi: 10.4204/EPTCS.352.18 – ident: 606_CR17 – ident: 606_CR42 – ident: 606_CR18 doi: 10.1016/j.jsc.2019.07.017 – ident: 606_CR26 doi: 10.1016/j.jsc.2019.07.018 – ident: 606_CR2 doi: 10.1007/978-3-319-42547-4_3 – ident: 606_CR14 doi: 10.1007/3-540-07407-4_17 – volume: 5 start-page: 141 year: 1988 ident: 606_CR31 publication-title: J. Symbolic Comp. doi: 10.1016/S0747-7171(88)80010-5 – ident: 606_CR4 doi: 10.4230/DagRep.12.2.67 – ident: 606_CR8 doi: 10.1145/1277548.1277557 |
| SSID | ssj0062141 |
| Score | 2.344069 |
| Snippet | This paper builds and extends on the authors’ previous work related to the algorithmic tool, Cylindrical Algebraic Decomposition (CAD), and one of its core... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 12 |
| SubjectTerms | Algebra Algorithms Computer algebra Constraints Decomposition Industrial applications Polynomials Rational functions Variables |
| Title | Iterated Resultants and Rational Functions in Real Quantifier Elimination |
| URI | https://www.proquest.com/docview/3273011116 |
| Volume | 19 |
| WOSCitedRecordID | wos001617479600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1661-8289 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062141 issn: 1661-8270 databaseCode: RSV dateStart: 20071201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jePDi_MTplB68aTBN26Q5imy4y9D5wW4lSV9gMKqsm3-_L1mLDPSwW794lN9L3u-lfXk_Qm6QNFnJSkuVUYKmmgPFLCOmWcqddJjga2WC2IScTPLZTD13yN2_f_Dv6ziWuS-UzahvHoIGMeDGgnu5gunrRxt2Bd_IVMZIODTnkjU7ZP42sc1C20E4MMuot9s7HZKDJoOMHjYuPyIdqI5Jr1VniJrJekLG49AwGcpoCvV64dWC60hXeNp8_4tGyGlh2EXzCh_CKy9rHYqH0M5wEfS-_P1T8j4avj0-0UY4gVou-YpCYnAhZGwmpMmZFVByAyIFJiFJBPjdqA5EqXF1AHnqnLTMaufwUDGhhEvOSLf6rOCcROhI5DjrYgDMrIQ1jjnNjMkUUxoN9sltC2TxtemPUfx2QvYoFYhSEVAq0j4ZtFgXzVypi4SHKBPH4mInY5dkn3sPhNqSAemulmu4Inv2ezWvl9dhcPwAqKGwug |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterated+Resultants+and+Rational+Functions+in+Real+Quantifier+Elimination&rft.jtitle=Mathematics+in+computer+science&rft.au=Davenport%2C+James+H.&rft.au=England%2C+Matthew&rft.au=McCallum%2C+Scott&rft.au=Uncu%2C+Ali+K.&rft.date=2025-12-01&rft.issn=1661-8270&rft.eissn=1661-8289&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1007%2Fs11786-025-00606-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11786_025_00606_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1661-8270&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1661-8270&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1661-8270&client=summon |