Iterated Resultants and Rational Functions in Real Quantifier Elimination

This paper builds and extends on the authors’ previous work related to the algorithmic tool, Cylindrical Algebraic Decomposition (CAD), and one of its core applications, Real Quantifier Elimination (QE). These topics are at the heart of symbolic computation and were first implemented in computer alg...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics in computer science Vol. 19; no. 1; p. 12
Main Authors: Davenport, James H., England, Matthew, McCallum, Scott, Uncu, Ali K.
Format: Journal Article
Language:English
Published: Heidelberg Springer Nature B.V 01.12.2025
Subjects:
ISSN:1661-8270, 1661-8289
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper builds and extends on the authors’ previous work related to the algorithmic tool, Cylindrical Algebraic Decomposition (CAD), and one of its core applications, Real Quantifier Elimination (QE). These topics are at the heart of symbolic computation and were first implemented in computer algebra systems decades ago, but have recently received renewed interest as part of the ongoing development of SMT solvers for non-linear real arithmetic. First, we consider the use of iterated univariate resultants in traditional CAD, and how this leads to inefficiencies, especially in the case of an input with multiple equational constraints. We reproduce the workshop paper [Davenport & England, 2023], adding important clarifications to our suggestions first made there to make use of multivariate resultants in the projection phase of CAD. We then consider an alternative approach to this problem first documented in [McCallum & Brown, 2009] which redefines the actual object under construction, albeit only in the case of two equational constraints. We correct an unhelpful typo and provide a proof missing from that paper. We finish by revising the topic of how to deal with SMT or Real QE problems expressed using rational functions (as opposed to the usual polynomial ones) noting that these are often found in industrial applications. We revisit a proposal made in [Uncu, Davenport and England, 2023] for doing this in the case of satisfiability, explaining why such an approach does not trivially extend to more complicated quantification structure and giving a suitable alternative.
AbstractList This paper builds and extends on the authors’ previous work related to the algorithmic tool, Cylindrical Algebraic Decomposition (CAD), and one of its core applications, Real Quantifier Elimination (QE). These topics are at the heart of symbolic computation and were first implemented in computer algebra systems decades ago, but have recently received renewed interest as part of the ongoing development of SMT solvers for non-linear real arithmetic. First, we consider the use of iterated univariate resultants in traditional CAD, and how this leads to inefficiencies, especially in the case of an input with multiple equational constraints. We reproduce the workshop paper [Davenport & England, 2023], adding important clarifications to our suggestions first made there to make use of multivariate resultants in the projection phase of CAD. We then consider an alternative approach to this problem first documented in [McCallum & Brown, 2009] which redefines the actual object under construction, albeit only in the case of two equational constraints. We correct an unhelpful typo and provide a proof missing from that paper. We finish by revising the topic of how to deal with SMT or Real QE problems expressed using rational functions (as opposed to the usual polynomial ones) noting that these are often found in industrial applications. We revisit a proposal made in [Uncu, Davenport and England, 2023] for doing this in the case of satisfiability, explaining why such an approach does not trivially extend to more complicated quantification structure and giving a suitable alternative.
ArticleNumber 12
Author Uncu, Ali K.
Davenport, James H.
McCallum, Scott
England, Matthew
Author_xml – sequence: 1
  givenname: James H.
  surname: Davenport
  fullname: Davenport, James H.
– sequence: 2
  givenname: Matthew
  surname: England
  fullname: England, Matthew
– sequence: 3
  givenname: Scott
  surname: McCallum
  fullname: McCallum, Scott
– sequence: 4
  givenname: Ali K.
  surname: Uncu
  fullname: Uncu, Ali K.
BookMark eNo9kMFKAzEQhoNUsK2-gKcFz6uTZDvJHqW0WiiIoueQ3U4gZZutye7BtzdtxbnMP8PHMHwzNgl9IMbuOTxyAPWUOFcaSxCLEgABy-qKTTkiL7XQ9eQ_K7hhs5T2GRK84lO22QwU7UC74oPS2A02DKmwIY928H2wXbEeQ3uKqfAhQ3nzPmbKO0-xWHX-4MMZvWXXznaJ7v76nH2tV5_L13L79rJZPm_LVigxlCQboVXTLlA1GlqknWgIKwJFUiKh0OgIdxaqmnTlnGqhtc7lWAPW6OScPVzuHmP_PVIazL4fY_40GSmUBJ4LMyUuVBv7lCI5c4z-YOOP4WBOysxFmcnKzFmZqeQvYotg5A
Cites_doi 10.1145/800204.806289
10.1006/jsco.1998.0257
10.1007/978-3-319-96418-8_55
10.1016/S0747-7171(88)80010-5
10.1016/0001-8708(91)90031-2
10.1007/978-3-642-31365-3_27
10.1007/3-540-15984-3_277
10.1145/220346.220370
10.1145/1073884.1073897
10.1016/j.jsc.2017.12.002
10.1051/itmconf/20182001005
10.1145/384101.384132
10.1016/j.jsc.2019.07.019
10.1007/978-1-4757-6911-1
10.1007/978-3-031-14788-3_17
10.1007/978-3-319-56932-1_19
10.1090/surv/035
10.1007/978-3-7091-9459-1
10.1090/S0025-5718-08-02111-X
10.1007/978-1-4757-2693-0
10.1016/j.jlamp.2020.100633
10.1145/2755996.2756654
10.1145/2755996.2756678
10.1016/j.jsc.2008.05.006
10.1145/309831.309892
10.1145/3597066.3597090
10.1145/1576702.1576715
10.4204/EPTCS.352.18
10.1016/j.jsc.2019.07.017
10.1016/j.jsc.2019.07.018
10.1007/978-3-319-42547-4_3
10.1007/3-540-07407-4_17
10.4230/DagRep.12.2.67
10.1145/1277548.1277557
ContentType Journal Article
Copyright The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11786-025-00606-4
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1661-8289
ExternalDocumentID 10_1007_s11786_025_00606_4
GroupedDBID -Y2
.86
.VR
06D
0R~
0VY
1N0
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
AYJHY
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
CITATION
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~A9
JQ2
ID FETCH-LOGICAL-c272t-e3b287bc567b80c6ed2be64e07e336e6286fe6da049e84ff7c0caff84f90696f3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001617479600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1661-8270
IngestDate Thu Nov 20 04:31:04 EST 2025
Thu Nov 27 00:58:19 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-e3b287bc567b80c6ed2be64e07e336e6286fe6da049e84ff7c0caff84f90696f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s11786-025-00606-4.pdf
PQID 3273011116
PQPubID 2044127
ParticipantIDs proquest_journals_3273011116
crossref_primary_10_1007_s11786_025_00606_4
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Mathematics in computer science
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References GE Collins (606_CR13) 1971; 18
JP Jouanolou (606_CR23) 1991; 90
606_CR1
S McCallum (606_CR31) 1988; 5
606_CR30
606_CR19
606_CR17
606_CR39
606_CR18
D Lazard (606_CR28) 2009; 44
606_CR12
S McCallum (606_CR33) 1999; 27
606_CR34
606_CR10
606_CR32
606_CR15
606_CR16
606_CR38
606_CR35
606_CR14
606_CR36
606_CR40
606_CR41
L Busé (606_CR11) 2009; 78
S McCallum (606_CR37) 2019; 92
606_CR29
606_CR8
606_CR22
606_CR44
606_CR9
606_CR45
606_CR6
606_CR20
606_CR42
606_CR7
606_CR21
606_CR43
606_CR4
606_CR26
606_CR48
606_CR5
606_CR27
606_CR2
606_CR24
606_CR46
606_CR3
606_CR25
606_CR47
References_xml – volume: 18
  start-page: 515
  year: 1971
  ident: 606_CR13
  publication-title: J. ACM
  doi: 10.1145/800204.806289
– volume: 27
  start-page: 367
  year: 1999
  ident: 606_CR33
  publication-title: J. Symbolic Comp.
  doi: 10.1006/jsco.1998.0257
– ident: 606_CR44
  doi: 10.1007/978-3-319-96418-8_55
– ident: 606_CR32
  doi: 10.1016/S0747-7171(88)80010-5
– volume: 90
  start-page: 117
  year: 1991
  ident: 606_CR23
  publication-title: Adv. Math.
  doi: 10.1016/0001-8708(91)90031-2
– ident: 606_CR24
  doi: 10.1007/978-3-642-31365-3_27
– ident: 606_CR30
  doi: 10.1007/3-540-15984-3_277
– ident: 606_CR25
  doi: 10.1145/220346.220370
– ident: 606_CR47
– ident: 606_CR45
– ident: 606_CR10
  doi: 10.1145/1073884.1073897
– ident: 606_CR41
– volume: 92
  start-page: 52
  year: 2019
  ident: 606_CR37
  publication-title: J. Symbolic Comp.
  doi: 10.1016/j.jsc.2017.12.002
– ident: 606_CR39
– ident: 606_CR38
  doi: 10.1051/itmconf/20182001005
– ident: 606_CR35
  doi: 10.1145/384101.384132
– ident: 606_CR43
– ident: 606_CR22
  doi: 10.1016/j.jsc.2019.07.019
– ident: 606_CR15
  doi: 10.1007/978-1-4757-6911-1
– ident: 606_CR20
  doi: 10.1007/978-3-031-14788-3_17
– ident: 606_CR40
  doi: 10.1007/978-3-319-56932-1_19
– ident: 606_CR1
  doi: 10.1090/surv/035
– ident: 606_CR12
  doi: 10.1007/978-3-7091-9459-1
– volume: 78
  start-page: 345
  year: 2009
  ident: 606_CR11
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-08-02111-X
– ident: 606_CR16
  doi: 10.1007/978-1-4757-2693-0
– ident: 606_CR3
  doi: 10.1016/j.jlamp.2020.100633
– ident: 606_CR6
  doi: 10.1145/2755996.2756654
– ident: 606_CR21
  doi: 10.1145/2755996.2756678
– ident: 606_CR29
– ident: 606_CR27
– volume: 44
  start-page: 1176
  year: 2009
  ident: 606_CR28
  publication-title: Iterated Discriminants. J. Symbolic Comp.
  doi: 10.1016/j.jsc.2008.05.006
– ident: 606_CR48
– ident: 606_CR34
  doi: 10.1145/309831.309892
– ident: 606_CR46
– ident: 606_CR7
– ident: 606_CR5
– ident: 606_CR19
  doi: 10.1145/3597066.3597090
– ident: 606_CR36
  doi: 10.1145/1576702.1576715
– ident: 606_CR9
  doi: 10.4204/EPTCS.352.18
– ident: 606_CR17
– ident: 606_CR42
– ident: 606_CR18
  doi: 10.1016/j.jsc.2019.07.017
– ident: 606_CR26
  doi: 10.1016/j.jsc.2019.07.018
– ident: 606_CR2
  doi: 10.1007/978-3-319-42547-4_3
– ident: 606_CR14
  doi: 10.1007/3-540-07407-4_17
– volume: 5
  start-page: 141
  year: 1988
  ident: 606_CR31
  publication-title: J. Symbolic Comp.
  doi: 10.1016/S0747-7171(88)80010-5
– ident: 606_CR4
  doi: 10.4230/DagRep.12.2.67
– ident: 606_CR8
  doi: 10.1145/1277548.1277557
SSID ssj0062141
Score 2.344069
Snippet This paper builds and extends on the authors’ previous work related to the algorithmic tool, Cylindrical Algebraic Decomposition (CAD), and one of its core...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 12
SubjectTerms Algebra
Algorithms
Computer algebra
Constraints
Decomposition
Industrial applications
Polynomials
Rational functions
Variables
Title Iterated Resultants and Rational Functions in Real Quantifier Elimination
URI https://www.proquest.com/docview/3273011116
Volume 19
WOSCitedRecordID wos001617479600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1661-8289
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062141
  issn: 1661-8270
  databaseCode: RSV
  dateStart: 20071201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jePDi_MTplB68aTBN26Q5imy4y9D5wW4lSV9gMKqsm3-_L1mLDPSwW794lN9L3u-lfXk_Qm6QNFnJSkuVUYKmmgPFLCOmWcqddJjga2WC2IScTPLZTD13yN2_f_Dv6ziWuS-UzahvHoIGMeDGgnu5gunrRxt2Bd_IVMZIODTnkjU7ZP42sc1C20E4MMuot9s7HZKDJoOMHjYuPyIdqI5Jr1VniJrJekLG49AwGcpoCvV64dWC60hXeNp8_4tGyGlh2EXzCh_CKy9rHYqH0M5wEfS-_P1T8j4avj0-0UY4gVou-YpCYnAhZGwmpMmZFVByAyIFJiFJBPjdqA5EqXF1AHnqnLTMaufwUDGhhEvOSLf6rOCcROhI5DjrYgDMrIQ1jjnNjMkUUxoN9sltC2TxtemPUfx2QvYoFYhSEVAq0j4ZtFgXzVypi4SHKBPH4mInY5dkn3sPhNqSAemulmu4Inv2ezWvl9dhcPwAqKGwug
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterated+Resultants+and+Rational+Functions+in+Real+Quantifier+Elimination&rft.jtitle=Mathematics+in+computer+science&rft.au=Davenport%2C+James+H.&rft.au=England%2C+Matthew&rft.au=McCallum%2C+Scott&rft.au=Uncu%2C+Ali+K.&rft.date=2025-12-01&rft.issn=1661-8270&rft.eissn=1661-8289&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1007%2Fs11786-025-00606-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11786_025_00606_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1661-8270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1661-8270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1661-8270&client=summon