Superconvergence analysis of symmetric Gauss-type exponential collocation integrators for solving the multidimensional nonlinear first-order partial differential equations

The main objective of this research is to develop and analyze high-order symmetric Gauss-type exponential collocation time-stepping methods for solving systems of nonlinear first-order partial differential equations (PDEs). Initially, the nonlinear PDEs are reformulated as an abstract Hamiltonian or...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of mathematical chemistry Ročník 63; číslo 10; s. 2023 - 2050
Hlavní autori: Wu, Xiumei, Fang, Yonglei, Liu, Changying, Song, Yuanling
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.11.2025
Springer Nature B.V
Predmet:
ISSN:0259-9791, 1572-8897
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The main objective of this research is to develop and analyze high-order symmetric Gauss-type exponential collocation time-stepping methods for solving systems of nonlinear first-order partial differential equations (PDEs). Initially, the nonlinear PDEs are reformulated as an abstract Hamiltonian ordinary differential equation (ODE) system in an appropriate infinite-dimensional function space. Subsequently, the Gauss-type exponential collocation time integrators are derived. The symmetry, local error bounds and nonlinear stability of the proposed time integrators are rigorously analysed in details. Furthermore, the rigourous convergence analysis demonstrates that Gauss-type exponential collocation time integrators can achieve superconvergence. Numerical experiments verify our theoretical analysis results, and demonstrate the remarkable superiority in comparison with the traditional temporal integration methods.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0259-9791
1572-8897
DOI:10.1007/s10910-025-01754-5