Superconvergence analysis of symmetric Gauss-type exponential collocation integrators for solving the multidimensional nonlinear first-order partial differential equations

The main objective of this research is to develop and analyze high-order symmetric Gauss-type exponential collocation time-stepping methods for solving systems of nonlinear first-order partial differential equations (PDEs). Initially, the nonlinear PDEs are reformulated as an abstract Hamiltonian or...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical chemistry Ročník 63; číslo 10; s. 2023 - 2050
Hlavní autoři: Wu, Xiumei, Fang, Yonglei, Liu, Changying, Song, Yuanling
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.11.2025
Springer Nature B.V
Témata:
ISSN:0259-9791, 1572-8897
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The main objective of this research is to develop and analyze high-order symmetric Gauss-type exponential collocation time-stepping methods for solving systems of nonlinear first-order partial differential equations (PDEs). Initially, the nonlinear PDEs are reformulated as an abstract Hamiltonian ordinary differential equation (ODE) system in an appropriate infinite-dimensional function space. Subsequently, the Gauss-type exponential collocation time integrators are derived. The symmetry, local error bounds and nonlinear stability of the proposed time integrators are rigorously analysed in details. Furthermore, the rigourous convergence analysis demonstrates that Gauss-type exponential collocation time integrators can achieve superconvergence. Numerical experiments verify our theoretical analysis results, and demonstrate the remarkable superiority in comparison with the traditional temporal integration methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0259-9791
1572-8897
DOI:10.1007/s10910-025-01754-5