Superconvergence analysis of symmetric Gauss-type exponential collocation integrators for solving the multidimensional nonlinear first-order partial differential equations
The main objective of this research is to develop and analyze high-order symmetric Gauss-type exponential collocation time-stepping methods for solving systems of nonlinear first-order partial differential equations (PDEs). Initially, the nonlinear PDEs are reformulated as an abstract Hamiltonian or...
Uloženo v:
| Vydáno v: | Journal of mathematical chemistry Ročník 63; číslo 10; s. 2023 - 2050 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.11.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0259-9791, 1572-8897 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The main objective of this research is to develop and analyze high-order symmetric Gauss-type exponential collocation time-stepping methods for solving systems of nonlinear first-order partial differential equations (PDEs). Initially, the nonlinear PDEs are reformulated as an abstract Hamiltonian ordinary differential equation (ODE) system in an appropriate infinite-dimensional function space. Subsequently, the Gauss-type exponential collocation time integrators are derived. The symmetry, local error bounds and nonlinear stability of the proposed time integrators are rigorously analysed in details. Furthermore, the rigourous convergence analysis demonstrates that Gauss-type exponential collocation time integrators can achieve superconvergence. Numerical experiments verify our theoretical analysis results, and demonstrate the remarkable superiority in comparison with the traditional temporal integration methods. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0259-9791 1572-8897 |
| DOI: | 10.1007/s10910-025-01754-5 |