Superconvergence analysis of symmetric Gauss-type exponential collocation integrators for solving the multidimensional nonlinear first-order partial differential equations
The main objective of this research is to develop and analyze high-order symmetric Gauss-type exponential collocation time-stepping methods for solving systems of nonlinear first-order partial differential equations (PDEs). Initially, the nonlinear PDEs are reformulated as an abstract Hamiltonian or...
Saved in:
| Published in: | Journal of mathematical chemistry Vol. 63; no. 10; pp. 2023 - 2050 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.11.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0259-9791, 1572-8897 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The main objective of this research is to develop and analyze high-order symmetric Gauss-type exponential collocation time-stepping methods for solving systems of nonlinear first-order partial differential equations (PDEs). Initially, the nonlinear PDEs are reformulated as an abstract Hamiltonian ordinary differential equation (ODE) system in an appropriate infinite-dimensional function space. Subsequently, the Gauss-type exponential collocation time integrators are derived. The symmetry, local error bounds and nonlinear stability of the proposed time integrators are rigorously analysed in details. Furthermore, the rigourous convergence analysis demonstrates that Gauss-type exponential collocation time integrators can achieve superconvergence. Numerical experiments verify our theoretical analysis results, and demonstrate the remarkable superiority in comparison with the traditional temporal integration methods. |
|---|---|
| AbstractList | The main objective of this research is to develop and analyze high-order symmetric Gauss-type exponential collocation time-stepping methods for solving systems of nonlinear first-order partial differential equations (PDEs). Initially, the nonlinear PDEs are reformulated as an abstract Hamiltonian ordinary differential equation (ODE) system in an appropriate infinite-dimensional function space. Subsequently, the Gauss-type exponential collocation time integrators are derived. The symmetry, local error bounds and nonlinear stability of the proposed time integrators are rigorously analysed in details. Furthermore, the rigourous convergence analysis demonstrates that Gauss-type exponential collocation time integrators can achieve superconvergence. Numerical experiments verify our theoretical analysis results, and demonstrate the remarkable superiority in comparison with the traditional temporal integration methods. |
| Author | Fang, Yonglei Liu, Changying Wu, Xiumei Song, Yuanling |
| Author_xml | – sequence: 1 givenname: Xiumei surname: Wu fullname: Wu, Xiumei email: hzxywu06@163.com organization: School of Mathematics and Statistics, Heze University – sequence: 2 givenname: Yonglei surname: Fang fullname: Fang, Yonglei organization: School of Mathematics and Statistics, Zaozhuang University – sequence: 3 givenname: Changying surname: Liu fullname: Liu, Changying organization: School of Mathematics and Statistics, Heze University – sequence: 4 givenname: Yuanling surname: Song fullname: Song, Yuanling organization: Jiangsu Province Gaoyou No.1 Middle School |
| BookMark | eNp9Uc1q3DAQFiWBbtK8QE-CntWM5D_5WEKbBAI5pD0brXa8VbAlZ0YO3WfqS1bdDfTW0wzM98d8F-IspohCfNTwWQN016yh16DANAp019SqeSc2uumMsrbvzsSmXHrVd71-Ly6YnwGgt63diN9P64LkU3xF2mP0KF1004EDyzRKPswzZgpe3rqVWeXDghJ_LcU85uAm6dM0Je9ySFGGmHFPLidiOSaSnKbXEPcy_0Q5r1MOuzBj5AItxJJ_ChEdyTEQZ5VohyQXR0fZXRhHpDcPfFmPBvxBnI9uYrx6m5fix7ev32_u1MPj7f3NlwflTWeyQr2FGmqLrUYL4FuHzRZaGFvn2q6y29pbt3XG296Xzbi6xc5oDX7nLBhdXYpPJ92F0suKnIfntFJJzUNVHHTdV6YtKHNCeUrMhOOwUJgdHQYNw99ShlMpQ3n9cCxlaAqpOpG4gOMe6Z_0f1h_AAxxl-o |
| Cites_doi | 10.1017/CBO9780511618352 10.1137/S0036142995280572 10.1016/j.jcp.2017.03.038 10.1016/j.cam.2019.04.015 10.1017/S0962492910000048 10.1016/j.jcp.2017.10.057 10.1145/1206040.1206044 10.1016/j.camwa.2022.10.023 10.1007/BFb0067462 10.1016/j.apnum.2004.08.005 10.1016/0001-6160(79)90196-2 10.1007/s11075-024-01940-7 10.1137/04061101X 10.1137/0709060 10.1016/j.jcp.2017.03.018 10.1137/040611434 10.1016/j.aml.2020.106265 10.1007/978-3-540-71041-7 10.1007/BF01396634 10.1016/j.cam.2025.116586 10.1137/0704033 10.1137/15M1023257 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s10910-025-01754-5 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Mathematics |
| EISSN | 1572-8897 |
| EndPage | 2050 |
| ExternalDocumentID | 10_1007_s10910_025_01754_5 |
| GrantInformation_xml | – fundername: Doctoral Foundation of Heze University grantid: XY22BS28 – fundername: Natural Science Foundation of China grantid: 12071419; 12071419 – fundername: foundation of innovative science and technology for youth in universities of Shandong Province grantid: 2023KJ278; 2023KJ278 |
| GroupedDBID | -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFHD AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAK LLZTM M2P M4Y M7S MA- ML- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PDBOC PF0 PHGZM PHGZT PQGLB PT4 PT5 PTHSS QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 ZMTXR ~8M ~A9 ~EX AAYXX AFKRA AZQEC BENPR CITATION DWQXO GNUQQ HCIFZ |
| ID | FETCH-LOGICAL-c272t-e1b04048e61e800c6ae5b060f6aa6738b4c8aba2c89cc8a2a46e72110cda80213 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001591988700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0259-9791 |
| IngestDate | Mon Nov 17 03:33:14 EST 2025 Thu Nov 20 00:56:45 EST 2025 Sun Nov 16 01:10:26 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | 65L05 65L06 34C14 Nonlinear first-order PDEs 65L70 Variation-of-constants formula Exponential integrator 65L20 Superconvergence Abstract ordinary differential equation Symmetry |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-e1b04048e61e800c6ae5b060f6aa6738b4c8aba2c89cc8a2a46e72110cda80213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3272149326 |
| PQPubID | 2043851 |
| PageCount | 28 |
| ParticipantIDs | proquest_journals_3272149326 crossref_primary_10_1007_s10910_025_01754_5 springer_journals_10_1007_s10910_025_01754_5 |
| PublicationCentury | 2000 |
| PublicationDate | 20251100 2025-11-00 20251101 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 20251100 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Dordrecht |
| PublicationTitle | Journal of mathematical chemistry |
| PublicationTitleAbbrev | J Math Chem |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | JD Lambert (1754_CR17) 1972; 9 M Hochbruck (1754_CR10) 2005; 43 YW Li (1754_CR19) 2016; 38 M Hochbruck (1754_CR11) 2005; 53 M Hochbruck (1754_CR9) 1997; 34 J Shen (1754_CR24) 2006 X Hu (1754_CR16) 2024 JD Lawson (1754_CR18) 1967; 4 YB Hou (1754_CR13) 2025; 465 L Mei (1754_CR22) 2017; 338 M Abramowitz (1754_CR1) 1964 H Berland (1754_CR4) 2007; 33 M Hochbruck (1754_CR12) 2010; 19 B Wang (1754_CR27) 2019; 360 1754_CR3 SM Allen (1754_CR2) 1979; 27 TL Hou (1754_CR14) 2020; 104 JG Verwer (1754_CR26) 1976; 27 1754_CR8 1754_CR6 CY Liu (1754_CR20) 2018; 356 E Hairer (1754_CR7) 2006 DW Den (1754_CR5) 2022; 128 CY Liu (1754_CR21) 2017; 340 J Shen (1754_CR23) 2011 ZZ Sun (1754_CR25) 2012 NJ Higham (1754_CR15) 2005; 26 |
| References_xml | – ident: 1754_CR8 doi: 10.1017/CBO9780511618352 – volume: 34 start-page: 1911 year: 1997 ident: 1754_CR9 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142995280572 – volume-title: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables year: 1964 ident: 1754_CR1 – volume: 340 start-page: 243 year: 2017 ident: 1754_CR21 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.03.038 – volume: 360 start-page: 99 year: 2019 ident: 1754_CR27 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2019.04.015 – volume: 19 start-page: 209 year: 2010 ident: 1754_CR12 publication-title: Acta Numer doi: 10.1017/S0962492910000048 – volume: 356 start-page: 1 year: 2018 ident: 1754_CR20 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.10.057 – volume: 33 start-page: 4-es issue: 1 year: 2007 ident: 1754_CR4 publication-title: ACM Trans. Math. Softw. doi: 10.1145/1206040.1206044 – volume: 128 start-page: 249 year: 2022 ident: 1754_CR5 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2022.10.023 – ident: 1754_CR6 doi: 10.1007/BFb0067462 – volume: 53 start-page: 323 year: 2005 ident: 1754_CR11 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2004.08.005 – volume-title: Spectral and High-Order Methods with Applications year: 2006 ident: 1754_CR24 – volume: 27 start-page: 1085 year: 1979 ident: 1754_CR2 publication-title: Acta Metall. doi: 10.1016/0001-6160(79)90196-2 – ident: 1754_CR3 – year: 2024 ident: 1754_CR16 publication-title: Numer. Algor. doi: 10.1007/s11075-024-01940-7 – volume: 26 start-page: 1179 year: 2005 ident: 1754_CR15 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/04061101X – volume: 9 start-page: 715 year: 1972 ident: 1754_CR17 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0709060 – volume-title: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations year: 2006 ident: 1754_CR7 – volume: 338 start-page: 567 year: 2017 ident: 1754_CR22 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.03.018 – volume: 43 start-page: 1069 year: 2005 ident: 1754_CR10 publication-title: SIAM J. Numer. Anal. doi: 10.1137/040611434 – volume: 104 start-page: 106265 year: 2020 ident: 1754_CR14 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2020.106265 – volume-title: Spectral Methods: Algorithms, Analysis, Applications year: 2011 ident: 1754_CR23 doi: 10.1007/978-3-540-71041-7 – volume: 27 start-page: 143 year: 1976 ident: 1754_CR26 publication-title: Numer. Math. doi: 10.1007/BF01396634 – volume: 465 year: 2025 ident: 1754_CR13 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2025.116586 – volume: 4 start-page: 372 year: 1967 ident: 1754_CR18 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0704033 – volume: 38 start-page: 1876 year: 2016 ident: 1754_CR19 publication-title: SIAM J. Sci. Comput. doi: 10.1137/15M1023257 – volume-title: Numerical methods of partial differential equations (2nd version, in Chinese) year: 2012 ident: 1754_CR25 |
| SSID | ssj0009868 |
| Score | 2.4018137 |
| Snippet | The main objective of this research is to develop and analyze high-order symmetric Gauss-type exponential collocation time-stepping methods for solving systems... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 2023 |
| SubjectTerms | Accuracy Boundary conditions Chemistry Chemistry and Materials Science Collocation Collocation methods Eigenvectors Function space Hamiltonian functions Hilbert space Integrators Math. Applications in Chemistry Nonlinear differential equations Nonlinear systems Ordinary differential equations Original Paper Parabolic differential equations Partial differential equations Physical Chemistry Symmetry Theoretical and Computational Chemistry |
| Title | Superconvergence analysis of symmetric Gauss-type exponential collocation integrators for solving the multidimensional nonlinear first-order partial differential equations |
| URI | https://link.springer.com/article/10.1007/s10910-025-01754-5 https://www.proquest.com/docview/3272149326 |
| Volume | 63 |
| WOSCitedRecordID | wos001591988700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1572-8897 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009868 issn: 0259-9791 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58gXrwURWrVXLwpoHuO3uUYvWiiFXpbUnSWfBgWzet6G_yTzrJ7loVPehtl4QkMJNkJjPzfQBHYaw8VCLnYSTJQUnQ4yqIkEdiECgxiNoyzx3ZRHJ1Jfr99LoqCjN1tnsdknQn9adit9QGbn2bbJZEIY_mYZGuO2G3403vfga1K1wBHHVMeZqkXlUq8_MYX6-jmY35LSzqbpvu-v_WuQFrlXXJTkt12IQ5HDZguVOTujVg9fIDptVswVtvOsbCJZ67GkxkssIoYaOcmdfHR8u3pdm5nBrD7Wstw5fxaGgzjGgaq0Oj8smP1bATo8IwsoMZqbR9qmA0G3NJiwNLI1BCgLBhic8hC5Y_kPXJHf4nG1stptaas8X94FOJRW624a57dtu54BV7A9d-4k84eooOiFBg7CFZpTqWGKl23M5jKS3VqAq1kEr6WqSavnwZxujcUT2QgiyPYAcWaDm4Cwxj1HkeKp2k5I8KnTqKdB2QoMNAJroJx7UQs3EJ0pHN4JitODISR-bEkUVNaNVyzqoNa7KA1kzOIhmzTTip5Tpr_n20vb9134cV36qGq2ZswcKkmOIBLOnnyYMpDp0ivwPzs_Nc |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH5iZRJwYKxjoowxH7htlprESZwjqlY60VYI2MQtst0XiUN_LG4R_E38kzw7ycrQdthuiWLZlt6L_T37ve8DOBGJDlDLgotYUYCSYsB1FCOP5STSchJ3VVF4sYl0PJY3N9lFXRRmm2z35krSr9TPit0yd3EbumSzNBY8fgWbgnYsl8h3efVjTbUrfQEcNcx4lmZBXSrz5z5-347WGPPFtajfbfpv_m-ee7Bbo0t2WrnDW9jAWRu2eo2oWxt2Rr9oWu07eLxaLbD0iee-BhOZqjlK2Lxg9mE6dXpbhp2plbXcndYyvF_MZy7DiIZxPjSvjvxYQzsxLy0jHMzIpd1RBaPRmE9anDgZgYoChM0qfg5VsuKW0Cf3_J9s4byYvjaaLf4Ff1Zc5HYfvve_XvcGvFZv4CZMwyXHQNMCISQmARIqNYnCWHeTbpEo5aRGtTBSaRUamRl6CpVI0IejZqIkIY_oPbRoOngADBM0RSG0STOKR6XJvES6icjQIlKp6cDnxoj5oiLpyNd0zM4cOZkj9-bI4w4cNXbO6x_W5hHNmYJFArMd-NLYdf35770d_lvzT7A1uB4N8-G38fkH2A6dm_jKxiNoLcsVfoTX5m55a8tj79RPY-b2QA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3xUfFxoC1QsUBbH3prLTaJkzhHtLC0artCoq24RbYzljiwmya7VflN_EnGTsJuKzggbols2ZZmEr-xZ94D-CASHaCWlotYUYCSYsB1FCOPZRFpWcR9Za0Xm0hHI3l5mZ0vVPH7bPfuSrKpaXAsTePpUVnYo4XCt8xd4oYu8SyNBY-XYVU40SAXr1_8mtPuSl8MRx0znqVZ0JbNPDzGv1vTHG_-d0Xqd57hy-ev-RVstaiTHTdu8hqWcLwN64NO7G0bNr_f07fWO3B7MSux8gnpvjYTmWq5S9jEsvrm-trpcBl2pmZ1zd0pLsO_5WTsMo9oGudbk-YokHV0FJOqZoSPGbm6O8JgNBvzyYyFkxdoqEHYuOHtUBWzV4RKuecFZaXzbmrttFz8C_5uOMrrXfg5PP0x-MxbVQduwjSccgw0_TiExCRAQqsmURjrftK3iVJOglQLI5VWoZGZoadQiQR9mGoKJQmRRG9ghZaDe8AwQWOt0CbNKE6VJvPS6SYio4tIpaYHHzuD5mVD3pHPaZqdOXIyR-7Nkcc9OOxsnrcfcp1HtGYKIgnk9uBTZ-N58-Oj7T-t-3tYOz8Z5t--jL4ewEbovMQXPB7CyrSa4Vt4Yf5Mr-rqnffvO2sj_yQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superconvergence+analysis+of+symmetric+Gauss-type+exponential+collocation+integrators+for+solving+the+multidimensional+nonlinear+first-order+partial+differential+equations&rft.jtitle=Journal+of+mathematical+chemistry&rft.au=Wu%2C+Xiumei&rft.au=Fang%2C+Yonglei&rft.au=Liu%2C+Changying&rft.au=Song%2C+Yuanling&rft.date=2025-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0259-9791&rft.eissn=1572-8897&rft.volume=63&rft.issue=10&rft.spage=2023&rft.epage=2050&rft_id=info:doi/10.1007%2Fs10910-025-01754-5&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0259-9791&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0259-9791&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0259-9791&client=summon |