Superconvergence analysis of symmetric Gauss-type exponential collocation integrators for solving the multidimensional nonlinear first-order partial differential equations

The main objective of this research is to develop and analyze high-order symmetric Gauss-type exponential collocation time-stepping methods for solving systems of nonlinear first-order partial differential equations (PDEs). Initially, the nonlinear PDEs are reformulated as an abstract Hamiltonian or...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical chemistry Vol. 63; no. 10; pp. 2023 - 2050
Main Authors: Wu, Xiumei, Fang, Yonglei, Liu, Changying, Song, Yuanling
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.11.2025
Springer Nature B.V
Subjects:
ISSN:0259-9791, 1572-8897
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The main objective of this research is to develop and analyze high-order symmetric Gauss-type exponential collocation time-stepping methods for solving systems of nonlinear first-order partial differential equations (PDEs). Initially, the nonlinear PDEs are reformulated as an abstract Hamiltonian ordinary differential equation (ODE) system in an appropriate infinite-dimensional function space. Subsequently, the Gauss-type exponential collocation time integrators are derived. The symmetry, local error bounds and nonlinear stability of the proposed time integrators are rigorously analysed in details. Furthermore, the rigourous convergence analysis demonstrates that Gauss-type exponential collocation time integrators can achieve superconvergence. Numerical experiments verify our theoretical analysis results, and demonstrate the remarkable superiority in comparison with the traditional temporal integration methods.
AbstractList The main objective of this research is to develop and analyze high-order symmetric Gauss-type exponential collocation time-stepping methods for solving systems of nonlinear first-order partial differential equations (PDEs). Initially, the nonlinear PDEs are reformulated as an abstract Hamiltonian ordinary differential equation (ODE) system in an appropriate infinite-dimensional function space. Subsequently, the Gauss-type exponential collocation time integrators are derived. The symmetry, local error bounds and nonlinear stability of the proposed time integrators are rigorously analysed in details. Furthermore, the rigourous convergence analysis demonstrates that Gauss-type exponential collocation time integrators can achieve superconvergence. Numerical experiments verify our theoretical analysis results, and demonstrate the remarkable superiority in comparison with the traditional temporal integration methods.
Author Fang, Yonglei
Liu, Changying
Wu, Xiumei
Song, Yuanling
Author_xml – sequence: 1
  givenname: Xiumei
  surname: Wu
  fullname: Wu, Xiumei
  email: hzxywu06@163.com
  organization: School of Mathematics and Statistics, Heze University
– sequence: 2
  givenname: Yonglei
  surname: Fang
  fullname: Fang, Yonglei
  organization: School of Mathematics and Statistics, Zaozhuang University
– sequence: 3
  givenname: Changying
  surname: Liu
  fullname: Liu, Changying
  organization: School of Mathematics and Statistics, Heze University
– sequence: 4
  givenname: Yuanling
  surname: Song
  fullname: Song, Yuanling
  organization: Jiangsu Province Gaoyou No.1 Middle School
BookMark eNp9Uc1q3DAQFiWBbtK8QE-CntWM5D_5WEKbBAI5pD0brXa8VbAlZ0YO3WfqS1bdDfTW0wzM98d8F-IspohCfNTwWQN016yh16DANAp019SqeSc2uumMsrbvzsSmXHrVd71-Ly6YnwGgt63diN9P64LkU3xF2mP0KF1004EDyzRKPswzZgpe3rqVWeXDghJ_LcU85uAm6dM0Je9ySFGGmHFPLidiOSaSnKbXEPcy_0Q5r1MOuzBj5AItxJJ_ChEdyTEQZ5VohyQXR0fZXRhHpDcPfFmPBvxBnI9uYrx6m5fix7ev32_u1MPj7f3NlwflTWeyQr2FGmqLrUYL4FuHzRZaGFvn2q6y29pbt3XG296Xzbi6xc5oDX7nLBhdXYpPJ92F0suKnIfntFJJzUNVHHTdV6YtKHNCeUrMhOOwUJgdHQYNw99ShlMpQ3n9cCxlaAqpOpG4gOMe6Z_0f1h_AAxxl-o
Cites_doi 10.1017/CBO9780511618352
10.1137/S0036142995280572
10.1016/j.jcp.2017.03.038
10.1016/j.cam.2019.04.015
10.1017/S0962492910000048
10.1016/j.jcp.2017.10.057
10.1145/1206040.1206044
10.1016/j.camwa.2022.10.023
10.1007/BFb0067462
10.1016/j.apnum.2004.08.005
10.1016/0001-6160(79)90196-2
10.1007/s11075-024-01940-7
10.1137/04061101X
10.1137/0709060
10.1016/j.jcp.2017.03.018
10.1137/040611434
10.1016/j.aml.2020.106265
10.1007/978-3-540-71041-7
10.1007/BF01396634
10.1016/j.cam.2025.116586
10.1137/0704033
10.1137/15M1023257
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
DBID AAYXX
CITATION
DOI 10.1007/s10910-025-01754-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Mathematics
EISSN 1572-8897
EndPage 2050
ExternalDocumentID 10_1007_s10910_025_01754_5
GrantInformation_xml – fundername: Doctoral Foundation of Heze University
  grantid: XY22BS28
– fundername: Natural Science Foundation of China
  grantid: 12071419; 12071419
– fundername: foundation of innovative science and technology for youth in universities of Shandong Province
  grantid: 2023KJ278; 2023KJ278
GroupedDBID -Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAK
LLZTM
M2P
M4Y
M7S
MA-
ML-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PDBOC
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PTHSS
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
ZMTXR
~8M
~A9
~EX
AAYXX
AFKRA
AZQEC
BENPR
CITATION
DWQXO
GNUQQ
HCIFZ
ID FETCH-LOGICAL-c272t-e1b04048e61e800c6ae5b060f6aa6738b4c8aba2c89cc8a2a46e72110cda80213
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001591988700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0259-9791
IngestDate Mon Nov 17 03:33:14 EST 2025
Thu Nov 20 00:56:45 EST 2025
Sun Nov 16 01:10:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords 65L05
65L06
34C14
Nonlinear first-order PDEs
65L70
Variation-of-constants formula
Exponential integrator
65L20
Superconvergence
Abstract ordinary differential equation
Symmetry
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-e1b04048e61e800c6ae5b060f6aa6738b4c8aba2c89cc8a2a46e72110cda80213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3272149326
PQPubID 2043851
PageCount 28
ParticipantIDs proquest_journals_3272149326
crossref_primary_10_1007_s10910_025_01754_5
springer_journals_10_1007_s10910_025_01754_5
PublicationCentury 2000
PublicationDate 20251100
2025-11-00
20251101
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 20251100
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationTitle Journal of mathematical chemistry
PublicationTitleAbbrev J Math Chem
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References JD Lambert (1754_CR17) 1972; 9
M Hochbruck (1754_CR10) 2005; 43
YW Li (1754_CR19) 2016; 38
M Hochbruck (1754_CR11) 2005; 53
M Hochbruck (1754_CR9) 1997; 34
J Shen (1754_CR24) 2006
X Hu (1754_CR16) 2024
JD Lawson (1754_CR18) 1967; 4
YB Hou (1754_CR13) 2025; 465
L Mei (1754_CR22) 2017; 338
M Abramowitz (1754_CR1) 1964
H Berland (1754_CR4) 2007; 33
M Hochbruck (1754_CR12) 2010; 19
B Wang (1754_CR27) 2019; 360
1754_CR3
SM Allen (1754_CR2) 1979; 27
TL Hou (1754_CR14) 2020; 104
JG Verwer (1754_CR26) 1976; 27
1754_CR8
1754_CR6
CY Liu (1754_CR20) 2018; 356
E Hairer (1754_CR7) 2006
DW Den (1754_CR5) 2022; 128
CY Liu (1754_CR21) 2017; 340
J Shen (1754_CR23) 2011
ZZ Sun (1754_CR25) 2012
NJ Higham (1754_CR15) 2005; 26
References_xml – ident: 1754_CR8
  doi: 10.1017/CBO9780511618352
– volume: 34
  start-page: 1911
  year: 1997
  ident: 1754_CR9
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142995280572
– volume-title: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
  year: 1964
  ident: 1754_CR1
– volume: 340
  start-page: 243
  year: 2017
  ident: 1754_CR21
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.03.038
– volume: 360
  start-page: 99
  year: 2019
  ident: 1754_CR27
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2019.04.015
– volume: 19
  start-page: 209
  year: 2010
  ident: 1754_CR12
  publication-title: Acta Numer
  doi: 10.1017/S0962492910000048
– volume: 356
  start-page: 1
  year: 2018
  ident: 1754_CR20
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.10.057
– volume: 33
  start-page: 4-es
  issue: 1
  year: 2007
  ident: 1754_CR4
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/1206040.1206044
– volume: 128
  start-page: 249
  year: 2022
  ident: 1754_CR5
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2022.10.023
– ident: 1754_CR6
  doi: 10.1007/BFb0067462
– volume: 53
  start-page: 323
  year: 2005
  ident: 1754_CR11
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2004.08.005
– volume-title: Spectral and High-Order Methods with Applications
  year: 2006
  ident: 1754_CR24
– volume: 27
  start-page: 1085
  year: 1979
  ident: 1754_CR2
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(79)90196-2
– ident: 1754_CR3
– year: 2024
  ident: 1754_CR16
  publication-title: Numer. Algor.
  doi: 10.1007/s11075-024-01940-7
– volume: 26
  start-page: 1179
  year: 2005
  ident: 1754_CR15
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/04061101X
– volume: 9
  start-page: 715
  year: 1972
  ident: 1754_CR17
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0709060
– volume-title: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations
  year: 2006
  ident: 1754_CR7
– volume: 338
  start-page: 567
  year: 2017
  ident: 1754_CR22
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.03.018
– volume: 43
  start-page: 1069
  year: 2005
  ident: 1754_CR10
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/040611434
– volume: 104
  start-page: 106265
  year: 2020
  ident: 1754_CR14
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2020.106265
– volume-title: Spectral Methods: Algorithms, Analysis, Applications
  year: 2011
  ident: 1754_CR23
  doi: 10.1007/978-3-540-71041-7
– volume: 27
  start-page: 143
  year: 1976
  ident: 1754_CR26
  publication-title: Numer. Math.
  doi: 10.1007/BF01396634
– volume: 465
  year: 2025
  ident: 1754_CR13
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2025.116586
– volume: 4
  start-page: 372
  year: 1967
  ident: 1754_CR18
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0704033
– volume: 38
  start-page: 1876
  year: 2016
  ident: 1754_CR19
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/15M1023257
– volume-title: Numerical methods of partial differential equations (2nd version, in Chinese)
  year: 2012
  ident: 1754_CR25
SSID ssj0009868
Score 2.4018137
Snippet The main objective of this research is to develop and analyze high-order symmetric Gauss-type exponential collocation time-stepping methods for solving systems...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 2023
SubjectTerms Accuracy
Boundary conditions
Chemistry
Chemistry and Materials Science
Collocation
Collocation methods
Eigenvectors
Function space
Hamiltonian functions
Hilbert space
Integrators
Math. Applications in Chemistry
Nonlinear differential equations
Nonlinear systems
Ordinary differential equations
Original Paper
Parabolic differential equations
Partial differential equations
Physical Chemistry
Symmetry
Theoretical and Computational Chemistry
Title Superconvergence analysis of symmetric Gauss-type exponential collocation integrators for solving the multidimensional nonlinear first-order partial differential equations
URI https://link.springer.com/article/10.1007/s10910-025-01754-5
https://www.proquest.com/docview/3272149326
Volume 63
WOSCitedRecordID wos001591988700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1572-8897
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009868
  issn: 0259-9791
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58gXrwURWrVXLwpoHuO3uUYvWiiFXpbUnSWfBgWzet6G_yTzrJ7loVPehtl4QkMJNkJjPzfQBHYaw8VCLnYSTJQUnQ4yqIkEdiECgxiNoyzx3ZRHJ1Jfr99LoqCjN1tnsdknQn9adit9QGbn2bbJZEIY_mYZGuO2G3403vfga1K1wBHHVMeZqkXlUq8_MYX6-jmY35LSzqbpvu-v_WuQFrlXXJTkt12IQ5HDZguVOTujVg9fIDptVswVtvOsbCJZ67GkxkssIoYaOcmdfHR8u3pdm5nBrD7Wstw5fxaGgzjGgaq0Oj8smP1bATo8IwsoMZqbR9qmA0G3NJiwNLI1BCgLBhic8hC5Y_kPXJHf4nG1stptaas8X94FOJRW624a57dtu54BV7A9d-4k84eooOiFBg7CFZpTqWGKl23M5jKS3VqAq1kEr6WqSavnwZxujcUT2QgiyPYAcWaDm4Cwxj1HkeKp2k5I8KnTqKdB2QoMNAJroJx7UQs3EJ0pHN4JitODISR-bEkUVNaNVyzqoNa7KA1kzOIhmzTTip5Tpr_n20vb9134cV36qGq2ZswcKkmOIBLOnnyYMpDp0ivwPzs_Nc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH5iZRJwYKxjoowxH7htlprESZwjqlY60VYI2MQtst0XiUN_LG4R_E38kzw7ycrQdthuiWLZlt6L_T37ve8DOBGJDlDLgotYUYCSYsB1FCOP5STSchJ3VVF4sYl0PJY3N9lFXRRmm2z35krSr9TPit0yd3EbumSzNBY8fgWbgnYsl8h3efVjTbUrfQEcNcx4lmZBXSrz5z5-347WGPPFtajfbfpv_m-ee7Bbo0t2WrnDW9jAWRu2eo2oWxt2Rr9oWu07eLxaLbD0iee-BhOZqjlK2Lxg9mE6dXpbhp2plbXcndYyvF_MZy7DiIZxPjSvjvxYQzsxLy0jHMzIpd1RBaPRmE9anDgZgYoChM0qfg5VsuKW0Cf3_J9s4byYvjaaLf4Ff1Zc5HYfvve_XvcGvFZv4CZMwyXHQNMCISQmARIqNYnCWHeTbpEo5aRGtTBSaRUamRl6CpVI0IejZqIkIY_oPbRoOngADBM0RSG0STOKR6XJvES6icjQIlKp6cDnxoj5oiLpyNd0zM4cOZkj9-bI4w4cNXbO6x_W5hHNmYJFArMd-NLYdf35770d_lvzT7A1uB4N8-G38fkH2A6dm_jKxiNoLcsVfoTX5m55a8tj79RPY-b2QA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3xUfFxoC1QsUBbH3prLTaJkzhHtLC0artCoq24RbYzljiwmya7VflN_EnGTsJuKzggbols2ZZmEr-xZ94D-CASHaCWlotYUYCSYsB1FCOPZRFpWcR9Za0Xm0hHI3l5mZ0vVPH7bPfuSrKpaXAsTePpUVnYo4XCt8xd4oYu8SyNBY-XYVU40SAXr1_8mtPuSl8MRx0znqVZ0JbNPDzGv1vTHG_-d0Xqd57hy-ev-RVstaiTHTdu8hqWcLwN64NO7G0bNr_f07fWO3B7MSux8gnpvjYTmWq5S9jEsvrm-trpcBl2pmZ1zd0pLsO_5WTsMo9oGudbk-YokHV0FJOqZoSPGbm6O8JgNBvzyYyFkxdoqEHYuOHtUBWzV4RKuecFZaXzbmrttFz8C_5uOMrrXfg5PP0x-MxbVQduwjSccgw0_TiExCRAQqsmURjrftK3iVJOglQLI5VWoZGZoadQiQR9mGoKJQmRRG9ghZaDe8AwQWOt0CbNKE6VJvPS6SYio4tIpaYHHzuD5mVD3pHPaZqdOXIyR-7Nkcc9OOxsnrcfcp1HtGYKIgnk9uBTZ-N58-Oj7T-t-3tYOz8Z5t--jL4ewEbovMQXPB7CyrSa4Vt4Yf5Mr-rqnffvO2sj_yQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superconvergence+analysis+of+symmetric+Gauss-type+exponential+collocation+integrators+for+solving+the+multidimensional+nonlinear+first-order+partial+differential+equations&rft.jtitle=Journal+of+mathematical+chemistry&rft.au=Wu%2C+Xiumei&rft.au=Fang%2C+Yonglei&rft.au=Liu%2C+Changying&rft.au=Song%2C+Yuanling&rft.date=2025-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0259-9791&rft.eissn=1572-8897&rft.volume=63&rft.issue=10&rft.spage=2023&rft.epage=2050&rft_id=info:doi/10.1007%2Fs10910-025-01754-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0259-9791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0259-9791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0259-9791&client=summon