Nime: a native in-memory compute framework for cluster computing

Due to the increasing demand for cluster computing, various data analytics frameworks have been proposed and Apache Spark is a widely used open-source framework. It divides the program into various tasks and leverages executors on different machines for parallel task processing. However, executors r...

Full description

Saved in:
Bibliographic Details
Published in:Cluster computing Vol. 28; no. 7; p. 434
Main Authors: Chen, Chao, Wang, Zhenghua, Jiang, Chen, Wang, Zheng
Format: Journal Article
Language:English
Published: New York Springer US 01.09.2025
Springer Nature B.V
Subjects:
ISSN:1386-7857, 1573-7543
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Due to the increasing demand for cluster computing, various data analytics frameworks have been proposed and Apache Spark is a widely used open-source framework. It divides the program into various tasks and leverages executors on different machines for parallel task processing. However, executors run on top of Java virtual machines (JVMs), which incurs a significant runtime overhead in terms of memory and compute resources and thus deteriorates the system’s performance. In this paper, we present NIME–a native in-memory compute framework for cluster computing–that aims to perform parallel task processing using native executors. The key idea is that NIME starts off with native manager and worker processes without JVMs. In addition, a dedicated scheduler combines data partitions for efficient processing without interruptions and a cached is leveraged for iterative computations. We evaluate the effectiveness of NIME on a compute cluster using the HiBench benchmark suite and compare the results with those from the Spark framework. Evaluation results indicate that compared to Spark, on average NIME achieves a 6.82 × speedup, while simultaneously reducing the memory usage by 84.69%. In addition, the execution speedup and memory reduction can reach up to 12.36 × and 93.97%, respectively. Together with an in-depth analysis, we show that by discarding the JVM, NIME significantly accelerates task executions and minimizes the compute and memory resource overheads.
AbstractList Due to the increasing demand for cluster computing, various data analytics frameworks have been proposed and Apache Spark is a widely used open-source framework. It divides the program into various tasks and leverages executors on different machines for parallel task processing. However, executors run on top of Java virtual machines (JVMs), which incurs a significant runtime overhead in terms of memory and compute resources and thus deteriorates the system’s performance. In this paper, we present NIME–a native in-memory compute framework for cluster computing–that aims to perform parallel task processing using native executors. The key idea is that NIME starts off with native manager and worker processes without JVMs. In addition, a dedicated scheduler combines data partitions for efficient processing without interruptions and a cached is leveraged for iterative computations. We evaluate the effectiveness of NIME on a compute cluster using the HiBench benchmark suite and compare the results with those from the Spark framework. Evaluation results indicate that compared to Spark, on average NIME achieves a 6.82 × speedup, while simultaneously reducing the memory usage by 84.69%. In addition, the execution speedup and memory reduction can reach up to 12.36 × and 93.97%, respectively. Together with an in-depth analysis, we show that by discarding the JVM, NIME significantly accelerates task executions and minimizes the compute and memory resource overheads.
Due to the increasing demand for cluster computing, various data analytics frameworks have been proposed and Apache Spark is a widely used open-source framework. It divides the program into various tasks and leverages executors on different machines for parallel task processing. However, executors run on top of Java virtual machines (JVMs), which incurs a significant runtime overhead in terms of memory and compute resources and thus deteriorates the system’s performance. In this paper, we present NIME–a native in-memory compute framework for cluster computing–that aims to perform parallel task processing using native executors. The key idea is that NIME starts off with native manager and worker processes without JVMs. In addition, a dedicated scheduler combines data partitions for efficient processing without interruptions and a cached is leveraged for iterative computations. We evaluate the effectiveness of NIME on a compute cluster using the HiBench benchmark suite and compare the results with those from the Spark framework. Evaluation results indicate that compared to Spark, on average NIME achieves a 6.82× speedup, while simultaneously reducing the memory usage by 84.69%. In addition, the execution speedup and memory reduction can reach up to 12.36× and 93.97%, respectively. Together with an in-depth analysis, we show that by discarding the JVM, NIME significantly accelerates task executions and minimizes the compute and memory resource overheads.
ArticleNumber 434
Author Jiang, Chen
Wang, Zheng
Wang, Zhenghua
Chen, Chao
Author_xml – sequence: 1
  givenname: Chao
  surname: Chen
  fullname: Chen, Chao
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
– sequence: 2
  givenname: Zhenghua
  surname: Wang
  fullname: Wang, Zhenghua
  email: nopass@mail.ustc.edu.cn
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, School of Software Engineering, University of Science and Technology of China
– sequence: 3
  givenname: Chen
  surname: Jiang
  fullname: Jiang, Chen
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, School of Software Engineering, University of Science and Technology of China
– sequence: 4
  givenname: Zheng
  surname: Wang
  fullname: Wang, Zheng
  email: zheng.wang@siat.ac.cn
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
BookMark eNp9kE9LwzAYxoNMcJt-AU8Fz9E3SZO0npThVBh60XOI6ZvRuTYzaZV9e6sdePP0PvD8eeE3I5M2tEjIOYNLBqCvEgNZKApcUpAMCiqOyJRJLaiWuZgMWgy2LqQ-IbOUNgBQal5Oyc1T3eB1ZrPWdvUnZnVLG2xC3GcuNLu-w8xH2-BXiO-ZDzFz2z51GA9u3a5PybG324Rnhzsnr8u7l8UDXT3fPy5uV9RxzTtaeaucBI6ldR4Y5pXTbyUoBCG8sqVXSueVUMhdYVkJlS-UzaXLnRcCLYg5uRh3dzF89Jg6swl9bIeXRnAhGS9UyYYUH1MuhpQierOLdWPj3jAwP6TMSMoMpMwvKSOGkhhLaQi3a4x_0_-0vgEZWm2e
Cites_doi 10.1145/1327452.1327492
10.1145/3492321.3527539
10.14778/1920841.1920881
10.1145/3127479.3134762
10.32604/iasc.2021.014216
10.1016/j.is.2020.101569
10.1007/s10586-023-04031-9
10.1145/3341302.3342080
10.1109/TCC.2020.2983402
10.1007/s10586-024-04478-4
10.1007/s10586-022-03568-5
10.1145/2806887
10.1109/2.84877
10.1145/2523616.2523633
10.1109/IPDPS53621.2022.00015
10.1145/1851476.1851593
10.1145/3538712.3538739
10.1145/1809028.1806638
10.1109/TII.2019.2930226
10.1007/s10462-019-09685-9
10.1145/1272998.1273005
10.1016/j.knosys.2020.106598
10.1109/TC.2022.3223302
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10586-025-05108-3
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7543
ExternalDocumentID 10_1007_s10586_025_05108_3
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62372442
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Shenzhen Science and Technology Innovation Program
  grantid: JCYJ20220818101607015; JCYJ20220818101607015; JCYJ20220818101607015
  funderid: http://dx.doi.org/10.13039/501100017610
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province
  grantid: 2023A1515012842
  funderid: http://dx.doi.org/10.13039/501100021171
– fundername: Institute of Computing Technology
  grantid: CLQ202308
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
1N0
203
29B
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFDZB
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I09
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P9O
PF0
PT4
PT5
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
-Y2
1SB
2P1
2VQ
AAIAL
AARHV
AAYTO
AAYXX
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEKMD
AFFHD
AFGCZ
AFKRA
AGGDS
AGQPQ
AHSBF
AJBLW
ARAPS
BDATZ
BENPR
BGLVJ
CAG
CCPQU
CITATION
COF
EJD
FINBP
FSGXE
H13
HCIFZ
HZ~
IHE
K7-
N2Q
O9-
OVD
PHGZM
PHGZT
PQGLB
RNI
RZC
RZE
RZK
TEORI
JQ2
ID FETCH-LOGICAL-c272t-dfa6c502e9acf01e4dc7b906e033f6a9f6674d36e2c8a190df86a45c4cf33ea03
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001542458700026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1386-7857
IngestDate Wed Nov 26 14:42:03 EST 2025
Sat Nov 29 07:31:34 EST 2025
Wed Sep 10 01:44:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords In-memory computing
Spark
Distributed computing
Cluster computing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-dfa6c502e9acf01e4dc7b906e033f6a9f6674d36e2c8a190df86a45c4cf33ea03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3235128691
PQPubID 2043865
ParticipantIDs proquest_journals_3235128691
crossref_primary_10_1007_s10586_025_05108_3
springer_journals_10_1007_s10586_025_05108_3
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle The Journal of Networks, Software Tools and Applications
PublicationTitle Cluster computing
PublicationTitleAbbrev Cluster Comput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References X Meng (5108_CR26) 2016; 17
M Javed Awan (5108_CR8) 2021; 27
J Zhou (5108_CR21) 2023; 72
5108_CR18
5108_CR17
5108_CR39
J Ousterhout (5108_CR34) 2015
5108_CR19
J Dean (5108_CR1) 2008; 51
A Mohamed (5108_CR12) 2020; 53
S Oaks (5108_CR25) 2020
5108_CR3
5108_CR32
5108_CR2
5108_CR31
5108_CR5
5108_CR4
Y Bu (5108_CR36) 2010; 3
5108_CR6
5108_CR35
5108_CR16
5108_CR38
5108_CR15
5108_CR37
J Zhao (5108_CR22) 2024; 27
5108_CR30
R Dautov (5108_CR13) 2022; 10
5108_CR28
C Chambers (5108_CR29) 2010; 45
Y Xu (5108_CR9) 2020; 37
T Toliopoulos (5108_CR10) 2020; 93
B Nitzberg (5108_CR33) 1991; 24
5108_CR20
5108_CR42
5108_CR23
AC Ikegwu (5108_CR14) 2022; 25
5108_CR24
M Isard (5108_CR27) 2007; 41
D Jiang (5108_CR11) 2020; 16
WC Sleeman IV (5108_CR7) 2021; 212
5108_CR41
5108_CR40
References_xml – volume-title: Java Performance: In-depth Advice for Tuning and Programming Java 8, 11, and Beyond
  year: 2020
  ident: 5108_CR25
– volume: 51
  start-page: 107
  issue: 1
  year: 2008
  ident: 5108_CR1
  publication-title: Commun. ACM
  doi: 10.1145/1327452.1327492
– ident: 5108_CR4
– ident: 5108_CR6
– ident: 5108_CR40
  doi: 10.1145/3492321.3527539
– ident: 5108_CR23
– ident: 5108_CR2
– volume: 3
  start-page: 285
  issue: 1–2
  year: 2010
  ident: 5108_CR36
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/1920841.1920881
– ident: 5108_CR41
  doi: 10.1145/3127479.3134762
– volume: 27
  start-page: 785
  year: 2021
  ident: 5108_CR8
  publication-title: Intell. Autom. Soft Comput.
  doi: 10.32604/iasc.2021.014216
– volume: 93
  start-page: 101569
  year: 2020
  ident: 5108_CR10
  publication-title: Inform. Syst.
  doi: 10.1016/j.is.2020.101569
– volume: 17
  start-page: 1
  issue: 34
  year: 2016
  ident: 5108_CR26
  publication-title: J. Mach. Learn. Res.
– ident: 5108_CR31
– volume: 27
  start-page: 1527
  issue: 2
  year: 2024
  ident: 5108_CR22
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-023-04031-9
– ident: 5108_CR32
  doi: 10.1145/3341302.3342080
– volume: 10
  start-page: 885
  issue: 2
  year: 2022
  ident: 5108_CR13
  publication-title: IEEE Trans. Cloud Comput.
  doi: 10.1109/TCC.2020.2983402
– ident: 5108_CR16
– ident: 5108_CR42
  doi: 10.1007/s10586-024-04478-4
– volume: 25
  start-page: 3343
  issue: 5
  year: 2022
  ident: 5108_CR14
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-022-03568-5
– year: 2015
  ident: 5108_CR34
  publication-title: ACM Trans. Comput. Syst.
  doi: 10.1145/2806887
– volume: 24
  start-page: 52
  issue: 8
  year: 1991
  ident: 5108_CR33
  publication-title: Computer
  doi: 10.1109/2.84877
– ident: 5108_CR20
– ident: 5108_CR18
  doi: 10.1145/2523616.2523633
– ident: 5108_CR19
  doi: 10.1109/IPDPS53621.2022.00015
– ident: 5108_CR35
  doi: 10.1145/1851476.1851593
– ident: 5108_CR5
– ident: 5108_CR3
– ident: 5108_CR28
– ident: 5108_CR37
  doi: 10.1145/3538712.3538739
– ident: 5108_CR39
  doi: 10.1145/3538712.3538739
– ident: 5108_CR24
– ident: 5108_CR38
  doi: 10.1145/3538712.3538739
– volume: 45
  start-page: 363
  issue: 6
  year: 2010
  ident: 5108_CR29
  publication-title: SIGPLAN Not.
  doi: 10.1145/1809028.1806638
– volume: 16
  start-page: 1310
  year: 2020
  ident: 5108_CR11
  publication-title: IEEE Trans. Indust. Inform.
  doi: 10.1109/TII.2019.2930226
– volume: 53
  start-page: 989
  year: 2020
  ident: 5108_CR12
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09685-9
– volume: 41
  start-page: 59
  issue: 3
  year: 2007
  ident: 5108_CR27
  publication-title: SIGOPS Oper. Syst. Rev.
  doi: 10.1145/1272998.1273005
– volume: 37
  start-page: 100582
  year: 2020
  ident: 5108_CR9
  publication-title: Sustain. Energy Technol. Assess.
– ident: 5108_CR30
– volume: 212
  start-page: 106598
  year: 2021
  ident: 5108_CR7
  publication-title: Knowl.Based Syst.
  doi: 10.1016/j.knosys.2020.106598
– ident: 5108_CR15
– ident: 5108_CR17
– volume: 72
  start-page: 1747
  issue: 6
  year: 2023
  ident: 5108_CR21
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2022.3223302
SSID ssj0009729
Score 2.3605177
Snippet Due to the increasing demand for cluster computing, various data analytics frameworks have been proposed and Apache Spark is a widely used open-source...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 434
SubjectTerms Benchmarks
Breakdowns
Clusters
Compilers
Computation
Computer Communication Networks
Computer Science
Data processing
Datasets
Executors
Java
Machine learning
Operating Systems
Performance evaluation
Processor Architectures
Sanitation services
Virtual environments
Title Nime: a native in-memory compute framework for cluster computing
URI https://link.springer.com/article/10.1007/s10586-025-05108-3
https://www.proquest.com/docview/3235128691
Volume 28
WOSCitedRecordID wos001542458700026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: RSV
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEB109eDF9RNXV8nBmwbSpE0TT4q4eJBF_GJvJU0TWHCr7HYF_71JtqUqetBzhhBeZzqvzcwbgGNVJCZyH2nY-ZLBsco59qpz2FFbriWX1EahUfgmHQ7FaCRv66awWVPt3lxJhjf1p2a3RPiC2QR7RxKYLcOKS3fCh-Pd_VMrtZuG2WQRc9apSNK6VebnPb6mo5ZjfrsWDdlm0P3fOTdgvWaX6GLhDpuwZMot6DaTG1AdyNtwPhxPzBlSqAy632hc4okvuX1HemGLbFO0hRyrRfp57gUV6lV3mh14HFw9XF7jepYC1jSlFS6s4joh1EilLYlMXOg0l4QbwpjlSlrO07hg3FAtlCMJhRVcxYmOtWXMKMJ2oVO-lGYPUJ4z__OQaEV0rKRjOERLbSJKVFzkzPTgpIE0e11IZmStOLIHJ3PgZAGcjPWg36Ce1eEzyxhljogILqMenDYot8u_77b_N_MDWKPhQfmasT50quncHMKqfqvGs-lRcKsPlW7GyA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFL3oFPTF-YnTqXnwTQNp0qaNT4o4Js4iOmVvJU0TGLgq-xD89yZdS1X0QZ9zCeH0pve0OfcE4FhmgfbsRxq2uaSxL1OOnescttSWK8EFNV7RKNwL4zgaDMRd2RQ2qdTu1ZFk8ab-1OwWRE4wG2CXSBFmi7Dk24rlhHz3D0-11W5Y3E3mMRsdRkFYtsr8PMfXclRzzG_HokW16TT_t851WCvZJbqYp8MGLOh8E5rVzQ2o3MhbcB4PR_oMSZQXvt9omOORk9y-IzWPRaYSbSHLapF6njlDhXLUrmYbHjtX_csuLu9SwIqGdIozI7kKCNVCKkM87WcqTAXhmjBmuBSG89DPGNdURdKShMxEXPqB8pVhTEvCdqCRv-R6F1CaMvfzkChJlC-FZThECaU9SqSfpUy34KSCNHmdW2YktTmyAyex4CQFOAlrQbtCPSm3zyRhlFkiEnHhteC0Qrke_n22vb-FH8FKt3_bS3rX8c0-rNLioTn9WBsa0_FMH8CyepsOJ-PDIsU-APDcyaw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60inixPrFaNQdvGprd7GY3nhS1KJal4IPelmw2gYJdS7sV_Pcm-6BV9CCeM4QwmSFfkm--ATgVqa8cc0nDJpYU9kTCsFWdwwbaMskZd7VTFAr3gigKBwPeX6jiL9ju9ZdkWdNgVZqyvDNOdWeh8M0PLXnWxzaoQkyXYcWzTYPsff3xZS67GxR9yhxqrIPQD6qymZ_n-Ho0zfHmty_S4uTpNv-_5k3YqFAnuirDZAuWVLYNzbqjA6oSfAcuo-FIXSCBskIPHA0zPLJU3A8kS1ukazIXMmgXydeZFVqoRs3KduG5e_t0fYerHgtYuoGb41QLJn3iKi6kJo7yUhkknDBFKNVMcM1Y4KWUKVeGwoCHVIdMeL70pKZUCUL3oJG9ZWofUJJQ-6hIpCDSE9wgHyK5VI5LhJcmVLXgrHZvPC6lNOK5aLJ1TmycExfOiWkL2vUOxFVaTWPqUgNQQsadFpzXHp8P_z7bwd_MT2Ctf9ONe_fRwyGsu8WeWVpZGxr5ZKaOYFW-58Pp5LiItk_6ZNKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nime%3A+a+native+in-memory+compute+framework+for+cluster+computing&rft.jtitle=Cluster+computing&rft.au=Chen%2C+Chao&rft.au=Wang%2C+Zhenghua&rft.au=Jiang%2C+Chen&rft.au=Wang%2C+Zheng&rft.date=2025-09-01&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=28&rft.issue=7&rft_id=info:doi/10.1007%2Fs10586-025-05108-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10586_025_05108_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon