Nime: a native in-memory compute framework for cluster computing
Due to the increasing demand for cluster computing, various data analytics frameworks have been proposed and Apache Spark is a widely used open-source framework. It divides the program into various tasks and leverages executors on different machines for parallel task processing. However, executors r...
Saved in:
| Published in: | Cluster computing Vol. 28; no. 7; p. 434 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.09.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1386-7857, 1573-7543 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Due to the increasing demand for cluster computing, various data analytics frameworks have been proposed and Apache Spark is a widely used open-source framework. It divides the program into various tasks and leverages executors on different machines for parallel task processing. However, executors run on top of Java virtual machines (JVMs), which incurs a significant runtime overhead in terms of memory and compute resources and thus deteriorates the system’s performance. In this paper, we present NIME–a native in-memory compute framework for cluster computing–that aims to perform parallel task processing using native executors. The key idea is that NIME starts off with native manager and worker processes without JVMs. In addition, a dedicated scheduler combines data partitions for efficient processing without interruptions and a cached is leveraged for iterative computations. We evaluate the effectiveness of NIME on a compute cluster using the HiBench benchmark suite and compare the results with those from the Spark framework. Evaluation results indicate that compared to Spark, on average NIME achieves a 6.82
×
speedup, while simultaneously reducing the memory usage by 84.69%. In addition, the execution speedup and memory reduction can reach up to 12.36
×
and 93.97%, respectively. Together with an in-depth analysis, we show that by discarding the JVM, NIME significantly accelerates task executions and minimizes the compute and memory resource overheads. |
|---|---|
| AbstractList | Due to the increasing demand for cluster computing, various data analytics frameworks have been proposed and Apache Spark is a widely used open-source framework. It divides the program into various tasks and leverages executors on different machines for parallel task processing. However, executors run on top of Java virtual machines (JVMs), which incurs a significant runtime overhead in terms of memory and compute resources and thus deteriorates the system’s performance. In this paper, we present NIME–a native in-memory compute framework for cluster computing–that aims to perform parallel task processing using native executors. The key idea is that NIME starts off with native manager and worker processes without JVMs. In addition, a dedicated scheduler combines data partitions for efficient processing without interruptions and a cached is leveraged for iterative computations. We evaluate the effectiveness of NIME on a compute cluster using the HiBench benchmark suite and compare the results with those from the Spark framework. Evaluation results indicate that compared to Spark, on average NIME achieves a 6.82
×
speedup, while simultaneously reducing the memory usage by 84.69%. In addition, the execution speedup and memory reduction can reach up to 12.36
×
and 93.97%, respectively. Together with an in-depth analysis, we show that by discarding the JVM, NIME significantly accelerates task executions and minimizes the compute and memory resource overheads. Due to the increasing demand for cluster computing, various data analytics frameworks have been proposed and Apache Spark is a widely used open-source framework. It divides the program into various tasks and leverages executors on different machines for parallel task processing. However, executors run on top of Java virtual machines (JVMs), which incurs a significant runtime overhead in terms of memory and compute resources and thus deteriorates the system’s performance. In this paper, we present NIME–a native in-memory compute framework for cluster computing–that aims to perform parallel task processing using native executors. The key idea is that NIME starts off with native manager and worker processes without JVMs. In addition, a dedicated scheduler combines data partitions for efficient processing without interruptions and a cached is leveraged for iterative computations. We evaluate the effectiveness of NIME on a compute cluster using the HiBench benchmark suite and compare the results with those from the Spark framework. Evaluation results indicate that compared to Spark, on average NIME achieves a 6.82× speedup, while simultaneously reducing the memory usage by 84.69%. In addition, the execution speedup and memory reduction can reach up to 12.36× and 93.97%, respectively. Together with an in-depth analysis, we show that by discarding the JVM, NIME significantly accelerates task executions and minimizes the compute and memory resource overheads. |
| ArticleNumber | 434 |
| Author | Jiang, Chen Wang, Zheng Wang, Zhenghua Chen, Chao |
| Author_xml | – sequence: 1 givenname: Chao surname: Chen fullname: Chen, Chao organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences – sequence: 2 givenname: Zhenghua surname: Wang fullname: Wang, Zhenghua email: nopass@mail.ustc.edu.cn organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, School of Software Engineering, University of Science and Technology of China – sequence: 3 givenname: Chen surname: Jiang fullname: Jiang, Chen organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, School of Software Engineering, University of Science and Technology of China – sequence: 4 givenname: Zheng surname: Wang fullname: Wang, Zheng email: zheng.wang@siat.ac.cn organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences |
| BookMark | eNp9kE9LwzAYxoNMcJt-AU8Fz9E3SZO0npThVBh60XOI6ZvRuTYzaZV9e6sdePP0PvD8eeE3I5M2tEjIOYNLBqCvEgNZKApcUpAMCiqOyJRJLaiWuZgMWgy2LqQ-IbOUNgBQal5Oyc1T3eB1ZrPWdvUnZnVLG2xC3GcuNLu-w8xH2-BXiO-ZDzFz2z51GA9u3a5PybG324Rnhzsnr8u7l8UDXT3fPy5uV9RxzTtaeaucBI6ldR4Y5pXTbyUoBCG8sqVXSueVUMhdYVkJlS-UzaXLnRcCLYg5uRh3dzF89Jg6swl9bIeXRnAhGS9UyYYUH1MuhpQierOLdWPj3jAwP6TMSMoMpMwvKSOGkhhLaQi3a4x_0_-0vgEZWm2e |
| Cites_doi | 10.1145/1327452.1327492 10.1145/3492321.3527539 10.14778/1920841.1920881 10.1145/3127479.3134762 10.32604/iasc.2021.014216 10.1016/j.is.2020.101569 10.1007/s10586-023-04031-9 10.1145/3341302.3342080 10.1109/TCC.2020.2983402 10.1007/s10586-024-04478-4 10.1007/s10586-022-03568-5 10.1145/2806887 10.1109/2.84877 10.1145/2523616.2523633 10.1109/IPDPS53621.2022.00015 10.1145/1851476.1851593 10.1145/3538712.3538739 10.1145/1809028.1806638 10.1109/TII.2019.2930226 10.1007/s10462-019-09685-9 10.1145/1272998.1273005 10.1016/j.knosys.2020.106598 10.1109/TC.2022.3223302 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10586-025-05108-3 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7543 |
| ExternalDocumentID | 10_1007_s10586_025_05108_3 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62372442 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Shenzhen Science and Technology Innovation Program grantid: JCYJ20220818101607015; JCYJ20220818101607015; JCYJ20220818101607015 funderid: http://dx.doi.org/10.13039/501100017610 – fundername: Basic and Applied Basic Research Foundation of Guangdong Province grantid: 2023A1515012842 funderid: http://dx.doi.org/10.13039/501100021171 – fundername: Institute of Computing Technology grantid: CLQ202308 |
| GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 1N0 203 29B 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFDZB AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P9O PF0 PT4 PT5 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 -Y2 1SB 2P1 2VQ AAIAL AARHV AAYTO AAYXX ABQSL ABULA ACBXY ADHKG AEBTG AEKMD AFFHD AFGCZ AFKRA AGGDS AGQPQ AHSBF AJBLW ARAPS BDATZ BENPR BGLVJ CAG CCPQU CITATION COF EJD FINBP FSGXE H13 HCIFZ HZ~ IHE K7- N2Q O9- OVD PHGZM PHGZT PQGLB RNI RZC RZE RZK TEORI JQ2 |
| ID | FETCH-LOGICAL-c272t-dfa6c502e9acf01e4dc7b906e033f6a9f6674d36e2c8a190df86a45c4cf33ea03 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001542458700026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1386-7857 |
| IngestDate | Wed Nov 26 14:42:03 EST 2025 Sat Nov 29 07:31:34 EST 2025 Wed Sep 10 01:44:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | In-memory computing Spark Distributed computing Cluster computing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-dfa6c502e9acf01e4dc7b906e033f6a9f6674d36e2c8a190df86a45c4cf33ea03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3235128691 |
| PQPubID | 2043865 |
| ParticipantIDs | proquest_journals_3235128691 crossref_primary_10_1007_s10586_025_05108_3 springer_journals_10_1007_s10586_025_05108_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | The Journal of Networks, Software Tools and Applications |
| PublicationTitle | Cluster computing |
| PublicationTitleAbbrev | Cluster Comput |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | X Meng (5108_CR26) 2016; 17 M Javed Awan (5108_CR8) 2021; 27 J Zhou (5108_CR21) 2023; 72 5108_CR18 5108_CR17 5108_CR39 J Ousterhout (5108_CR34) 2015 5108_CR19 J Dean (5108_CR1) 2008; 51 A Mohamed (5108_CR12) 2020; 53 S Oaks (5108_CR25) 2020 5108_CR3 5108_CR32 5108_CR2 5108_CR31 5108_CR5 5108_CR4 Y Bu (5108_CR36) 2010; 3 5108_CR6 5108_CR35 5108_CR16 5108_CR38 5108_CR15 5108_CR37 J Zhao (5108_CR22) 2024; 27 5108_CR30 R Dautov (5108_CR13) 2022; 10 5108_CR28 C Chambers (5108_CR29) 2010; 45 Y Xu (5108_CR9) 2020; 37 T Toliopoulos (5108_CR10) 2020; 93 B Nitzberg (5108_CR33) 1991; 24 5108_CR20 5108_CR42 5108_CR23 AC Ikegwu (5108_CR14) 2022; 25 5108_CR24 M Isard (5108_CR27) 2007; 41 D Jiang (5108_CR11) 2020; 16 WC Sleeman IV (5108_CR7) 2021; 212 5108_CR41 5108_CR40 |
| References_xml | – volume-title: Java Performance: In-depth Advice for Tuning and Programming Java 8, 11, and Beyond year: 2020 ident: 5108_CR25 – volume: 51 start-page: 107 issue: 1 year: 2008 ident: 5108_CR1 publication-title: Commun. ACM doi: 10.1145/1327452.1327492 – ident: 5108_CR4 – ident: 5108_CR6 – ident: 5108_CR40 doi: 10.1145/3492321.3527539 – ident: 5108_CR23 – ident: 5108_CR2 – volume: 3 start-page: 285 issue: 1–2 year: 2010 ident: 5108_CR36 publication-title: Proc. VLDB Endow. doi: 10.14778/1920841.1920881 – ident: 5108_CR41 doi: 10.1145/3127479.3134762 – volume: 27 start-page: 785 year: 2021 ident: 5108_CR8 publication-title: Intell. Autom. Soft Comput. doi: 10.32604/iasc.2021.014216 – volume: 93 start-page: 101569 year: 2020 ident: 5108_CR10 publication-title: Inform. Syst. doi: 10.1016/j.is.2020.101569 – volume: 17 start-page: 1 issue: 34 year: 2016 ident: 5108_CR26 publication-title: J. Mach. Learn. Res. – ident: 5108_CR31 – volume: 27 start-page: 1527 issue: 2 year: 2024 ident: 5108_CR22 publication-title: Cluster Comput. doi: 10.1007/s10586-023-04031-9 – ident: 5108_CR32 doi: 10.1145/3341302.3342080 – volume: 10 start-page: 885 issue: 2 year: 2022 ident: 5108_CR13 publication-title: IEEE Trans. Cloud Comput. doi: 10.1109/TCC.2020.2983402 – ident: 5108_CR16 – ident: 5108_CR42 doi: 10.1007/s10586-024-04478-4 – volume: 25 start-page: 3343 issue: 5 year: 2022 ident: 5108_CR14 publication-title: Cluster Comput. doi: 10.1007/s10586-022-03568-5 – year: 2015 ident: 5108_CR34 publication-title: ACM Trans. Comput. Syst. doi: 10.1145/2806887 – volume: 24 start-page: 52 issue: 8 year: 1991 ident: 5108_CR33 publication-title: Computer doi: 10.1109/2.84877 – ident: 5108_CR20 – ident: 5108_CR18 doi: 10.1145/2523616.2523633 – ident: 5108_CR19 doi: 10.1109/IPDPS53621.2022.00015 – ident: 5108_CR35 doi: 10.1145/1851476.1851593 – ident: 5108_CR5 – ident: 5108_CR3 – ident: 5108_CR28 – ident: 5108_CR37 doi: 10.1145/3538712.3538739 – ident: 5108_CR39 doi: 10.1145/3538712.3538739 – ident: 5108_CR24 – ident: 5108_CR38 doi: 10.1145/3538712.3538739 – volume: 45 start-page: 363 issue: 6 year: 2010 ident: 5108_CR29 publication-title: SIGPLAN Not. doi: 10.1145/1809028.1806638 – volume: 16 start-page: 1310 year: 2020 ident: 5108_CR11 publication-title: IEEE Trans. Indust. Inform. doi: 10.1109/TII.2019.2930226 – volume: 53 start-page: 989 year: 2020 ident: 5108_CR12 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-019-09685-9 – volume: 41 start-page: 59 issue: 3 year: 2007 ident: 5108_CR27 publication-title: SIGOPS Oper. Syst. Rev. doi: 10.1145/1272998.1273005 – volume: 37 start-page: 100582 year: 2020 ident: 5108_CR9 publication-title: Sustain. Energy Technol. Assess. – ident: 5108_CR30 – volume: 212 start-page: 106598 year: 2021 ident: 5108_CR7 publication-title: Knowl.Based Syst. doi: 10.1016/j.knosys.2020.106598 – ident: 5108_CR15 – ident: 5108_CR17 – volume: 72 start-page: 1747 issue: 6 year: 2023 ident: 5108_CR21 publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2022.3223302 |
| SSID | ssj0009729 |
| Score | 2.3605177 |
| Snippet | Due to the increasing demand for cluster computing, various data analytics frameworks have been proposed and Apache Spark is a widely used open-source... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 434 |
| SubjectTerms | Benchmarks Breakdowns Clusters Compilers Computation Computer Communication Networks Computer Science Data processing Datasets Executors Java Machine learning Operating Systems Performance evaluation Processor Architectures Sanitation services Virtual environments |
| Title | Nime: a native in-memory compute framework for cluster computing |
| URI | https://link.springer.com/article/10.1007/s10586-025-05108-3 https://www.proquest.com/docview/3235128691 |
| Volume | 28 |
| WOSCitedRecordID | wos001542458700026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: RSV dateStart: 19980101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEB109eDF9RNXV8nBmwbSpE0TT4q4eJBF_GJvJU0TWHCr7HYF_71JtqUqetBzhhBeZzqvzcwbgGNVJCZyH2nY-ZLBsco59qpz2FFbriWX1EahUfgmHQ7FaCRv66awWVPt3lxJhjf1p2a3RPiC2QR7RxKYLcOKS3fCh-Pd_VMrtZuG2WQRc9apSNK6VebnPb6mo5ZjfrsWDdlm0P3fOTdgvWaX6GLhDpuwZMot6DaTG1AdyNtwPhxPzBlSqAy632hc4okvuX1HemGLbFO0hRyrRfp57gUV6lV3mh14HFw9XF7jepYC1jSlFS6s4joh1EilLYlMXOg0l4QbwpjlSlrO07hg3FAtlCMJhRVcxYmOtWXMKMJ2oVO-lGYPUJ4z__OQaEV0rKRjOERLbSJKVFzkzPTgpIE0e11IZmStOLIHJ3PgZAGcjPWg36Ce1eEzyxhljogILqMenDYot8u_77b_N_MDWKPhQfmasT50quncHMKqfqvGs-lRcKsPlW7GyA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFL3oFPTF-YnTqXnwTQNp0qaNT4o4Js4iOmVvJU0TGLgq-xD89yZdS1X0QZ9zCeH0pve0OfcE4FhmgfbsRxq2uaSxL1OOnescttSWK8EFNV7RKNwL4zgaDMRd2RQ2qdTu1ZFk8ab-1OwWRE4wG2CXSBFmi7Dk24rlhHz3D0-11W5Y3E3mMRsdRkFYtsr8PMfXclRzzG_HokW16TT_t851WCvZJbqYp8MGLOh8E5rVzQ2o3MhbcB4PR_oMSZQXvt9omOORk9y-IzWPRaYSbSHLapF6njlDhXLUrmYbHjtX_csuLu9SwIqGdIozI7kKCNVCKkM87WcqTAXhmjBmuBSG89DPGNdURdKShMxEXPqB8pVhTEvCdqCRv-R6F1CaMvfzkChJlC-FZThECaU9SqSfpUy34KSCNHmdW2YktTmyAyex4CQFOAlrQbtCPSm3zyRhlFkiEnHhteC0Qrke_n22vb-FH8FKt3_bS3rX8c0-rNLioTn9WBsa0_FMH8CyepsOJ-PDIsU-APDcyaw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60inixPrFaNQdvGprd7GY3nhS1KJal4IPelmw2gYJdS7sV_Pcm-6BV9CCeM4QwmSFfkm--ATgVqa8cc0nDJpYU9kTCsFWdwwbaMskZd7VTFAr3gigKBwPeX6jiL9ju9ZdkWdNgVZqyvDNOdWeh8M0PLXnWxzaoQkyXYcWzTYPsff3xZS67GxR9yhxqrIPQD6qymZ_n-Ho0zfHmty_S4uTpNv-_5k3YqFAnuirDZAuWVLYNzbqjA6oSfAcuo-FIXSCBskIPHA0zPLJU3A8kS1ukazIXMmgXydeZFVqoRs3KduG5e_t0fYerHgtYuoGb41QLJn3iKi6kJo7yUhkknDBFKNVMcM1Y4KWUKVeGwoCHVIdMeL70pKZUCUL3oJG9ZWofUJJQ-6hIpCDSE9wgHyK5VI5LhJcmVLXgrHZvPC6lNOK5aLJ1TmycExfOiWkL2vUOxFVaTWPqUgNQQsadFpzXHp8P_z7bwd_MT2Ctf9ONe_fRwyGsu8WeWVpZGxr5ZKaOYFW-58Pp5LiItk_6ZNKQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nime%3A+a+native+in-memory+compute+framework+for+cluster+computing&rft.jtitle=Cluster+computing&rft.au=Chen%2C+Chao&rft.au=Wang%2C+Zhenghua&rft.au=Jiang%2C+Chen&rft.au=Wang%2C+Zheng&rft.date=2025-09-01&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=28&rft.issue=7&rft_id=info:doi/10.1007%2Fs10586-025-05108-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10586_025_05108_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon |