HSBNN: A High-Scalable Bayesian Neural Networks Accelerator Based on Field Programmable Gate Arrays (FPGA)

Traditional artificial neural networks have inherent overfitting problems and tend to produce overly confident predictions due to their reliance on point estimation methods. In contrast, Bayesian theory offers a probabilistic framework that replaces point estimation with probability distributions, e...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Cognitive computation Ročník 17; číslo 3; s. 100
Hlavní autori: Liu, Yinghao, Zhang, Hao, Sun, Zhe, Duan, Feng, Ma, Yuan, Lu, Wenyi, Caiafa, Cesar F., Solé-Casals, Jordi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.06.2025
Springer Nature B.V
Predmet:
ISSN:1866-9956, 1866-9964
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Traditional artificial neural networks have inherent overfitting problems and tend to produce overly confident predictions due to their reliance on point estimation methods. In contrast, Bayesian theory offers a probabilistic framework that replaces point estimation with probability distributions, effectively addressing issues of overconfidence. The brain is also believed working under the Bayesian rules, the neural networks of which evaluate the precision of prior knowledge and incoming evidence, achieving the balance of weight updating to the most reliable information sources [ 1 ]. By integrating Bayesian principles with artificial neural networks, the bio-inspired Bayesian Neural Networks (BNNs) can generate predictions accompanied by confidence evaluations, enhancing their practical applicability. To further improve the computational efficiency of BNNs and enable scalable deployment on edge devices, we propose a High-Scalable Bayesian Neural Network (HSBNN) accelerator based on field-programmable gate arrays (FPGAs) with multiple optimizations. A resource-saving Gaussian random number generator (RS-GRNG) optimized for FPGAs shows high efficiency, which seamlessly extends to support parallel sampling of weight distributions, enabling reliable confidence probability evaluations. Furthermore, the parameterization of BNN architectures with configuration files and employment of a layer-by-layer computing mode ensure that different BNNs can be accelerated without reprogramming the FPGA, offering excellent scalability. The entire system, implemented with the OpenCL heterogeneous computing library, leverages parallel processing units and pipeline channels to achieve high acceleration performance and efficient data transfer. The experiment results demonstrate that the system achieves a data processing throughput of 1.002 milliseconds per image, exceeding CPU performance by 1000-fold and GPU performance by nearly 500-fold.
AbstractList Traditional artificial neural networks have inherent overfitting problems and tend to produce overly confident predictions due to their reliance on point estimation methods. In contrast, Bayesian theory offers a probabilistic framework that replaces point estimation with probability distributions, effectively addressing issues of overconfidence. The brain is also believed working under the Bayesian rules, the neural networks of which evaluate the precision of prior knowledge and incoming evidence, achieving the balance of weight updating to the most reliable information sources [1]. By integrating Bayesian principles with artificial neural networks, the bio-inspired Bayesian Neural Networks (BNNs) can generate predictions accompanied by confidence evaluations, enhancing their practical applicability. To further improve the computational efficiency of BNNs and enable scalable deployment on edge devices, we propose a High-Scalable Bayesian Neural Network (HSBNN) accelerator based on field-programmable gate arrays (FPGAs) with multiple optimizations. A resource-saving Gaussian random number generator (RS-GRNG) optimized for FPGAs shows high efficiency, which seamlessly extends to support parallel sampling of weight distributions, enabling reliable confidence probability evaluations. Furthermore, the parameterization of BNN architectures with configuration files and employment of a layer-by-layer computing mode ensure that different BNNs can be accelerated without reprogramming the FPGA, offering excellent scalability. The entire system, implemented with the OpenCL heterogeneous computing library, leverages parallel processing units and pipeline channels to achieve high acceleration performance and efficient data transfer. The experiment results demonstrate that the system achieves a data processing throughput of 1.002 milliseconds per image, exceeding CPU performance by 1000-fold and GPU performance by nearly 500-fold.
Traditional artificial neural networks have inherent overfitting problems and tend to produce overly confident predictions due to their reliance on point estimation methods. In contrast, Bayesian theory offers a probabilistic framework that replaces point estimation with probability distributions, effectively addressing issues of overconfidence. The brain is also believed working under the Bayesian rules, the neural networks of which evaluate the precision of prior knowledge and incoming evidence, achieving the balance of weight updating to the most reliable information sources [ 1 ]. By integrating Bayesian principles with artificial neural networks, the bio-inspired Bayesian Neural Networks (BNNs) can generate predictions accompanied by confidence evaluations, enhancing their practical applicability. To further improve the computational efficiency of BNNs and enable scalable deployment on edge devices, we propose a High-Scalable Bayesian Neural Network (HSBNN) accelerator based on field-programmable gate arrays (FPGAs) with multiple optimizations. A resource-saving Gaussian random number generator (RS-GRNG) optimized for FPGAs shows high efficiency, which seamlessly extends to support parallel sampling of weight distributions, enabling reliable confidence probability evaluations. Furthermore, the parameterization of BNN architectures with configuration files and employment of a layer-by-layer computing mode ensure that different BNNs can be accelerated without reprogramming the FPGA, offering excellent scalability. The entire system, implemented with the OpenCL heterogeneous computing library, leverages parallel processing units and pipeline channels to achieve high acceleration performance and efficient data transfer. The experiment results demonstrate that the system achieves a data processing throughput of 1.002 milliseconds per image, exceeding CPU performance by 1000-fold and GPU performance by nearly 500-fold.
ArticleNumber 100
Author Lu, Wenyi
Solé-Casals, Jordi
Liu, Yinghao
Ma, Yuan
Zhang, Hao
Duan, Feng
Sun, Zhe
Caiafa, Cesar F.
Author_xml – sequence: 1
  givenname: Yinghao
  surname: Liu
  fullname: Liu, Yinghao
  organization: Graduate School of Arts and Sciences, The University of Tokyo
– sequence: 2
  givenname: Hao
  surname: Zhang
  fullname: Zhang, Hao
  email: zhangh@szlab.ac.cn
  organization: Gusu Laboratory of Materials
– sequence: 3
  givenname: Zhe
  orcidid: 0000-0002-6531-0769
  surname: Sun
  fullname: Sun, Zhe
  email: z.sun.kc@juntendo.ac.jp
  organization: Faculty of Health Data Science, Juntendo University
– sequence: 4
  givenname: Feng
  surname: Duan
  fullname: Duan, Feng
  email: duanf@nankai.edu.cn
  organization: College of Artificial Intelligence, Nankai University
– sequence: 5
  givenname: Yuan
  surname: Ma
  fullname: Ma, Yuan
  organization: Institute of Information Engineering, Chinese Academy of Sciences
– sequence: 6
  givenname: Wenyi
  surname: Lu
  fullname: Lu, Wenyi
  organization: College of Artificial Intelligence, Nankai University
– sequence: 7
  givenname: Cesar F.
  surname: Caiafa
  fullname: Caiafa, Cesar F.
  organization: Instituto Argentino de Radioastronomía, CONICET CCT La Plata/CIC-PBA/UNLP
– sequence: 8
  givenname: Jordi
  surname: Solé-Casals
  fullname: Solé-Casals, Jordi
  organization: Data and Signal Processing Research Group, University of Vic - Central University of Catalonia
BookMark eNp9kEFPwjAYhhujiYD-AU9NvOih2nbrunobRMCEIAncm677huBYsR0x_HsnM3rz9H6H532_5Omj89rVgNANow-MUvkYGBdCEcoFYTQWgqgz1GNpkhClkvj89xbJJeqHsKU0EUrwHtpOl8P5_AlneLpZv5GlNZXJK8BDc4SwMTWew8Gbqo3m0_n3gDNroQJvGudbKECBXY3HG6gKvPBu7c1udxqYmAZw5r05Bnw3Xkyy-yt0UZoqwPVPDtBq_LwaTcnsdfIyymbEcskbUuRxATmLWJJyq5gEw3gprAAFJmW5LGJuDShWWikVFClVcVJCZCGNZcGKaIBuu9m9dx8HCI3euoOv24864jSmsRSKtRTvKOtdCB5KvfebnfFHzaj-Vqo7pbpVqk9KtWpLUVcKLVyvwf9N_9P6Agf6eic
Cites_doi 10.1007/s11042-024-19953-8
10.1016/j.neucom.2024.128511
10.1016/j.csda.2019.106816
10.1080/01621459.2017.1285773
10.1109/MCSE.2010.69
10.1214/aoms/1177706645
10.1016/j.aei.2025.103132
10.1109/FPT.2017.8280160
10.1007/s10489-024-05898-w
10.1145/3529538.3529980
10.1109/JIOT.2024.3525020
10.3390/electronics13061074
10.1016/j.egyr.2025.01.039
10.1007/s12559-023-10242-4
10.1109/ICFPT52863.2021.9609847
10.1137/1036146
10.1109/TIE.2024.3370939
10.1007/s12559-023-10196-7
10.3389/fnins.2023.1291051
10.1145/3615661
10.1007/s12559-023-10187-8
10.3390/app15020688
10.1049/el.2015.3418
10.1145/1465482.1465560
10.1145/3296957.3173212
10.1007/s11265-021-01686-8
10.1007/s13389-024-00361-5
10.1016/j.future.2023.10.012
10.1093/biomet/52.3-4.591
10.1007/s10559-024-00655-w
10.1371/journal.pcbi.1011897
10.1145/42411.42415
10.1109/DAC18074.2021.9586137
10.1190/segam2020-3427239.1
10.1016/j.cub.2021.07.044
10.1109/TVT.2024.3397716
10.4064/cm-35-1-147-158
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jun 2025
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s12559-025-10455-9
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Computer Science
EISSN 1866-9964
ExternalDocumentID 10_1007_s12559_025_10455_9
GroupedDBID 06C
06D
0R~
0VY
1N0
203
29F
29~
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
67N
67Z
6NX
875
8TC
96X
AAAVM
AACDK
AAFWJ
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMQK
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKMHD
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ATHPR
AUKKA
AXYYD
AYFIA
BA0
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
KPH
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
PHGZM
PHGZT
PT4
QOR
QOS
R89
RLLFE
ROL
RSV
S1Z
S27
S3A
S3B
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
T13
TSG
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
ZMTXR
ZOVNA
~A9
AAYXX
ABRTQ
AFFHD
CITATION
PQGLB
JQ2
ID FETCH-LOGICAL-c272t-db4deb131682c917ea12f5c5e9ea81b7d42cae91fc779ed80946fe3ce847d1d3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001494141700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1866-9956
IngestDate Wed Nov 26 13:51:08 EST 2025
Sat Nov 29 07:50:05 EST 2025
Thu Jun 26 01:51:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Edge Computing
Bio-inspired Neural Networks
FPGA
Bayesian Neural Networks
Hardware Accelerator
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-db4deb131682c917ea12f5c5e9ea81b7d42cae91fc779ed80946fe3ce847d1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6531-0769
PQID 3204047591
PQPubID 6623279
ParticipantIDs proquest_journals_3204047591
crossref_primary_10_1007_s12559_025_10455_9
springer_journals_10_1007_s12559_025_10455_9
PublicationCentury 2000
PublicationDate 20250600
2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 6
  year: 2025
  text: 20250600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Cognitive computation
PublicationTitleAbbrev Cogn Comput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References M Tasci (10455_CR13) 2025; 15
R Cai (10455_CR24) 2018; 53
10455_CR21
10455_CR22
Z Wang (10455_CR49) 2025; 65
X Wu (10455_CR25) 2024; 16
V Opanasenko (10455_CR2) 2024; 60
S López-Asunción (10455_CR18) 2024; 13
10455_CR30
10455_CR5
10455_CR31
Y Wan (10455_CR19) 2025; 55
10455_CR4
10455_CR3
D Yon (10455_CR1) 2021; 31
10455_CR39
10455_CR36
10455_CR37
10455_CR34
10455_CR33
JE Stone (10455_CR35) 2010; 12
R D’Agostino (10455_CR43) 1973; 60
10455_CR29
Z Wang (10455_CR10) 2024; 152
H Gou (10455_CR8) 2024; 16
JE Angus (10455_CR38) 1994; 36
10455_CR41
L Bai (10455_CR20) 2018; 65
J Grabinski (10455_CR27) 2022; 35
M Asiatici (10455_CR17) 2021; 93
10455_CR47
10455_CR48
10455_CR45
10455_CR46
10455_CR44
MH Alsharif (10455_CR11) 2025; 13
J Chen (10455_CR6) 2024; 16
K Ichikawa (10455_CR7) 2024; 20
10455_CR9
Z Liu (10455_CR15) 2024; 17
C Condo (10455_CR40) 2015; 51
SS Shapiro (10455_CR42) 1965; 52
10455_CR16
DM Blei (10455_CR32) 2017; 112
10455_CR14
A Rezaeezade (10455_CR26) 2024; 14
10455_CR12
H Li (10455_CR23) 2024; 17
A Le Coz (10455_CR28) 2024; 37
References_xml – ident: 10455_CR3
  doi: 10.1007/s11042-024-19953-8
– ident: 10455_CR16
  doi: 10.1016/j.neucom.2024.128511
– ident: 10455_CR34
  doi: 10.1016/j.csda.2019.106816
– volume: 65
  start-page: 1415
  issue: 10
  year: 2018
  ident: 10455_CR20
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs.
– volume: 37
  start-page: 77686
  year: 2024
  ident: 10455_CR28
  publication-title: Adv Neural Inf Process Syst.
– volume: 112
  start-page: 859
  issue: 518
  year: 2017
  ident: 10455_CR32
  publication-title: J Am Stat Assoc.
  doi: 10.1080/01621459.2017.1285773
– volume: 12
  start-page: 66
  issue: 3
  year: 2010
  ident: 10455_CR35
  publication-title: Comput Sci & Eng.
  doi: 10.1109/MCSE.2010.69
– ident: 10455_CR39
  doi: 10.1214/aoms/1177706645
– ident: 10455_CR41
– volume: 65
  year: 2025
  ident: 10455_CR49
  publication-title: Adv Eng Inf.
  doi: 10.1016/j.aei.2025.103132
– ident: 10455_CR14
  doi: 10.1109/FPT.2017.8280160
– volume: 55
  start-page: 1
  issue: 1
  year: 2025
  ident: 10455_CR19
  publication-title: Appl Intell.
  doi: 10.1007/s10489-024-05898-w
– ident: 10455_CR36
  doi: 10.1145/3529538.3529980
– ident: 10455_CR45
– ident: 10455_CR9
  doi: 10.1109/JIOT.2024.3525020
– volume: 13
  start-page: 1074
  issue: 6
  year: 2024
  ident: 10455_CR18
  publication-title: Electronics.
  doi: 10.3390/electronics13061074
– ident: 10455_CR4
– volume: 13
  start-page: 1739
  year: 2025
  ident: 10455_CR11
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2025.01.039
– volume: 16
  start-page: 2471
  issue: 5
  year: 2024
  ident: 10455_CR8
  publication-title: Cogn Comput.
  doi: 10.1007/s12559-023-10242-4
– ident: 10455_CR22
  doi: 10.1109/ICFPT52863.2021.9609847
– volume: 35
  start-page: 39059
  year: 2022
  ident: 10455_CR27
  publication-title: Adv Neural Inf Process Syst
– ident: 10455_CR33
– volume: 36
  start-page: 652
  issue: 4
  year: 1994
  ident: 10455_CR38
  publication-title: SIAM Rev.
  doi: 10.1137/1036146
– ident: 10455_CR12
– ident: 10455_CR48
  doi: 10.1109/TIE.2024.3370939
– ident: 10455_CR44
– volume: 16
  start-page: 121
  issue: 1
  year: 2024
  ident: 10455_CR6
  publication-title: Cogn Comput.
  doi: 10.1007/s12559-023-10196-7
– volume: 17
  start-page: 1291051
  year: 2024
  ident: 10455_CR23
  publication-title: Front Neurosci.
  doi: 10.3389/fnins.2023.1291051
– volume: 17
  start-page: 1
  issue: 1
  year: 2024
  ident: 10455_CR15
  publication-title: ACM Trans Reconfigurable Technol Syst.
  doi: 10.1145/3615661
– volume: 16
  start-page: 177
  issue: 1
  year: 2024
  ident: 10455_CR25
  publication-title: Cogn Comput.
  doi: 10.1007/s12559-023-10187-8
– volume: 15
  start-page: 688
  issue: 2
  year: 2025
  ident: 10455_CR13
  publication-title: Appl Sci.
  doi: 10.3390/app15020688
– volume: 51
  start-page: 2098
  issue: 25
  year: 2015
  ident: 10455_CR40
  publication-title: Electron Lett.
  doi: 10.1049/el.2015.3418
– ident: 10455_CR46
  doi: 10.1145/1465482.1465560
– volume: 53
  start-page: 476
  year: 2018
  ident: 10455_CR24
  publication-title: SIGPLAN Not.
  doi: 10.1145/3296957.3173212
– volume: 93
  start-page: 1405
  year: 2021
  ident: 10455_CR17
  publication-title: J Signal Process Syst
  doi: 10.1007/s11265-021-01686-8
– volume: 14
  start-page: 609
  issue: 4
  year: 2024
  ident: 10455_CR26
  publication-title: J Cryptographic Eng.
  doi: 10.1007/s13389-024-00361-5
– volume: 152
  start-page: 55
  year: 2024
  ident: 10455_CR10
  publication-title: Future Gen Comput Syst
  doi: 10.1016/j.future.2023.10.012
– volume: 52
  start-page: 591
  year: 1965
  ident: 10455_CR42
  publication-title: Biometrika
  doi: 10.1093/biomet/52.3-4.591
– volume: 60
  start-page: 146
  issue: 1
  year: 2024
  ident: 10455_CR2
  publication-title: Cybern Syst Anal.
  doi: 10.1007/s10559-024-00655-w
– volume: 20
  issue: 3
  year: 2024
  ident: 10455_CR7
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1011897
– volume: 60
  start-page: 613
  year: 1973
  ident: 10455_CR43
  publication-title: Biometrika
– ident: 10455_CR29
– ident: 10455_CR47
  doi: 10.1145/42411.42415
– ident: 10455_CR21
  doi: 10.1109/DAC18074.2021.9586137
– ident: 10455_CR30
  doi: 10.1190/segam2020-3427239.1
– volume: 31
  start-page: R1026
  issue: 17
  year: 2021
  ident: 10455_CR1
  publication-title: Curr Biol.
  doi: 10.1016/j.cub.2021.07.044
– ident: 10455_CR31
– ident: 10455_CR5
  doi: 10.1109/TVT.2024.3397716
– ident: 10455_CR37
  doi: 10.4064/cm-35-1-147-158
SSID ssj0065952
Score 2.343959
Snippet Traditional artificial neural networks have inherent overfitting problems and tend to produce overly confident predictions due to their reliance on point...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 100
SubjectTerms Artificial Intelligence
Artificial neural networks
Bayesian analysis
Classification
Computation
Computation by Abstract Devices
Computational Biology/Bioinformatics
Computer Science
Data processing
Data transfer (computers)
Edge computing
Efficiency
Field programmable gate arrays
High acceleration
Information sources
Neural networks
Normal distribution
Optimization techniques
Parallel processing
Parameterization
Pipelining (computers)
Probability distribution
Random numbers
Statistical analysis
Title HSBNN: A High-Scalable Bayesian Neural Networks Accelerator Based on Field Programmable Gate Arrays (FPGA)
URI https://link.springer.com/article/10.1007/s12559-025-10455-9
https://www.proquest.com/docview/3204047591
Volume 17
WOSCitedRecordID wos001494141700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1866-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065952
  issn: 1866-9956
  databaseCode: RSV
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9ODF6VScTsnBg6KBNWubxlsnzh2kDDdkt5IlKSi4yTqF_fe-ZK1F0YOeEx7hveT33sv7AjhDGzgKhRJUtqWkvgzaNMKLQ43yMx5Kybh2U0vueZJE47EYFEVheZntXoYkHVJXxW7W-qV2_Cq6EEFAxTpsoLqL7MCGh-Fjib-2QZ6LcUZhSG3dZlEq8zONr-qosjG_hUWdtunV_3fOHdgurEsSr67DLqyZaQPq5eQGUjzkBmx94t5yD577w26SXJOY2KQPOkSp2Xoq0pVLY0ssiW3ggVSTVcZ4TmKlUFm5-Dxuyo0msynp2VQ4Mlile704AvZnDs8yl8ucnPcGd_HFPox6t6ObPi1GMFDFOFtQPfE1ormdbsUUenZGeiwLVGCEkWjwcu0zJY3wMsW5MDpCZzHMTEcZVHra050DqE1nU3MIRIYBriuuEUR8r60mHeYZNmGZ0G0d-aYJl6Ug0tdVo420aqlsWZoiS1PH0lQ0oVXKKi0eXZ52GCKS7V_oNeGqlE21_Du1o79tP4YtZsXr_mJaUFvM38wJbKr3xVM-P3WX8QPurtep
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CvZitSpWq-bgQdHAbrqveKtirViXYov0tqRJFhRspVuF_nsn6a5F0YOeE4Ywk8wjM_MNwDH6wFHAJafCEYJ6wndohBeHaumlYSAEC5WdWtIJ4zgaDHg3bwrLimr3IiVpNfWi2c14v9SMX8UQwvcpX4YVDy2WQcx_6D0W-tcA5NkcZxQE1PRt5q0yP9P4ao4WPua3tKi1Nq3K_865Aeu5d0ma8-uwCUt6VIVKMbmB5A-5CuVPvTfbgud27zKOL0iTmKIP2kOpmX4qcilm2rRYEgPggVTjecV4RppSorGy-XnclGlFxiPSMqVwpDsv93qxBMzPHJ5lImYZOWl1b5qn29BvXfev2jQfwUAlC9mUqqGnUJub6VZMYmSnhctSX_qaa4EOb6g8JoXmbirDkGsVYbAYpLohNRo95arGDpRG45HeBSICH9dlqFCJeK4jhw3majZkKVeOijxdg7NCEMnrHGgjWUAqG5YmyNLEsjThNagXskryR5clDYYayeAXujU4L2SzWP6d2t7fth_BWrt_30k6t_HdPpSZEbX9l6lDaTp50wewKt-nT9nk0F7MDxOm2o0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BqKpcGghFDQ3gAwcqsJp19mVuCbAEEa0iJapyWzm2VwKJTZRNkfLvO-PdbSiih4qzrZE1Y8_DM98MwFv0geNQasnVQCnuq2DAY7w43Go_j0KlRGTc1JJplKbxcilnf6D4XbV7k5KsMA3UpanYXW5MfnkAvpEnzGkUK4YTQcDlY3jiUyE9xevzq0YXU7M8l--Mw5AThrOGzfybxl3TdPA3_0qROsuTdP7_zE_hpPY62ai6Js_gkS260GkmOrD6gXehfasP98_h52Q-TtOPbMSoGITPUZqEs2JjtbcEvWTU2AOpplUleclGWqMRc3l73FRaw9YFS6hEjs2qMrBfjgD92OFZtmpfsnfJ7Ovo4hQWyZfFpwmvRzNwLSKx42blG9TyNPVKaIz4rPJEHujASqvQEY6ML7Sy0st1FElrYgwiw9wOtUVjaDwzfAGtYl3YM2AqDHBdRwaVC0pQr4bCs2IlcmkGJvZtD943Qsk2VQOO7NBqmViaIUszx9JM9qDfyC2rH2OZDQVqKupr6PXgQyOnw_L91F4-bPsbOJ59TrLpt_T7ObQFSdp91_Shtdte21dwpH_vfpTb1-6O3gAASONx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HSBNN%3A+A+High-Scalable+Bayesian+Neural+Networks+Accelerator+Based+on+Field+Programmable+Gate+Arrays+%28FPGA%29&rft.jtitle=Cognitive+computation&rft.au=Liu%2C+Yinghao&rft.au=Zhang%2C+Hao&rft.au=Sun%2C+Zhe&rft.au=Duan%2C+Feng&rft.date=2025-06-01&rft.issn=1866-9956&rft.eissn=1866-9964&rft.volume=17&rft.issue=3&rft_id=info:doi/10.1007%2Fs12559-025-10455-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12559_025_10455_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-9956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-9956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-9956&client=summon