Semi and Fully Discrete Analysis of Extended Fisher–Kolmogorov Equation with Nonstandard FEMs for Space Discretisation
This article discusses lowest-order nonstandard finite element methods for space discretisation and backward Euler scheme for time discretisation of the extended Fisher–Kolmogorov equation with clamped boundary conditions. Spatial discretisation employs popular piecewise quadratic schemes based on t...
Uloženo v:
| Vydáno v: | Journal of scientific computing Ročník 104; číslo 1; s. 14 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.07.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0885-7474, 1573-7691 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This article discusses lowest-order nonstandard finite element methods for space discretisation and backward Euler scheme for time discretisation of the extended Fisher–Kolmogorov equation with clamped boundary conditions. Spatial discretisation employs popular piecewise quadratic schemes based on triangles, namely, the Morley, the discontinuous Galerkin, and the
C
0
interior penalty schemes. Based on the smoother
J
I
M
defined for a piecewise smooth input function by a (generalized) Morley interpolation
I
M
followed by a companion operator
J
from Carstensen and Nataraj (ESAIM Math Model Numer Anal 56(1):41–78, 2022), a smoother based Ritz projection operator is defined. A set of abstract hypotheses establish the approximation properties of the Ritz projection operator. The approach allows for an elegant semidiscrete and fully discrete error analysis with minimal regularity assumption on the exact solution. Error estimates for both the semidiscrete and fully discrete schemes are presented. The numerical results validate the theoretical estimates and demonstrate the capability of the discontinuous Galerkin method to approximate the solution, even for non-smooth initial condition. |
|---|---|
| AbstractList | This article discusses lowest-order nonstandard finite element methods for space discretisation and backward Euler scheme for time discretisation of the extended Fisher–Kolmogorov equation with clamped boundary conditions. Spatial discretisation employs popular piecewise quadratic schemes based on triangles, namely, the Morley, the discontinuous Galerkin, and the C0 interior penalty schemes. Based on the smoother JIM defined for a piecewise smooth input function by a (generalized) Morley interpolation IM followed by a companion operator J from Carstensen and Nataraj (ESAIM Math Model Numer Anal 56(1):41–78, 2022), a smoother based Ritz projection operator is defined. A set of abstract hypotheses establish the approximation properties of the Ritz projection operator. The approach allows for an elegant semidiscrete and fully discrete error analysis with minimal regularity assumption on the exact solution. Error estimates for both the semidiscrete and fully discrete schemes are presented. The numerical results validate the theoretical estimates and demonstrate the capability of the discontinuous Galerkin method to approximate the solution, even for non-smooth initial condition. This article discusses lowest-order nonstandard finite element methods for space discretisation and backward Euler scheme for time discretisation of the extended Fisher–Kolmogorov equation with clamped boundary conditions. Spatial discretisation employs popular piecewise quadratic schemes based on triangles, namely, the Morley, the discontinuous Galerkin, and the C 0 interior penalty schemes. Based on the smoother J I M defined for a piecewise smooth input function by a (generalized) Morley interpolation I M followed by a companion operator J from Carstensen and Nataraj (ESAIM Math Model Numer Anal 56(1):41–78, 2022), a smoother based Ritz projection operator is defined. A set of abstract hypotheses establish the approximation properties of the Ritz projection operator. The approach allows for an elegant semidiscrete and fully discrete error analysis with minimal regularity assumption on the exact solution. Error estimates for both the semidiscrete and fully discrete schemes are presented. The numerical results validate the theoretical estimates and demonstrate the capability of the discontinuous Galerkin method to approximate the solution, even for non-smooth initial condition. |
| ArticleNumber | 14 |
| Author | Das, Avijit Chirappurathu Remesan, Gopikrishnan Nataraj, Neela |
| Author_xml | – sequence: 1 givenname: Avijit surname: Das fullname: Das, Avijit organization: Department of Mathematics, National Institute of Technology Silchar – sequence: 2 givenname: Neela surname: Nataraj fullname: Nataraj, Neela email: neela@math.iitb.ac.in organization: Department of Mathematics, Indian Institute of Technology Bombay – sequence: 3 givenname: Gopikrishnan orcidid: 0000-0002-4507-4463 surname: Chirappurathu Remesan fullname: Chirappurathu Remesan, Gopikrishnan organization: Department of Mathematics, Indian Institute of Technology Palakkad |
| BookMark | eNp9kMFOwjAchxuDiYi-gKcmnqfttrbrkeBQI-oBPTdd18LIWKHdFDj5Dr6hT-JgGm8emv_l-31Jv1PQq2ylAbjA6AojxK49RhyTAIX7l3Aa7I5AHxMWBYxy3AN9lCQkYDGLT8Cp9wuEEE942AebqV4WUFY5HDdluYU3hVdO1xoOK1lufeGhNTDd1LrKdcsUfq7d18fngy2XdmadfYPpupF1YSv4XtRz-GQrX7c66Vo6ffTQWAenK6n0r7rwB_wMHBtZen3-cwfgdZy-jO6CyfPt_Wg4CVTIwjrImUqIyXItpeEkjDOmcEIyFUeU0RxnkaGx4jg3xCBJNIpzlihleGhYJnNKowG47LwrZ9eN9rVY2Ma1n_MiChGjjFOCWirsKOWs904bsXLFUrqtwEjsC4uusGgLi0NhsWtHUTfyLVzNtPtT_7P6BpDYhFo |
| Cites_doi | 10.1016/j.camwa.2021.08.010 10.1016/j.cam.2012.12.019 10.1093/imanum/dru054 10.1016/j.camwa.2024.04.013 10.4208/jcm.1908-m2018-0174 10.1090/S0025-5718-00-01230-8 10.1016/0001-8708(78)90130-5 10.1137/S0036141095280955 10.1137/17M1116362 10.1051/m2an/2021085 10.1103/PhysRevLett.49.1332 10.1007/978-0-387-70914-7 10.1007/s00211-023-01356-w 10.1103/PhysRevLett.60.2641 10.1103/PhysRevLett.35.1678 10.1051/m2an/2014062 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jul 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jul 2025 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10915-025-02896-z |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1573-7691 |
| ExternalDocumentID | 10_1007_s10915_025_02896_z |
| GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PHGZM PHGZT PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 ZMTXR ZWQNP ~A9 ~EX AAYXX ABRTQ AFFHD CITATION PQGLB JQ2 |
| ID | FETCH-LOGICAL-c272t-d7c85fbdeaaf9524b7c185bc43676d1b3f64c91df5f0a5e04d78ccf92f7bad663 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001494711100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-7474 |
| IngestDate | Wed Nov 05 04:07:17 EST 2025 Sat Nov 29 07:51:46 EST 2025 Fri Jun 20 01:11:53 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Ritz projection 35J40 (Secondary) 65N15 Time-dependent Error estimates Extended Fisher–Kolmogorov equation Fourth–order parabolic equation Stability Nonstandard finite element methods 35J35 (Primary) 65N30 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-d7c85fbdeaaf9524b7c185bc43676d1b3f64c91df5f0a5e04d78ccf92f7bad663 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4507-4463 |
| PQID | 3207679650 |
| PQPubID | 2043771 |
| ParticipantIDs | proquest_journals_3207679650 crossref_primary_10_1007_s10915_025_02896_z springer_journals_10_1007_s10915_025_02896_z |
| PublicationCentury | 2000 |
| PublicationDate | 20250700 2025-07-00 20250701 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 7 year: 2025 text: 20250700 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of scientific computing |
| PublicationTitleAbbrev | J Sci Comput |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | C Carstensen (2896_CR5) 2022; 56 P Danumjaya (2896_CR10) 2021; 99 P Danumjaya (2896_CR9) 2006; 3 A Ern (2896_CR14) 2005 H Brezis (2896_CR3) 2011 S Kesavan (2896_CR19) 2008 TK Nilssen (2896_CR20) 2001; 70 DG Aronson (2896_CR1) 1978; 30 D Gallistl (2896_CR15) 2015; 35 SC Brenner (2896_CR2) 2007 2896_CR16 C Carstensen (2896_CR6) 2023; 54 V Thomée (2896_CR22) 2006 C Carstensen (2896_CR4) 2015; 49 PG Ciarlet (2896_CR8) 1978 T Gudi (2896_CR17) 2013; 247 A Veeser (2896_CR23) 2018; 56 DA Di Pietro (2896_CR13) 2012 C Carstensen (2896_CR7) 2020; 38 LA Peletier (2896_CR21) 1997; 28 G Zhu (2896_CR24) 1982; 49 GT Dee (2896_CR12) 1988; 60 RM Hornreich (2896_CR18) 1975; 35 A Das (2896_CR11) 2024; 165 |
| References_xml | – volume: 99 start-page: 229 year: 2021 ident: 2896_CR10 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2021.08.010 – volume: 247 start-page: 1 year: 2013 ident: 2896_CR17 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2012.12.019 – volume: 35 start-page: 1779 issue: 4 year: 2015 ident: 2896_CR15 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/dru054 – volume: 165 start-page: 52 year: 2024 ident: 2896_CR11 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2024.04.013 – volume-title: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques & Applications (Berlin) year: 2012 ident: 2896_CR13 – volume: 38 start-page: 142 issue: 1 year: 2020 ident: 2896_CR7 publication-title: J. Comput. Math. doi: 10.4208/jcm.1908-m2018-0174 – volume-title: The Finite Element Method for Elliptic Problems year: 1978 ident: 2896_CR8 – volume-title: The Mathematical Theory of Finite Element Methods year: 2007 ident: 2896_CR2 – volume: 3 start-page: 186 year: 2006 ident: 2896_CR9 publication-title: Int. J. Numer. Anal. Model. – volume-title: Theory and Practice of Finite Elements year: 2005 ident: 2896_CR14 – volume: 70 start-page: 489 issue: 234 year: 2001 ident: 2896_CR20 publication-title: Math. Comput. doi: 10.1090/S0025-5718-00-01230-8 – volume: 30 start-page: 33 issue: 1 year: 1978 ident: 2896_CR1 publication-title: Adv. Math. doi: 10.1016/0001-8708(78)90130-5 – volume: 28 start-page: 1317 issue: 6 year: 1997 ident: 2896_CR21 publication-title: SIAM J. Math. Anal. doi: 10.1137/S0036141095280955 – volume-title: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics year: 2006 ident: 2896_CR22 – volume: 56 start-page: 1621 issue: 3 year: 2018 ident: 2896_CR23 publication-title: SIAM J. Numer. Anal. doi: 10.1137/17M1116362 – volume: 56 start-page: 41 issue: 1 year: 2022 ident: 2896_CR5 publication-title: ESAIM Math. Model. Numer. Anal. doi: 10.1051/m2an/2021085 – volume: 49 start-page: 1332 issue: 18 year: 1982 ident: 2896_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.49.1332 – volume-title: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext year: 2011 ident: 2896_CR3 doi: 10.1007/978-0-387-70914-7 – ident: 2896_CR16 – volume: 54 start-page: 323 year: 2023 ident: 2896_CR6 publication-title: Numer. Math. doi: 10.1007/s00211-023-01356-w – volume: 60 start-page: 2641 year: 1988 ident: 2896_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.60.2641 – volume: 35 start-page: 1678 issue: 25 year: 1975 ident: 2896_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.35.1678 – volume: 49 start-page: 977 issue: 4 year: 2015 ident: 2896_CR4 publication-title: ESAIM Math. Model. Numer. Anal. doi: 10.1051/m2an/2014062 – volume-title: Topics in Functional Analysis and Applications year: 2008 ident: 2896_CR19 |
| SSID | ssj0009892 |
| Score | 2.4048789 |
| Snippet | This article discusses lowest-order nonstandard finite element methods for space discretisation and backward Euler scheme for time discretisation of the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 14 |
| SubjectTerms | Algorithms Approximation Boundary conditions Computational Mathematics and Numerical Analysis Discretization Equilibrium Error analysis Estimates Exact solutions Finite element method Galerkin method Hypotheses Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Norms Phase transitions Propagation Theoretical |
| Title | Semi and Fully Discrete Analysis of Extended Fisher–Kolmogorov Equation with Nonstandard FEMs for Space Discretisation |
| URI | https://link.springer.com/article/10.1007/s10915-025-02896-z https://www.proquest.com/docview/3207679650 |
| Volume | 104 |
| WOSCitedRecordID | wos001494711100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7691 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV2xTsMwED1BYYABaAFRKMgDAwgsJWkS2yOCVkiIClFA3SLHiVElmkBTKujEP_CHfAl24lBAMMCQKdEpurP9ns--dwC71JKUE-LjJvd8rBCCYM5EiJsKeqmCZ8KoyJtNkE6H9nrswhSFZeVt9_JIMl-pPxW7MVtXE-uHMh9PZmFOwR3VDRsuuzdTqV2at0JW08fDiiy7plTmZxtf4WjKMb8di-Zo017-33-uwJJhl-ioGA5VmImTGiyef0izZjWomtmcoT0jOb2_Ck_deNBHPImQ3pI-o5O-Wk0UnUalZglKJWqZfDkq2qW_vbyepXeD9DYdpmPUeig0w5FO7KJOwTp1jgK1W-cZUtQYddX2PC5Nm1tEa3Ddbl0dn2LTkwELhzgjHBFBPRlGMeeSeY4bEqEQPxSuVn6L7LApfVcwO5KetLgXW25EqBCSOZKEPFL0Zh0qSZrEG4AsKhRdc6gfS-Z6Ng0Zk0w6rqCCR5zIOhyUoQnuC-mNYCqyrJ0cKCcHuZODSR0aZfQCMw2zoOlYRCfKPKsOh2W0pq9_t7b5t8-3YMHJA66v8TagMho-xtswL8bKm8OdfHi-AyL44mc |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BQQIGvhGFAh4YQGApTZPYHhGkAkErRAGxRY4To0rQQAMVdOI_8A_5JdiJQwDBAEOmRKfozvZ7PvveAWxSS1JOiIcb3PWwQgiCORMhbijopQqeCaMiazZB2m16dcVOTVFYWtx2L44ks5X6U7Ebq-tqYv1Q5uHhKIw5CrG0Yv5Z57KU2qVZK2Q1fVysyLJjSmV-tvEVjkqO-e1YNEOb5sz__nMWpg27RHv5cJiDkbg3D1OtD2nWdB7mzGxO0ZaRnN5egKdOfNtFvBchvSV9RgddtZooOo0KzRKUSOSbfDnK26W_vbweJze3yXXSTwbIv881w5FO7KJ2zjp1jgI1_VaKFDVGHbU9jwvT5hbRIlw0_fP9Q2x6MmBhE_sBR0RQV4ZRzLlkru2ERCjED4Wjld-ietiQniNYPZKutLgbW05EqBCS2ZKEPFL0ZgkqvaQXLwOyqFB0zaZeLJnj1mnImGTSdgQVPOJEVmGnCE1wl0tvBKXIsnZyoJwcZE4OhlWoFdELzDRMg4ZtEZ0oc60q7BbRKl__bm3lb59vwMTheeskODlqH6_CpJ0FX1_prUHlof8Yr8G4GCjP9tezofoOyFHlSw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsMwDLb4E4IDsAFiMCAHDiCI1nVtkxwR2wQCpkkDtFuVJg2axFrYBgJOvANvyJOQ9IcBggPi0FMrq7Lj-ItjfwbYoZainBAP17jrYR0hCOZMBLimQy_V4ZkwKpJhE6TVot0ua3_q4k-q3fMrybSnwbA0RaPKrVSVT41vrGo6i81DmYefJ2HaMYX05rzeuRrT7tJkLLJ2JRdr4OxkbTM_y_gamsZ489sVaRJ5mov__-clWMhQJzpMl0kBJsKoCPPnH5StwyIUMi8fot2MinpvGR47Yb-HeCSROao-oXpP7zIaZqOcywTFCjWyPDpKx6i_vbyexjf9-DoexA-ocZdyiSOT8EWtFI2a3AVqNs6HSENm1NHH9jAXnVUXrcBls3FxdIyzWQ1Y2MQeYUkEdVUgQ84Vc20nIEIjgUA4hhFOVoOa8hzBqlK5yuJuaDmSUCEUsxUJuNSwZxWmojgK1wBZVGgYZ1MvVMxxqzRgTDFlO4IKLjlRJdjPzeTfppQc_ph82SjZ10r2EyX7zyUo55b0M_cc-jXbIiaB5lolOMgtN379u7T1v32-DbPtetM_O2mdbsCcndjeVPqWYWo0uA83YUY8aMUOtpJV-w5F5e4v |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi+and+Fully+Discrete+Analysis+of+Extended+Fisher%E2%80%93Kolmogorov+Equation+with+Nonstandard+FEMs+for+Space+Discretisation&rft.jtitle=Journal+of+scientific+computing&rft.date=2025-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=104&rft.issue=1&rft.spage=14&rft_id=info:doi/10.1007%2Fs10915-025-02896-z&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |