Semi and Fully Discrete Analysis of Extended Fisher–Kolmogorov Equation with Nonstandard FEMs for Space Discretisation

This article discusses lowest-order nonstandard finite element methods for space discretisation and backward Euler scheme for time discretisation of the extended Fisher–Kolmogorov equation with clamped boundary conditions. Spatial discretisation employs popular piecewise quadratic schemes based on t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of scientific computing Ročník 104; číslo 1; s. 14
Hlavní autoři: Das, Avijit, Nataraj, Neela, Chirappurathu Remesan, Gopikrishnan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2025
Springer Nature B.V
Témata:
ISSN:0885-7474, 1573-7691
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This article discusses lowest-order nonstandard finite element methods for space discretisation and backward Euler scheme for time discretisation of the extended Fisher–Kolmogorov equation with clamped boundary conditions. Spatial discretisation employs popular piecewise quadratic schemes based on triangles, namely, the Morley, the discontinuous Galerkin, and the C 0 interior penalty schemes. Based on the smoother J I M defined for a piecewise smooth input function by a (generalized) Morley interpolation I M followed by a companion operator J from Carstensen and Nataraj (ESAIM Math Model Numer Anal 56(1):41–78, 2022), a smoother based Ritz projection operator is defined. A set of abstract hypotheses establish the approximation properties of the Ritz projection operator. The approach allows for an elegant semidiscrete and fully discrete error analysis with minimal regularity assumption on the exact solution. Error estimates for both the semidiscrete and fully discrete schemes are presented. The numerical results validate the theoretical estimates and demonstrate the capability of the discontinuous Galerkin method to approximate the solution, even for non-smooth initial condition.
AbstractList This article discusses lowest-order nonstandard finite element methods for space discretisation and backward Euler scheme for time discretisation of the extended Fisher–Kolmogorov equation with clamped boundary conditions. Spatial discretisation employs popular piecewise quadratic schemes based on triangles, namely, the Morley, the discontinuous Galerkin, and the C0 interior penalty schemes. Based on the smoother JIM defined for a piecewise smooth input function by a (generalized) Morley interpolation IM followed by a companion operator J from Carstensen and Nataraj (ESAIM Math Model Numer Anal 56(1):41–78, 2022), a smoother based Ritz projection operator is defined. A set of abstract hypotheses establish the approximation properties of the Ritz projection operator. The approach allows for an elegant semidiscrete and fully discrete error analysis with minimal regularity assumption on the exact solution. Error estimates for both the semidiscrete and fully discrete schemes are presented. The numerical results validate the theoretical estimates and demonstrate the capability of the discontinuous Galerkin method to approximate the solution, even for non-smooth initial condition.
This article discusses lowest-order nonstandard finite element methods for space discretisation and backward Euler scheme for time discretisation of the extended Fisher–Kolmogorov equation with clamped boundary conditions. Spatial discretisation employs popular piecewise quadratic schemes based on triangles, namely, the Morley, the discontinuous Galerkin, and the C 0 interior penalty schemes. Based on the smoother J I M defined for a piecewise smooth input function by a (generalized) Morley interpolation I M followed by a companion operator J from Carstensen and Nataraj (ESAIM Math Model Numer Anal 56(1):41–78, 2022), a smoother based Ritz projection operator is defined. A set of abstract hypotheses establish the approximation properties of the Ritz projection operator. The approach allows for an elegant semidiscrete and fully discrete error analysis with minimal regularity assumption on the exact solution. Error estimates for both the semidiscrete and fully discrete schemes are presented. The numerical results validate the theoretical estimates and demonstrate the capability of the discontinuous Galerkin method to approximate the solution, even for non-smooth initial condition.
ArticleNumber 14
Author Das, Avijit
Chirappurathu Remesan, Gopikrishnan
Nataraj, Neela
Author_xml – sequence: 1
  givenname: Avijit
  surname: Das
  fullname: Das, Avijit
  organization: Department of Mathematics, National Institute of Technology Silchar
– sequence: 2
  givenname: Neela
  surname: Nataraj
  fullname: Nataraj, Neela
  email: neela@math.iitb.ac.in
  organization: Department of Mathematics, Indian Institute of Technology Bombay
– sequence: 3
  givenname: Gopikrishnan
  orcidid: 0000-0002-4507-4463
  surname: Chirappurathu Remesan
  fullname: Chirappurathu Remesan, Gopikrishnan
  organization: Department of Mathematics, Indian Institute of Technology Palakkad
BookMark eNp9kMFOwjAchxuDiYi-gKcmnqfttrbrkeBQI-oBPTdd18LIWKHdFDj5Dr6hT-JgGm8emv_l-31Jv1PQq2ylAbjA6AojxK49RhyTAIX7l3Aa7I5AHxMWBYxy3AN9lCQkYDGLT8Cp9wuEEE942AebqV4WUFY5HDdluYU3hVdO1xoOK1lufeGhNTDd1LrKdcsUfq7d18fngy2XdmadfYPpupF1YSv4XtRz-GQrX7c66Vo6ffTQWAenK6n0r7rwB_wMHBtZen3-cwfgdZy-jO6CyfPt_Wg4CVTIwjrImUqIyXItpeEkjDOmcEIyFUeU0RxnkaGx4jg3xCBJNIpzlihleGhYJnNKowG47LwrZ9eN9rVY2Ma1n_MiChGjjFOCWirsKOWs904bsXLFUrqtwEjsC4uusGgLi0NhsWtHUTfyLVzNtPtT_7P6BpDYhFo
Cites_doi 10.1016/j.camwa.2021.08.010
10.1016/j.cam.2012.12.019
10.1093/imanum/dru054
10.1016/j.camwa.2024.04.013
10.4208/jcm.1908-m2018-0174
10.1090/S0025-5718-00-01230-8
10.1016/0001-8708(78)90130-5
10.1137/S0036141095280955
10.1137/17M1116362
10.1051/m2an/2021085
10.1103/PhysRevLett.49.1332
10.1007/978-0-387-70914-7
10.1007/s00211-023-01356-w
10.1103/PhysRevLett.60.2641
10.1103/PhysRevLett.35.1678
10.1051/m2an/2014062
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jul 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jul 2025
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10915-025-02896-z
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
ExternalDocumentID 10_1007_s10915_025_02896_z
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PHGZM
PHGZT
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~A9
~EX
AAYXX
ABRTQ
AFFHD
CITATION
PQGLB
JQ2
ID FETCH-LOGICAL-c272t-d7c85fbdeaaf9524b7c185bc43676d1b3f64c91df5f0a5e04d78ccf92f7bad663
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001494711100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-7474
IngestDate Wed Nov 05 04:07:17 EST 2025
Sat Nov 29 07:51:46 EST 2025
Fri Jun 20 01:11:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Ritz projection
35J40 (Secondary)
65N15
Time-dependent
Error estimates
Extended Fisher–Kolmogorov equation
Fourth–order parabolic equation
Stability
Nonstandard finite element methods
35J35 (Primary)
65N30
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-d7c85fbdeaaf9524b7c185bc43676d1b3f64c91df5f0a5e04d78ccf92f7bad663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4507-4463
PQID 3207679650
PQPubID 2043771
ParticipantIDs proquest_journals_3207679650
crossref_primary_10_1007_s10915_025_02896_z
springer_journals_10_1007_s10915_025_02896_z
PublicationCentury 2000
PublicationDate 20250700
2025-07-00
20250701
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 7
  year: 2025
  text: 20250700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References C Carstensen (2896_CR5) 2022; 56
P Danumjaya (2896_CR10) 2021; 99
P Danumjaya (2896_CR9) 2006; 3
A Ern (2896_CR14) 2005
H Brezis (2896_CR3) 2011
S Kesavan (2896_CR19) 2008
TK Nilssen (2896_CR20) 2001; 70
DG Aronson (2896_CR1) 1978; 30
D Gallistl (2896_CR15) 2015; 35
SC Brenner (2896_CR2) 2007
2896_CR16
C Carstensen (2896_CR6) 2023; 54
V Thomée (2896_CR22) 2006
C Carstensen (2896_CR4) 2015; 49
PG Ciarlet (2896_CR8) 1978
T Gudi (2896_CR17) 2013; 247
A Veeser (2896_CR23) 2018; 56
DA Di Pietro (2896_CR13) 2012
C Carstensen (2896_CR7) 2020; 38
LA Peletier (2896_CR21) 1997; 28
G Zhu (2896_CR24) 1982; 49
GT Dee (2896_CR12) 1988; 60
RM Hornreich (2896_CR18) 1975; 35
A Das (2896_CR11) 2024; 165
References_xml – volume: 99
  start-page: 229
  year: 2021
  ident: 2896_CR10
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2021.08.010
– volume: 247
  start-page: 1
  year: 2013
  ident: 2896_CR17
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.12.019
– volume: 35
  start-page: 1779
  issue: 4
  year: 2015
  ident: 2896_CR15
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/dru054
– volume: 165
  start-page: 52
  year: 2024
  ident: 2896_CR11
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2024.04.013
– volume-title: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques & Applications (Berlin)
  year: 2012
  ident: 2896_CR13
– volume: 38
  start-page: 142
  issue: 1
  year: 2020
  ident: 2896_CR7
  publication-title: J. Comput. Math.
  doi: 10.4208/jcm.1908-m2018-0174
– volume-title: The Finite Element Method for Elliptic Problems
  year: 1978
  ident: 2896_CR8
– volume-title: The Mathematical Theory of Finite Element Methods
  year: 2007
  ident: 2896_CR2
– volume: 3
  start-page: 186
  year: 2006
  ident: 2896_CR9
  publication-title: Int. J. Numer. Anal. Model.
– volume-title: Theory and Practice of Finite Elements
  year: 2005
  ident: 2896_CR14
– volume: 70
  start-page: 489
  issue: 234
  year: 2001
  ident: 2896_CR20
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-00-01230-8
– volume: 30
  start-page: 33
  issue: 1
  year: 1978
  ident: 2896_CR1
  publication-title: Adv. Math.
  doi: 10.1016/0001-8708(78)90130-5
– volume: 28
  start-page: 1317
  issue: 6
  year: 1997
  ident: 2896_CR21
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/S0036141095280955
– volume-title: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics
  year: 2006
  ident: 2896_CR22
– volume: 56
  start-page: 1621
  issue: 3
  year: 2018
  ident: 2896_CR23
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/17M1116362
– volume: 56
  start-page: 41
  issue: 1
  year: 2022
  ident: 2896_CR5
  publication-title: ESAIM Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2021085
– volume: 49
  start-page: 1332
  issue: 18
  year: 1982
  ident: 2896_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.49.1332
– volume-title: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext
  year: 2011
  ident: 2896_CR3
  doi: 10.1007/978-0-387-70914-7
– ident: 2896_CR16
– volume: 54
  start-page: 323
  year: 2023
  ident: 2896_CR6
  publication-title: Numer. Math.
  doi: 10.1007/s00211-023-01356-w
– volume: 60
  start-page: 2641
  year: 1988
  ident: 2896_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.60.2641
– volume: 35
  start-page: 1678
  issue: 25
  year: 1975
  ident: 2896_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.35.1678
– volume: 49
  start-page: 977
  issue: 4
  year: 2015
  ident: 2896_CR4
  publication-title: ESAIM Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2014062
– volume-title: Topics in Functional Analysis and Applications
  year: 2008
  ident: 2896_CR19
SSID ssj0009892
Score 2.4048789
Snippet This article discusses lowest-order nonstandard finite element methods for space discretisation and backward Euler scheme for time discretisation of the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 14
SubjectTerms Algorithms
Approximation
Boundary conditions
Computational Mathematics and Numerical Analysis
Discretization
Equilibrium
Error analysis
Estimates
Exact solutions
Finite element method
Galerkin method
Hypotheses
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Norms
Phase transitions
Propagation
Theoretical
Title Semi and Fully Discrete Analysis of Extended Fisher–Kolmogorov Equation with Nonstandard FEMs for Space Discretisation
URI https://link.springer.com/article/10.1007/s10915-025-02896-z
https://www.proquest.com/docview/3207679650
Volume 104
WOSCitedRecordID wos001494711100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV2xTsMwED1BYYABaAFRKMgDAwgsJWkS2yOCVkiIClFA3SLHiVElmkBTKujEP_CHfAl24lBAMMCQKdEpurP9ns--dwC71JKUE-LjJvd8rBCCYM5EiJsKeqmCZ8KoyJtNkE6H9nrswhSFZeVt9_JIMl-pPxW7MVtXE-uHMh9PZmFOwR3VDRsuuzdTqV2at0JW08fDiiy7plTmZxtf4WjKMb8di-Zo017-33-uwJJhl-ioGA5VmImTGiyef0izZjWomtmcoT0jOb2_Ck_deNBHPImQ3pI-o5O-Wk0UnUalZglKJWqZfDkq2qW_vbyepXeD9DYdpmPUeig0w5FO7KJOwTp1jgK1W-cZUtQYddX2PC5Nm1tEa3Ddbl0dn2LTkwELhzgjHBFBPRlGMeeSeY4bEqEQPxSuVn6L7LApfVcwO5KetLgXW25EqBCSOZKEPFL0Zh0qSZrEG4AsKhRdc6gfS-Z6Ng0Zk0w6rqCCR5zIOhyUoQnuC-mNYCqyrJ0cKCcHuZODSR0aZfQCMw2zoOlYRCfKPKsOh2W0pq9_t7b5t8-3YMHJA66v8TagMho-xtswL8bKm8OdfHi-AyL44mc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BQQIGvhGFAh4YQGApTZPYHhGkAkErRAGxRY4To0rQQAMVdOI_8A_5JdiJQwDBAEOmRKfozvZ7PvveAWxSS1JOiIcb3PWwQgiCORMhbijopQqeCaMiazZB2m16dcVOTVFYWtx2L44ks5X6U7Ebq-tqYv1Q5uHhKIw5CrG0Yv5Z57KU2qVZK2Q1fVysyLJjSmV-tvEVjkqO-e1YNEOb5sz__nMWpg27RHv5cJiDkbg3D1OtD2nWdB7mzGxO0ZaRnN5egKdOfNtFvBchvSV9RgddtZooOo0KzRKUSOSbfDnK26W_vbweJze3yXXSTwbIv881w5FO7KJ2zjp1jgI1_VaKFDVGHbU9jwvT5hbRIlw0_fP9Q2x6MmBhE_sBR0RQV4ZRzLlkru2ERCjED4Wjld-ietiQniNYPZKutLgbW05EqBCS2ZKEPFL0ZgkqvaQXLwOyqFB0zaZeLJnj1mnImGTSdgQVPOJEVmGnCE1wl0tvBKXIsnZyoJwcZE4OhlWoFdELzDRMg4ZtEZ0oc60q7BbRKl__bm3lb59vwMTheeskODlqH6_CpJ0FX1_prUHlof8Yr8G4GCjP9tezofoOyFHlSw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsMwDLb4E4IDsAFiMCAHDiCI1nVtkxwR2wQCpkkDtFuVJg2axFrYBgJOvANvyJOQ9IcBggPi0FMrq7Lj-ItjfwbYoZainBAP17jrYR0hCOZMBLimQy_V4ZkwKpJhE6TVot0ua3_q4k-q3fMrybSnwbA0RaPKrVSVT41vrGo6i81DmYefJ2HaMYX05rzeuRrT7tJkLLJ2JRdr4OxkbTM_y_gamsZ489sVaRJ5mov__-clWMhQJzpMl0kBJsKoCPPnH5StwyIUMi8fot2MinpvGR47Yb-HeCSROao-oXpP7zIaZqOcywTFCjWyPDpKx6i_vbyexjf9-DoexA-ocZdyiSOT8EWtFI2a3AVqNs6HSENm1NHH9jAXnVUXrcBls3FxdIyzWQ1Y2MQeYUkEdVUgQ84Vc20nIEIjgUA4hhFOVoOa8hzBqlK5yuJuaDmSUCEUsxUJuNSwZxWmojgK1wBZVGgYZ1MvVMxxqzRgTDFlO4IKLjlRJdjPzeTfppQc_ph82SjZ10r2EyX7zyUo55b0M_cc-jXbIiaB5lolOMgtN379u7T1v32-DbPtetM_O2mdbsCcndjeVPqWYWo0uA83YUY8aMUOtpJV-w5F5e4v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi+and+Fully+Discrete+Analysis+of+Extended+Fisher%E2%80%93Kolmogorov+Equation+with+Nonstandard+FEMs+for+Space+Discretisation&rft.jtitle=Journal+of+scientific+computing&rft.date=2025-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=104&rft.issue=1&rft.spage=14&rft_id=info:doi/10.1007%2Fs10915-025-02896-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon