Machine learning-based prediction of compressive strength and slump in high-performance concrete

The design of a concrete structure heavily depends on one of the most significant performance parameters: concrete strength. Reliable strength prediction can save design expenses and time, as well as reduce material waste from multiple mixing experiments. Because it has a very long service life, imp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multiscale and Multidisciplinary Modeling, Experiments and Design Ročník 8; číslo 10; s. 463
Hlavní autoři: Zhang, Ruikun, Meng, Chenyu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.11.2025
Springer Nature B.V
Témata:
ISSN:2520-8160, 2520-8179
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The design of a concrete structure heavily depends on one of the most significant performance parameters: concrete strength. Reliable strength prediction can save design expenses and time, as well as reduce material waste from multiple mixing experiments. Because it has a very long service life, improves with time in strength, and is highly fire-resistant, concrete is the safest and most environmentally friendly building material used worldwide. It is estimated that between 21 and 31 billion tons are consumed annually. To generate concrete with the required strength, durability, and functionality in the most cost-efficient manner, designing a concrete mix entails selecting appropriate concrete elements and determining their relative ratios. This work used Extreme Gradient Boosting Regression (XGBR) to estimate the Compressive Strength (CS) and Slump (SL) in high-performance concrete. Three optimization methods were employed: The Population-Based Vortex Search Algorithm (PBVSA), the Escaping Bird Search for Constrained Optimization (EBSCO), as well as the Honey Badger Algorithm (HBA), to increase the predictive capacity of the underlying model. To improve accuracy, a calculated decision was made to combine these optimizers with existing schemes, resulting in the development of novel hybrid schemes with enhanced prediction capabilities. XGBR + PBVSA (XGPB), XGBR + EBSCO (XGEB), and XGBR + HBA (XGHB) are the names of the resulting hybrid schemes. The XGEB model, with a value of 0.985, performs exceptionally well during the test phase, as indicated by the R 2 index value in the SL section. The XGPB model, with a value of 0.975, comes in second. XGEB has the highest performance model in the CS section during the test phase, with an R 2 index value of 0.991, while XGB has the lowest productivity model with a value of 0.968. Graphical abstract
AbstractList The design of a concrete structure heavily depends on one of the most significant performance parameters: concrete strength. Reliable strength prediction can save design expenses and time, as well as reduce material waste from multiple mixing experiments. Because it has a very long service life, improves with time in strength, and is highly fire-resistant, concrete is the safest and most environmentally friendly building material used worldwide. It is estimated that between 21 and 31 billion tons are consumed annually. To generate concrete with the required strength, durability, and functionality in the most cost-efficient manner, designing a concrete mix entails selecting appropriate concrete elements and determining their relative ratios. This work used Extreme Gradient Boosting Regression (XGBR) to estimate the Compressive Strength (CS) and Slump (SL) in high-performance concrete. Three optimization methods were employed: The Population-Based Vortex Search Algorithm (PBVSA), the Escaping Bird Search for Constrained Optimization (EBSCO), as well as the Honey Badger Algorithm (HBA), to increase the predictive capacity of the underlying model. To improve accuracy, a calculated decision was made to combine these optimizers with existing schemes, resulting in the development of novel hybrid schemes with enhanced prediction capabilities. XGBR + PBVSA (XGPB), XGBR + EBSCO (XGEB), and XGBR + HBA (XGHB) are the names of the resulting hybrid schemes. The XGEB model, with a value of 0.985, performs exceptionally well during the test phase, as indicated by the R 2 index value in the SL section. The XGPB model, with a value of 0.975, comes in second. XGEB has the highest performance model in the CS section during the test phase, with an R 2 index value of 0.991, while XGB has the lowest productivity model with a value of 0.968. Graphical abstract
The design of a concrete structure heavily depends on one of the most significant performance parameters: concrete strength. Reliable strength prediction can save design expenses and time, as well as reduce material waste from multiple mixing experiments. Because it has a very long service life, improves with time in strength, and is highly fire-resistant, concrete is the safest and most environmentally friendly building material used worldwide. It is estimated that between 21 and 31 billion tons are consumed annually. To generate concrete with the required strength, durability, and functionality in the most cost-efficient manner, designing a concrete mix entails selecting appropriate concrete elements and determining their relative ratios. This work used Extreme Gradient Boosting Regression (XGBR) to estimate the Compressive Strength (CS) and Slump (SL) in high-performance concrete. Three optimization methods were employed: The Population-Based Vortex Search Algorithm (PBVSA), the Escaping Bird Search for Constrained Optimization (EBSCO), as well as the Honey Badger Algorithm (HBA), to increase the predictive capacity of the underlying model. To improve accuracy, a calculated decision was made to combine these optimizers with existing schemes, resulting in the development of novel hybrid schemes with enhanced prediction capabilities. XGBR + PBVSA (XGPB), XGBR + EBSCO (XGEB), and XGBR + HBA (XGHB) are the names of the resulting hybrid schemes. The XGEB model, with a value of 0.985, performs exceptionally well during the test phase, as indicated by the R2 index value in the SL section. The XGPB model, with a value of 0.975, comes in second. XGEB has the highest performance model in the CS section during the test phase, with an R2 index value of 0.991, while XGB has the lowest productivity model with a value of 0.968.
ArticleNumber 463
Author Meng, Chenyu
Zhang, Ruikun
Author_xml – sequence: 1
  givenname: Ruikun
  surname: Zhang
  fullname: Zhang, Ruikun
  email: zhangruikun123@126.com
  organization: School of Artificial Intelligence, Zhengzhou Railway Vocational & Technical College, School of Electronic Engineering, Zhengzhou Railway Vocational & Technical College
– sequence: 2
  givenname: Chenyu
  surname: Meng
  fullname: Meng, Chenyu
  organization: School of Electronic Engineering, Zhengzhou Railway Vocational & Technical College
BookMark eNp9kMtOwzAQRS1UJErpD7CyxNrgR2wnS1TxkorYwNo4ziRx1TjBTpHo1xMogh2rGY3uuSOdUzQLfQCEzhm9ZJTqq5SxQhSEcknodGBkf4TmXHJKcqaL2e-u6AlaprShlHItMp3TOXp9tK71AfAWbAw-NKS0CSo8RKi8G30fcF9j13fTISX_DjiNEUIzttiGCqftrhuwD7j1TUsGiHUfOxscTEhwEUY4Q8e13SZY_swFerm9eV7dk_XT3cPqek0c13wklZCq4pXgtKyV0IUWBeSZAlUoVjnNpC4Ed1KIMpNac14WdaUUaFZKm1ELYoEuDr1D7N92kEaz6XcxTC-N4DLnWmWSTyl-SLnYpxShNkP0nY0fhlHzJdMcZJpJpvmWafYTJA5QmsKhgfhX_Q_1CQfDecA
Cites_doi 10.22034/aeis.2024.483670.1241
10.1093/beheco/12.2.150
10.1016/j.istruc.2024.107649
10.1016/j.ins.2014.08.053
10.1016/j.compstruc.2021.106479
10.1121/1.4976038
10.1016/j.asoc.2017.03.007
10.1038/s41598-023-43622-9
10.1016/j.matpr.2024.04.009
10.1016/j.patcog.2016.04.017
10.1145/2939672.2939785
10.1016/S0008-8846(00)00345-8
10.1016/0022-5193(74)90202-1
10.1016/j.commatsci.2022.111811
10.1016/j.matpr.2024.04.059
10.1016/S0958-9465(00)00071-8
10.3390/app7010051
10.1007/s00521-022-07671-x
10.1016/j.advengsoft.2017.11.006
10.1016/j.fuel.2024.133183
10.1016/j.asoc.2014.08.010
10.1016/j.conbuildmat.2015.08.124
10.1016/j.neucom.2014.09.090
10.1016/j.conbuildmat.2023.132833
10.1061/JSDCCC.SCENG-1496
10.1016/j.conbuildmat.2016.03.214
10.1007/s00521-024-09553-w
10.1007/s12206-017-0107-3
10.1007/978-981-97-0072-1_6
10.1155/2016/7648467
10.1016/j.mtcomm.2024.109676
10.1016/j.matpr.2024.04.054
10.1016/j.conbuildmat.2015.06.055
10.1016/j.cemconres.2003.08.018
10.1007/s00216-020-02921-0
10.1016/j.matcom.2021.08.013
10.1109/CSIEC49655.2020.9237319
10.1016/j.advengsoft.2011.09.026
10.1016/j.asoc.2023.110997
10.1016/j.conbuildmat.2017.03.061
10.1016/j.ijleo.2022.169731
10.1002/atr.1217
10.1038/s41598-025-89530-y
10.1038/nature05733
10.1016/j.matpr.2024.04.081
10.1016/j.apm.2014.10.065
10.1016/j.engappai.2024.108388
10.1016/j.conbuildmat.2010.01.006
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
DBID AAYXX
CITATION
DOI 10.1007/s41939-025-01001-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2520-8179
ExternalDocumentID 10_1007_s41939_025_01001_z
GroupedDBID 0R~
406
AACDK
AAHNG
AAIAL
AAJBT
AASML
AATNV
AATVU
AAUYE
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABKCH
ABMQK
ABQBU
ABRTQ
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AHPBZ
AHWEU
AIAKS
AIGIU
AILAN
AITGF
AIXLP
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ATHPR
AXYYD
AYFIA
CSCUP
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
NPVJJ
NQJWS
O9J
PT4
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAAVM
AAYXX
ABJCF
AEUYN
AFFHD
AFKRA
ARAPS
BENPR
BGLVJ
BGNMA
CCPQU
CITATION
EJD
FINBP
FSGXE
H13
HCIFZ
M4Y
M7S
NU0
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c272t-d356d2d320bf6379739e846e6961dc7157932c533b457722b9fd66e71b5a40ae3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001588876900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2520-8160
IngestDate Sun Oct 26 04:23:53 EDT 2025
Sat Nov 29 07:02:59 EST 2025
Sat Oct 25 10:56:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords CS
XGBR
Population-Based Vortex Search Algorithm
Slump
Honey Badger Algorithm
High-performance concrete
Escaping Bird Search for Constrained Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-d356d2d320bf6379739e846e6961dc7157932c533b457722b9fd66e71b5a40ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3258276452
PQPubID 7435034
ParticipantIDs proquest_journals_3258276452
crossref_primary_10_1007_s41939_025_01001_z
springer_journals_10_1007_s41939_025_01001_z
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Multiscale and Multidisciplinary Modeling, Experiments and Design
PublicationTitleAbbrev Multiscale and Multidiscip. Model. Exp. and Des
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References B Doğan (1001_CR19) 2015; 293
B Sadaghat (1001_CR41) 2024; 133
A Behnood (1001_CR11) 2017; 142
C-H Lim (1001_CR31) 2004; 34
A Hedenström (1001_CR24) 2001; 12
SM Ibrahim (1001_CR26) 2023; 149
L Luo (1001_CR32) 2017; 56
T Sağ (1001_CR42) 2022; 34
HG Russell (1001_CR40) 1999; 21
U Reuter (1001_CR39) 2018; 116
A Behnood (1001_CR9) 2015; 94
AA Abou El Ela (1001_CR2) 2023; 13
D Lentink (1001_CR30) 2007; 446
BH Bharatkumar (1001_CR13) 2001; 23
E Han (1001_CR22) 2022; 52
X Tian (1001_CR48) 2022; 215
1001_CR16
A Shishegaran (1001_CR45) 2021; 247
S Yan (1001_CR51) 2020; 412
C Yu (1001_CR52) 2014; 48
J Sobhani (1001_CR46) 2014; 24
A Khan (1001_CR28) 2023; 401
X Kong (1001_CR29) 2015; 169
AR Taghavi Khangah (1001_CR47) 2024; 003
P Chopra (1001_CR18) 2016; 2016
1001_CR6
SS Ansari (1001_CR3) 2025; 30
1001_CR7
IB Mustapha (1001_CR34) 2024; 36
MA Shaida (1001_CR44) 2025; 380
1001_CR8
B Naeim (1001_CR35) 2024; 70
M Fuchida (1001_CR21) 2017; 7
1001_CR4
1001_CR5
SG Patil (1001_CR38) 2012; 45
HC Howland (1001_CR25) 1974; 47
1001_CR43
T Düzenli̇ (1001_CR20) 2022; 268
T Mohammad (1001_CR33) 2024; 40
S Abe (1001_CR1) 2005
S Chithra (1001_CR17) 2016; 114
1001_CR36
Z Xing (1001_CR49) 2017; 31
D Chen (1001_CR15) 2016; 60
H-G Ni (1001_CR37) 2000; 30
L Zhang (1001_CR53) 2013; 32
Y Chen (1001_CR14) 2015; 39
H Bentegri (1001_CR12) 2025; 15
FA Hashim (1001_CR23) 2022; 192
K Yan (1001_CR50) 2010; 24
A Behnood (1001_CR10) 2015; 98
MM Islam (1001_CR27) 2017; 141
References_xml – volume: 003
  start-page: 124
  issue: 04
  year: 2024
  ident: 1001_CR47
  publication-title: Adv Eng Intell Syst
  doi: 10.22034/aeis.2024.483670.1241
– volume: 12
  start-page: 150
  issue: 2
  year: 2001
  ident: 1001_CR24
  publication-title: Behav Ecol
  doi: 10.1093/beheco/12.2.150
– volume: 70
  start-page: 107649
  year: 2024
  ident: 1001_CR35
  publication-title: Structures
  doi: 10.1016/j.istruc.2024.107649
– volume: 293
  start-page: 125
  year: 2015
  ident: 1001_CR19
  publication-title: Inf Sci (NY)
  doi: 10.1016/j.ins.2014.08.053
– volume: 52
  start-page: 102005
  year: 2022
  ident: 1001_CR22
  publication-title: Sustain Energy Technol Assess
– volume: 247
  start-page: 106479
  year: 2021
  ident: 1001_CR45
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2021.106479
– volume: 141
  start-page: EL89
  issue: 2
  year: 2017
  ident: 1001_CR27
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.4976038
– volume: 56
  start-page: 199
  year: 2017
  ident: 1001_CR32
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.03.007
– volume: 13
  start-page: 16765
  issue: 1
  year: 2023
  ident: 1001_CR2
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-43622-9
– ident: 1001_CR8
  doi: 10.1016/j.matpr.2024.04.009
– volume: 60
  start-page: 296
  year: 2016
  ident: 1001_CR15
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2016.04.017
– ident: 1001_CR16
  doi: 10.1145/2939672.2939785
– volume: 30
  start-page: 1245
  issue: 8
  year: 2000
  ident: 1001_CR37
  publication-title: Cem Concr Res
  doi: 10.1016/S0008-8846(00)00345-8
– volume: 47
  start-page: 333
  issue: 2
  year: 1974
  ident: 1001_CR25
  publication-title: J Theor Biol
  doi: 10.1016/0022-5193(74)90202-1
– ident: 1001_CR36
– volume-title: Support vector machines for pattern classification
  year: 2005
  ident: 1001_CR1
– volume: 215
  start-page: 111811
  year: 2022
  ident: 1001_CR48
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2022.111811
– ident: 1001_CR6
  doi: 10.1016/j.matpr.2024.04.059
– volume: 23
  start-page: 71
  issue: 1
  year: 2001
  ident: 1001_CR13
  publication-title: Cem Concr Compos
  doi: 10.1016/S0958-9465(00)00071-8
– volume: 7
  start-page: 51
  issue: 1
  year: 2017
  ident: 1001_CR21
  publication-title: Appl Sci
  doi: 10.3390/app7010051
– volume: 34
  start-page: 18211
  issue: 20
  year: 2022
  ident: 1001_CR42
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07671-x
– volume: 116
  start-page: 67
  year: 2018
  ident: 1001_CR39
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.11.006
– volume: 380
  start-page: 133183
  year: 2025
  ident: 1001_CR44
  publication-title: Fuel
  doi: 10.1016/j.fuel.2024.133183
– volume: 24
  start-page: 572
  year: 2014
  ident: 1001_CR46
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.08.010
– volume: 98
  start-page: 519
  year: 2015
  ident: 1001_CR10
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2015.08.124
– volume: 169
  start-page: 449
  year: 2015
  ident: 1001_CR29
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.090
– volume: 21
  start-page: 56
  issue: 2
  year: 1999
  ident: 1001_CR40
  publication-title: Concr Int
– volume: 401
  start-page: 132833
  year: 2023
  ident: 1001_CR28
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2023.132833
– volume: 30
  start-page: 4024113
  issue: 2
  year: 2025
  ident: 1001_CR3
  publication-title: J Struct Des Constr Pract
  doi: 10.1061/JSDCCC.SCENG-1496
– volume: 114
  start-page: 528
  year: 2016
  ident: 1001_CR17
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2016.03.214
– volume: 36
  start-page: 9245
  issue: 16
  year: 2024
  ident: 1001_CR34
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-024-09553-w
– volume: 31
  start-page: 545
  year: 2017
  ident: 1001_CR49
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-017-0107-3
– ident: 1001_CR4
  doi: 10.1007/978-981-97-0072-1_6
– volume: 2016
  start-page: 1
  year: 2016
  ident: 1001_CR18
  publication-title: Adv Mater Sci Eng
  doi: 10.1155/2016/7648467
– volume: 40
  start-page: 109676
  year: 2024
  ident: 1001_CR33
  publication-title: Mater Today Commun
  doi: 10.1016/j.mtcomm.2024.109676
– ident: 1001_CR7
  doi: 10.1016/j.matpr.2024.04.054
– volume: 94
  start-page: 137
  year: 2015
  ident: 1001_CR9
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2015.06.055
– volume: 34
  start-page: 409
  issue: 3
  year: 2004
  ident: 1001_CR31
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2003.08.018
– volume: 412
  start-page: 7881
  year: 2020
  ident: 1001_CR51
  publication-title: Anal Bioanal Chem
  doi: 10.1007/s00216-020-02921-0
– volume: 192
  start-page: 84
  year: 2022
  ident: 1001_CR23
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2021.08.013
– ident: 1001_CR43
  doi: 10.1109/CSIEC49655.2020.9237319
– volume: 45
  start-page: 203
  issue: 1
  year: 2012
  ident: 1001_CR38
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2011.09.026
– volume: 149
  start-page: 110997
  year: 2023
  ident: 1001_CR26
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2023.110997
– volume: 142
  start-page: 199
  year: 2017
  ident: 1001_CR11
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2017.03.061
– volume: 268
  start-page: 169731
  year: 2022
  ident: 1001_CR20
  publication-title: Optik
  doi: 10.1016/j.ijleo.2022.169731
– volume: 48
  start-page: 250
  issue: 3
  year: 2014
  ident: 1001_CR52
  publication-title: J Adv Transp
  doi: 10.1002/atr.1217
– volume: 32
  start-page: 877
  issue: 4
  year: 2013
  ident: 1001_CR53
  publication-title: Comput Inform
– volume: 15
  start-page: 5017
  issue: 1
  year: 2025
  ident: 1001_CR12
  publication-title: Sci Rep
  doi: 10.1038/s41598-025-89530-y
– volume: 446
  start-page: 1082
  issue: 7139
  year: 2007
  ident: 1001_CR30
  publication-title: Nature
  doi: 10.1038/nature05733
– ident: 1001_CR5
  doi: 10.1016/j.matpr.2024.04.081
– volume: 39
  start-page: 2617
  issue: 9
  year: 2015
  ident: 1001_CR14
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2014.10.065
– volume: 133
  start-page: 108388
  year: 2024
  ident: 1001_CR41
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2024.108388
– volume: 24
  start-page: 1479
  issue: 8
  year: 2010
  ident: 1001_CR50
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2010.01.006
SSID ssj0002734780
ssib042110740
Score 2.3076632
Snippet The design of a concrete structure heavily depends on one of the most significant performance parameters: concrete strength. Reliable strength prediction can...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 463
SubjectTerms Algorithms
Cement
Characterization and Evaluation of Materials
Compressive strength
Concrete mixes
Concrete mixing
Concrete properties
Concrete structures
Construction industry
Engineering
Fire resistance
Machine learning
Mathematical Applications in the Physical Sciences
Mechanical Engineering
Numerical and Computational Physics
Optimization
Original Paper
Reinforced concrete
Search algorithms
Service life
Simulation
Soft computing
Solid Mechanics
Support vector machines
Title Machine learning-based prediction of compressive strength and slump in high-performance concrete
URI https://link.springer.com/article/10.1007/s41939-025-01001-z
https://www.proquest.com/docview/3258276452
Volume 8
WOSCitedRecordID wos001588876900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Standard Collection
  customDbUrl:
  eissn: 2520-8179
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002734780
  issn: 2520-8160
  databaseCode: RSV
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMbWEocP5IRISoGqBAvdQuOH6UMadSEDv312G7SAoIB5iSWdXf2fZe7-w6A0yS2flmFAmkRub9VhqBYEIZiSanRKhNMe03f8F4v7veTu7oprGyq3ZuUpL-p581uxGKNBLnxq4EjDkLTZbBi3V3sBjbcPzw3VkR8SFMzmLzVBC7cj1DD1MZKcciCunvm52W_eqgF7PyWKfUOqLv5v61vgY0acMKLmYVsgyWd74D1TzSEu-Dl1ldUaliPkBgg59sULMYui-M0B0cGuuJzXzQ70dB1mOSD6hWKXMHS3m8FHObQUR-jYtGJYD_JLSit9B546l49Xl6jevICkpjjCqmIMoVVhIPMsIgnPEq0BSqaJSxUkofUnmosLVLMCLXwHGeJUYxpHmZUkEDoaB-08lGuDwBkMjSGUEFlEloxmEwbQlxQqSS2WCJug7NG2mkxI9hI51TKXm6plVvq5ZZO26DTKCStD1uZRpjGmLsMbRucNwpYPP59tcO_vX4E1rDToe9E7IBWNX7Xx2BVTqphOT7xRvgBhiHVfA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MwDLVgIAEHvhGDATlwg0hrmqTtESGmIbYJwUC7lbZJxjh01VZ22K8nydoNEBzg3DaKbCd-ru1ngPPA135ZOBGWkWv-VimK_Yhy7CeMKSniiEur6ZbX6fi9XnBfNIWNy2r3MiVpb-p5sxvVWCPAZvxq3RAH4ekyrFDtsQxj_sPjc2lF1IY0BYPJW0Hg4tkRaoTpWMl3eL3onvl52a8eagE7v2VKrQNqbP1v69uwWQBOdDWzkB1YkukubHyiIdyDl7atqJSoGCHRx8a3CZSNTBbHaA4NFTLF57ZodiKR6TBJ-_krilKBxvp-y9AgRYb6GGeLTgT9SapBaS734alx071u4mLyAk6IR3IsXMYFES6px4q7XuC5gdRARfKAOyLxHKZPNUk0Uowp0_CcxIESnEvPiVlE65F0D6CSDlN5CIgnjlKURSwJHC0GFUtFqQkqRUI0lvCrcFFKO8xmBBvhnErZyi3Ucgut3MJpFWqlQsLisI1DlzCfeCZDW4XLUgGLx7-vdvS3189grdltt8LWbefuGNaJ0aftSqxBJR-9yxNYTSb5YDw6tQb5AZFO2GA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1BQQgGvhGFAh7YwKJxbCcZEVCBKFUlPtQtJLFdypBGbejQX4_tJm1BMCDmJJZyZ-fe5e69AzgNfB2XhRNhGbnmb5Wi2I8ox37CmJIijri0nm56rZbf6QTtORa_7XYvS5ITToNRaUrzi0yoiynxjWrcEWAzirVuRITweBGWqGmkN_n640u5o6hNbwo1k_dCzMWz49QI03mT7_B6waT5edmv0WoGQb9VTW0wamz8_zU2Yb0AouhysnO2YEGm27A2J0-4A68PttNSomK0RBebmCdQNjDVHeNR1FfINKXbZtqRRIZ5knbzNxSlAg31dy9DvRQZSWSczRgK-pFUg9Vc7sJz4-bp6hYXExlwQjySY-EyLohwST1W3PUCzw2kBjCSB9wRiecwfdpJohFkTJmG7SQOlOBcek7MIlqPpLsHlbSfyn1APHGUoixiSeBoM6hYKkpNsikSojGGX4Wz0vJhNhHeCKcSy9ZuobZbaO0WjqtQK50TFodwGLqE-cQzldsqnJfOmF3-fbWDv91-Aivt60bYvGvdH8IqMe60ZMUaVPLBhzyC5WSU94aDY7s3PwEdcOFE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+prediction+of+compressive+strength+and+slump+in+high-performance+concrete&rft.jtitle=Multiscale+and+Multidisciplinary+Modeling%2C+Experiments+and+Design&rft.au=Zhang%2C+Ruikun&rft.au=Meng%2C+Chenyu&rft.date=2025-11-01&rft.issn=2520-8160&rft.eissn=2520-8179&rft.volume=8&rft.issue=10&rft_id=info:doi/10.1007%2Fs41939-025-01001-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41939_025_01001_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8160&client=summon