Machine learning-based prediction of compressive strength and slump in high-performance concrete
The design of a concrete structure heavily depends on one of the most significant performance parameters: concrete strength. Reliable strength prediction can save design expenses and time, as well as reduce material waste from multiple mixing experiments. Because it has a very long service life, imp...
Uloženo v:
| Vydáno v: | Multiscale and Multidisciplinary Modeling, Experiments and Design Ročník 8; číslo 10; s. 463 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.11.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 2520-8160, 2520-8179 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The design of a concrete structure heavily depends on one of the most significant performance parameters: concrete strength. Reliable strength prediction can save design expenses and time, as well as reduce material waste from multiple mixing experiments. Because it has a very long service life, improves with time in strength, and is highly fire-resistant, concrete is the safest and most environmentally friendly building material used worldwide. It is estimated that between 21 and 31 billion tons are consumed annually. To generate concrete with the required strength, durability, and functionality in the most cost-efficient manner, designing a concrete mix entails selecting appropriate concrete elements and determining their relative ratios. This work used Extreme Gradient Boosting Regression (XGBR) to estimate the Compressive Strength (CS) and Slump (SL) in high-performance concrete. Three optimization methods were employed: The Population-Based Vortex Search Algorithm (PBVSA), the Escaping Bird Search for Constrained Optimization (EBSCO), as well as the Honey Badger Algorithm (HBA), to increase the predictive capacity of the underlying model. To improve accuracy, a calculated decision was made to combine these optimizers with existing schemes, resulting in the development of novel hybrid schemes with enhanced prediction capabilities. XGBR + PBVSA (XGPB), XGBR + EBSCO (XGEB), and XGBR + HBA (XGHB) are the names of the resulting hybrid schemes. The XGEB model, with a value of 0.985, performs exceptionally well during the test phase, as indicated by the R
2
index value in the SL section. The XGPB model, with a value of 0.975, comes in second. XGEB has the highest performance model in the CS section during the test phase, with an R
2
index value of 0.991, while XGB has the lowest productivity model with a value of 0.968.
Graphical abstract |
|---|---|
| AbstractList | The design of a concrete structure heavily depends on one of the most significant performance parameters: concrete strength. Reliable strength prediction can save design expenses and time, as well as reduce material waste from multiple mixing experiments. Because it has a very long service life, improves with time in strength, and is highly fire-resistant, concrete is the safest and most environmentally friendly building material used worldwide. It is estimated that between 21 and 31 billion tons are consumed annually. To generate concrete with the required strength, durability, and functionality in the most cost-efficient manner, designing a concrete mix entails selecting appropriate concrete elements and determining their relative ratios. This work used Extreme Gradient Boosting Regression (XGBR) to estimate the Compressive Strength (CS) and Slump (SL) in high-performance concrete. Three optimization methods were employed: The Population-Based Vortex Search Algorithm (PBVSA), the Escaping Bird Search for Constrained Optimization (EBSCO), as well as the Honey Badger Algorithm (HBA), to increase the predictive capacity of the underlying model. To improve accuracy, a calculated decision was made to combine these optimizers with existing schemes, resulting in the development of novel hybrid schemes with enhanced prediction capabilities. XGBR + PBVSA (XGPB), XGBR + EBSCO (XGEB), and XGBR + HBA (XGHB) are the names of the resulting hybrid schemes. The XGEB model, with a value of 0.985, performs exceptionally well during the test phase, as indicated by the R
2
index value in the SL section. The XGPB model, with a value of 0.975, comes in second. XGEB has the highest performance model in the CS section during the test phase, with an R
2
index value of 0.991, while XGB has the lowest productivity model with a value of 0.968.
Graphical abstract The design of a concrete structure heavily depends on one of the most significant performance parameters: concrete strength. Reliable strength prediction can save design expenses and time, as well as reduce material waste from multiple mixing experiments. Because it has a very long service life, improves with time in strength, and is highly fire-resistant, concrete is the safest and most environmentally friendly building material used worldwide. It is estimated that between 21 and 31 billion tons are consumed annually. To generate concrete with the required strength, durability, and functionality in the most cost-efficient manner, designing a concrete mix entails selecting appropriate concrete elements and determining their relative ratios. This work used Extreme Gradient Boosting Regression (XGBR) to estimate the Compressive Strength (CS) and Slump (SL) in high-performance concrete. Three optimization methods were employed: The Population-Based Vortex Search Algorithm (PBVSA), the Escaping Bird Search for Constrained Optimization (EBSCO), as well as the Honey Badger Algorithm (HBA), to increase the predictive capacity of the underlying model. To improve accuracy, a calculated decision was made to combine these optimizers with existing schemes, resulting in the development of novel hybrid schemes with enhanced prediction capabilities. XGBR + PBVSA (XGPB), XGBR + EBSCO (XGEB), and XGBR + HBA (XGHB) are the names of the resulting hybrid schemes. The XGEB model, with a value of 0.985, performs exceptionally well during the test phase, as indicated by the R2 index value in the SL section. The XGPB model, with a value of 0.975, comes in second. XGEB has the highest performance model in the CS section during the test phase, with an R2 index value of 0.991, while XGB has the lowest productivity model with a value of 0.968. |
| ArticleNumber | 463 |
| Author | Meng, Chenyu Zhang, Ruikun |
| Author_xml | – sequence: 1 givenname: Ruikun surname: Zhang fullname: Zhang, Ruikun email: zhangruikun123@126.com organization: School of Artificial Intelligence, Zhengzhou Railway Vocational & Technical College, School of Electronic Engineering, Zhengzhou Railway Vocational & Technical College – sequence: 2 givenname: Chenyu surname: Meng fullname: Meng, Chenyu organization: School of Electronic Engineering, Zhengzhou Railway Vocational & Technical College |
| BookMark | eNp9kMtOwzAQRS1UJErpD7CyxNrgR2wnS1TxkorYwNo4ziRx1TjBTpHo1xMogh2rGY3uuSOdUzQLfQCEzhm9ZJTqq5SxQhSEcknodGBkf4TmXHJKcqaL2e-u6AlaprShlHItMp3TOXp9tK71AfAWbAw-NKS0CSo8RKi8G30fcF9j13fTISX_DjiNEUIzttiGCqftrhuwD7j1TUsGiHUfOxscTEhwEUY4Q8e13SZY_swFerm9eV7dk_XT3cPqek0c13wklZCq4pXgtKyV0IUWBeSZAlUoVjnNpC4Ed1KIMpNac14WdaUUaFZKm1ELYoEuDr1D7N92kEaz6XcxTC-N4DLnWmWSTyl-SLnYpxShNkP0nY0fhlHzJdMcZJpJpvmWafYTJA5QmsKhgfhX_Q_1CQfDecA |
| Cites_doi | 10.22034/aeis.2024.483670.1241 10.1093/beheco/12.2.150 10.1016/j.istruc.2024.107649 10.1016/j.ins.2014.08.053 10.1016/j.compstruc.2021.106479 10.1121/1.4976038 10.1016/j.asoc.2017.03.007 10.1038/s41598-023-43622-9 10.1016/j.matpr.2024.04.009 10.1016/j.patcog.2016.04.017 10.1145/2939672.2939785 10.1016/S0008-8846(00)00345-8 10.1016/0022-5193(74)90202-1 10.1016/j.commatsci.2022.111811 10.1016/j.matpr.2024.04.059 10.1016/S0958-9465(00)00071-8 10.3390/app7010051 10.1007/s00521-022-07671-x 10.1016/j.advengsoft.2017.11.006 10.1016/j.fuel.2024.133183 10.1016/j.asoc.2014.08.010 10.1016/j.conbuildmat.2015.08.124 10.1016/j.neucom.2014.09.090 10.1016/j.conbuildmat.2023.132833 10.1061/JSDCCC.SCENG-1496 10.1016/j.conbuildmat.2016.03.214 10.1007/s00521-024-09553-w 10.1007/s12206-017-0107-3 10.1007/978-981-97-0072-1_6 10.1155/2016/7648467 10.1016/j.mtcomm.2024.109676 10.1016/j.matpr.2024.04.054 10.1016/j.conbuildmat.2015.06.055 10.1016/j.cemconres.2003.08.018 10.1007/s00216-020-02921-0 10.1016/j.matcom.2021.08.013 10.1109/CSIEC49655.2020.9237319 10.1016/j.advengsoft.2011.09.026 10.1016/j.asoc.2023.110997 10.1016/j.conbuildmat.2017.03.061 10.1016/j.ijleo.2022.169731 10.1002/atr.1217 10.1038/s41598-025-89530-y 10.1038/nature05733 10.1016/j.matpr.2024.04.081 10.1016/j.apm.2014.10.065 10.1016/j.engappai.2024.108388 10.1016/j.conbuildmat.2010.01.006 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s41939-025-01001-z |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2520-8179 |
| ExternalDocumentID | 10_1007_s41939_025_01001_z |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAIAL AAJBT AASML AATNV AATVU AAUYE ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABKCH ABMQK ABQBU ABRTQ ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AESKC AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AHPBZ AHWEU AIAKS AIGIU AILAN AITGF AIXLP AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ATHPR AXYYD AYFIA CSCUP DPUIP EBLON EBS FIGPU FNLPD GGCAI IKXTQ IWAJR J-C JZLTJ KOV LLZTM NPVJJ NQJWS O9J PT4 RLLFE ROL RSV SJYHP SNE SNPRN SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW ZMTXR AAAVM AAYXX ABJCF AEUYN AFFHD AFKRA ARAPS BENPR BGLVJ BGNMA CCPQU CITATION EJD FINBP FSGXE H13 HCIFZ M4Y M7S NU0 PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c272t-d356d2d320bf6379739e846e6961dc7157932c533b457722b9fd66e71b5a40ae3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001588876900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2520-8160 |
| IngestDate | Sun Oct 26 04:23:53 EDT 2025 Sat Nov 29 07:02:59 EST 2025 Sat Oct 25 10:56:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | CS XGBR Population-Based Vortex Search Algorithm Slump Honey Badger Algorithm High-performance concrete Escaping Bird Search for Constrained Optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-d356d2d320bf6379739e846e6961dc7157932c533b457722b9fd66e71b5a40ae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3258276452 |
| PQPubID | 7435034 |
| ParticipantIDs | proquest_journals_3258276452 crossref_primary_10_1007_s41939_025_01001_z springer_journals_10_1007_s41939_025_01001_z |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-01 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Multiscale and Multidisciplinary Modeling, Experiments and Design |
| PublicationTitleAbbrev | Multiscale and Multidiscip. Model. Exp. and Des |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | B Doğan (1001_CR19) 2015; 293 B Sadaghat (1001_CR41) 2024; 133 A Behnood (1001_CR11) 2017; 142 C-H Lim (1001_CR31) 2004; 34 A Hedenström (1001_CR24) 2001; 12 SM Ibrahim (1001_CR26) 2023; 149 L Luo (1001_CR32) 2017; 56 T Sağ (1001_CR42) 2022; 34 HG Russell (1001_CR40) 1999; 21 U Reuter (1001_CR39) 2018; 116 A Behnood (1001_CR9) 2015; 94 AA Abou El Ela (1001_CR2) 2023; 13 D Lentink (1001_CR30) 2007; 446 BH Bharatkumar (1001_CR13) 2001; 23 E Han (1001_CR22) 2022; 52 X Tian (1001_CR48) 2022; 215 1001_CR16 A Shishegaran (1001_CR45) 2021; 247 S Yan (1001_CR51) 2020; 412 C Yu (1001_CR52) 2014; 48 J Sobhani (1001_CR46) 2014; 24 A Khan (1001_CR28) 2023; 401 X Kong (1001_CR29) 2015; 169 AR Taghavi Khangah (1001_CR47) 2024; 003 P Chopra (1001_CR18) 2016; 2016 1001_CR6 SS Ansari (1001_CR3) 2025; 30 1001_CR7 IB Mustapha (1001_CR34) 2024; 36 MA Shaida (1001_CR44) 2025; 380 1001_CR8 B Naeim (1001_CR35) 2024; 70 M Fuchida (1001_CR21) 2017; 7 1001_CR4 1001_CR5 SG Patil (1001_CR38) 2012; 45 HC Howland (1001_CR25) 1974; 47 1001_CR43 T Düzenli̇ (1001_CR20) 2022; 268 T Mohammad (1001_CR33) 2024; 40 S Abe (1001_CR1) 2005 S Chithra (1001_CR17) 2016; 114 1001_CR36 Z Xing (1001_CR49) 2017; 31 D Chen (1001_CR15) 2016; 60 H-G Ni (1001_CR37) 2000; 30 L Zhang (1001_CR53) 2013; 32 Y Chen (1001_CR14) 2015; 39 H Bentegri (1001_CR12) 2025; 15 FA Hashim (1001_CR23) 2022; 192 K Yan (1001_CR50) 2010; 24 A Behnood (1001_CR10) 2015; 98 MM Islam (1001_CR27) 2017; 141 |
| References_xml | – volume: 003 start-page: 124 issue: 04 year: 2024 ident: 1001_CR47 publication-title: Adv Eng Intell Syst doi: 10.22034/aeis.2024.483670.1241 – volume: 12 start-page: 150 issue: 2 year: 2001 ident: 1001_CR24 publication-title: Behav Ecol doi: 10.1093/beheco/12.2.150 – volume: 70 start-page: 107649 year: 2024 ident: 1001_CR35 publication-title: Structures doi: 10.1016/j.istruc.2024.107649 – volume: 293 start-page: 125 year: 2015 ident: 1001_CR19 publication-title: Inf Sci (NY) doi: 10.1016/j.ins.2014.08.053 – volume: 52 start-page: 102005 year: 2022 ident: 1001_CR22 publication-title: Sustain Energy Technol Assess – volume: 247 start-page: 106479 year: 2021 ident: 1001_CR45 publication-title: Comput Struct doi: 10.1016/j.compstruc.2021.106479 – volume: 141 start-page: EL89 issue: 2 year: 2017 ident: 1001_CR27 publication-title: J Acoust Soc Am doi: 10.1121/1.4976038 – volume: 56 start-page: 199 year: 2017 ident: 1001_CR32 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.03.007 – volume: 13 start-page: 16765 issue: 1 year: 2023 ident: 1001_CR2 publication-title: Sci Rep doi: 10.1038/s41598-023-43622-9 – ident: 1001_CR8 doi: 10.1016/j.matpr.2024.04.009 – volume: 60 start-page: 296 year: 2016 ident: 1001_CR15 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2016.04.017 – ident: 1001_CR16 doi: 10.1145/2939672.2939785 – volume: 30 start-page: 1245 issue: 8 year: 2000 ident: 1001_CR37 publication-title: Cem Concr Res doi: 10.1016/S0008-8846(00)00345-8 – volume: 47 start-page: 333 issue: 2 year: 1974 ident: 1001_CR25 publication-title: J Theor Biol doi: 10.1016/0022-5193(74)90202-1 – ident: 1001_CR36 – volume-title: Support vector machines for pattern classification year: 2005 ident: 1001_CR1 – volume: 215 start-page: 111811 year: 2022 ident: 1001_CR48 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2022.111811 – ident: 1001_CR6 doi: 10.1016/j.matpr.2024.04.059 – volume: 23 start-page: 71 issue: 1 year: 2001 ident: 1001_CR13 publication-title: Cem Concr Compos doi: 10.1016/S0958-9465(00)00071-8 – volume: 7 start-page: 51 issue: 1 year: 2017 ident: 1001_CR21 publication-title: Appl Sci doi: 10.3390/app7010051 – volume: 34 start-page: 18211 issue: 20 year: 2022 ident: 1001_CR42 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07671-x – volume: 116 start-page: 67 year: 2018 ident: 1001_CR39 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.11.006 – volume: 380 start-page: 133183 year: 2025 ident: 1001_CR44 publication-title: Fuel doi: 10.1016/j.fuel.2024.133183 – volume: 24 start-page: 572 year: 2014 ident: 1001_CR46 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2014.08.010 – volume: 98 start-page: 519 year: 2015 ident: 1001_CR10 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2015.08.124 – volume: 169 start-page: 449 year: 2015 ident: 1001_CR29 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.09.090 – volume: 21 start-page: 56 issue: 2 year: 1999 ident: 1001_CR40 publication-title: Concr Int – volume: 401 start-page: 132833 year: 2023 ident: 1001_CR28 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2023.132833 – volume: 30 start-page: 4024113 issue: 2 year: 2025 ident: 1001_CR3 publication-title: J Struct Des Constr Pract doi: 10.1061/JSDCCC.SCENG-1496 – volume: 114 start-page: 528 year: 2016 ident: 1001_CR17 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2016.03.214 – volume: 36 start-page: 9245 issue: 16 year: 2024 ident: 1001_CR34 publication-title: Neural Comput Appl doi: 10.1007/s00521-024-09553-w – volume: 31 start-page: 545 year: 2017 ident: 1001_CR49 publication-title: J Mech Sci Technol doi: 10.1007/s12206-017-0107-3 – ident: 1001_CR4 doi: 10.1007/978-981-97-0072-1_6 – volume: 2016 start-page: 1 year: 2016 ident: 1001_CR18 publication-title: Adv Mater Sci Eng doi: 10.1155/2016/7648467 – volume: 40 start-page: 109676 year: 2024 ident: 1001_CR33 publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2024.109676 – ident: 1001_CR7 doi: 10.1016/j.matpr.2024.04.054 – volume: 94 start-page: 137 year: 2015 ident: 1001_CR9 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2015.06.055 – volume: 34 start-page: 409 issue: 3 year: 2004 ident: 1001_CR31 publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2003.08.018 – volume: 412 start-page: 7881 year: 2020 ident: 1001_CR51 publication-title: Anal Bioanal Chem doi: 10.1007/s00216-020-02921-0 – volume: 192 start-page: 84 year: 2022 ident: 1001_CR23 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2021.08.013 – ident: 1001_CR43 doi: 10.1109/CSIEC49655.2020.9237319 – volume: 45 start-page: 203 issue: 1 year: 2012 ident: 1001_CR38 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2011.09.026 – volume: 149 start-page: 110997 year: 2023 ident: 1001_CR26 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2023.110997 – volume: 142 start-page: 199 year: 2017 ident: 1001_CR11 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.03.061 – volume: 268 start-page: 169731 year: 2022 ident: 1001_CR20 publication-title: Optik doi: 10.1016/j.ijleo.2022.169731 – volume: 48 start-page: 250 issue: 3 year: 2014 ident: 1001_CR52 publication-title: J Adv Transp doi: 10.1002/atr.1217 – volume: 32 start-page: 877 issue: 4 year: 2013 ident: 1001_CR53 publication-title: Comput Inform – volume: 15 start-page: 5017 issue: 1 year: 2025 ident: 1001_CR12 publication-title: Sci Rep doi: 10.1038/s41598-025-89530-y – volume: 446 start-page: 1082 issue: 7139 year: 2007 ident: 1001_CR30 publication-title: Nature doi: 10.1038/nature05733 – ident: 1001_CR5 doi: 10.1016/j.matpr.2024.04.081 – volume: 39 start-page: 2617 issue: 9 year: 2015 ident: 1001_CR14 publication-title: Appl Math Model doi: 10.1016/j.apm.2014.10.065 – volume: 133 start-page: 108388 year: 2024 ident: 1001_CR41 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2024.108388 – volume: 24 start-page: 1479 issue: 8 year: 2010 ident: 1001_CR50 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2010.01.006 |
| SSID | ssj0002734780 ssib042110740 |
| Score | 2.3076632 |
| Snippet | The design of a concrete structure heavily depends on one of the most significant performance parameters: concrete strength. Reliable strength prediction can... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 463 |
| SubjectTerms | Algorithms Cement Characterization and Evaluation of Materials Compressive strength Concrete mixes Concrete mixing Concrete properties Concrete structures Construction industry Engineering Fire resistance Machine learning Mathematical Applications in the Physical Sciences Mechanical Engineering Numerical and Computational Physics Optimization Original Paper Reinforced concrete Search algorithms Service life Simulation Soft computing Solid Mechanics Support vector machines |
| Title | Machine learning-based prediction of compressive strength and slump in high-performance concrete |
| URI | https://link.springer.com/article/10.1007/s41939-025-01001-z https://www.proquest.com/docview/3258276452 |
| Volume | 8 |
| WOSCitedRecordID | wos001588876900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Standard Collection customDbUrl: eissn: 2520-8179 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002734780 issn: 2520-8160 databaseCode: RSV dateStart: 20180301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMbWEocP5IRISoGqBAvdQuOH6UMadSEDv312G7SAoIB5iSWdXf2fZe7-w6A0yS2flmFAmkRub9VhqBYEIZiSanRKhNMe03f8F4v7veTu7oprGyq3ZuUpL-p581uxGKNBLnxq4EjDkLTZbBi3V3sBjbcPzw3VkR8SFMzmLzVBC7cj1DD1MZKcciCunvm52W_eqgF7PyWKfUOqLv5v61vgY0acMKLmYVsgyWd74D1TzSEu-Dl1ldUaliPkBgg59sULMYui-M0B0cGuuJzXzQ70dB1mOSD6hWKXMHS3m8FHObQUR-jYtGJYD_JLSit9B546l49Xl6jevICkpjjCqmIMoVVhIPMsIgnPEq0BSqaJSxUkofUnmosLVLMCLXwHGeJUYxpHmZUkEDoaB-08lGuDwBkMjSGUEFlEloxmEwbQlxQqSS2WCJug7NG2mkxI9hI51TKXm6plVvq5ZZO26DTKCStD1uZRpjGmLsMbRucNwpYPP59tcO_vX4E1rDToe9E7IBWNX7Xx2BVTqphOT7xRvgBhiHVfA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MwDLVgIAEHvhGDATlwg0hrmqTtESGmIbYJwUC7lbZJxjh01VZ22K8nydoNEBzg3DaKbCd-ru1ngPPA135ZOBGWkWv-VimK_Yhy7CeMKSniiEur6ZbX6fi9XnBfNIWNy2r3MiVpb-p5sxvVWCPAZvxq3RAH4ekyrFDtsQxj_sPjc2lF1IY0BYPJW0Hg4tkRaoTpWMl3eL3onvl52a8eagE7v2VKrQNqbP1v69uwWQBOdDWzkB1YkukubHyiIdyDl7atqJSoGCHRx8a3CZSNTBbHaA4NFTLF57ZodiKR6TBJ-_krilKBxvp-y9AgRYb6GGeLTgT9SapBaS734alx071u4mLyAk6IR3IsXMYFES6px4q7XuC5gdRARfKAOyLxHKZPNUk0Uowp0_CcxIESnEvPiVlE65F0D6CSDlN5CIgnjlKURSwJHC0GFUtFqQkqRUI0lvCrcFFKO8xmBBvhnErZyi3Ucgut3MJpFWqlQsLisI1DlzCfeCZDW4XLUgGLx7-vdvS3189grdltt8LWbefuGNaJ0aftSqxBJR-9yxNYTSb5YDw6tQb5AZFO2GA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1BQQgGvhGFAh7YwKJxbCcZEVCBKFUlPtQtJLFdypBGbejQX4_tJm1BMCDmJJZyZ-fe5e69AzgNfB2XhRNhGbnmb5Wi2I8ox37CmJIijri0nm56rZbf6QTtORa_7XYvS5ITToNRaUrzi0yoiynxjWrcEWAzirVuRITweBGWqGmkN_n640u5o6hNbwo1k_dCzMWz49QI03mT7_B6waT5edmv0WoGQb9VTW0wamz8_zU2Yb0AouhysnO2YEGm27A2J0-4A68PttNSomK0RBebmCdQNjDVHeNR1FfINKXbZtqRRIZ5knbzNxSlAg31dy9DvRQZSWSczRgK-pFUg9Vc7sJz4-bp6hYXExlwQjySY-EyLohwST1W3PUCzw2kBjCSB9wRiecwfdpJohFkTJmG7SQOlOBcek7MIlqPpLsHlbSfyn1APHGUoixiSeBoM6hYKkpNsikSojGGX4Wz0vJhNhHeCKcSy9ZuobZbaO0WjqtQK50TFodwGLqE-cQzldsqnJfOmF3-fbWDv91-Aivt60bYvGvdH8IqMe60ZMUaVPLBhzyC5WSU94aDY7s3PwEdcOFE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+prediction+of+compressive+strength+and+slump+in+high-performance+concrete&rft.jtitle=Multiscale+and+Multidisciplinary+Modeling%2C+Experiments+and+Design&rft.au=Zhang%2C+Ruikun&rft.au=Meng%2C+Chenyu&rft.date=2025-11-01&rft.issn=2520-8160&rft.eissn=2520-8179&rft.volume=8&rft.issue=10&rft_id=info:doi/10.1007%2Fs41939-025-01001-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41939_025_01001_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8160&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8160&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8160&client=summon |