Deceptive reviewer group detection using self-adversarial variational autoencoder: a heterogeneous graph-based approach

With the rapid growth of online review platforms and e-commerce websites, user-posted reviews have become an essential factor influencing consumers' purchasing decisions. The growing presence of review spammers who post misleading or biased reviews has raised concerns about the credibility of o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge and information systems Ročník 67; číslo 11; s. 10581 - 10610
Hlavní autoři: Maurya, Sushil Kumar, Singh, Dinesh
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.11.2025
Springer Nature B.V
Témata:
ISSN:0219-1377, 0219-3116
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the rapid growth of online review platforms and e-commerce websites, user-posted reviews have become an essential factor influencing consumers' purchasing decisions. The growing presence of review spammers who post misleading or biased reviews has raised concerns about the credibility of online platforms. Due to the difficulty arising from the absence of evident behavioral cues among solitary reviewers, our proposal entails inferring the concealed associations between reviewers and products by completing the user-review-product graph. To accomplish this, we propose an integrated approach comprising three key components. The first component aims to construct comprehensive reviewer node embeddings to capture the essence of user behaviors. We introduce a novel approach called the Weighted Node Random Walk Learning-Based Heterogeneous Graph (WNRWL-HG) to achieve reviewer node embeddings. The second component is designed to identify varying densities among reviewer nodes, utilizing the OPTICS (Ordering Points to Identify the Clustering Structure) clustering technique. The OPTICS technique analyzes the underlying distribution patterns within the clustering structure, offering a more nuanced perspective for identifying candidate reviewer groups. In the last component, a Self-Adversarial Variational Autoencoder (SA-VAE) model is constructed to combat the infiltration of active review spammers within the candidate groups. Experimental results on two real-world review datasets—YelpZip and AmazonBook—demonstrate that our approach outperforms state-of-the-art baselines, achieving improvements of up to 4–5% in precision among the top 100 detected groups.
AbstractList With the rapid growth of online review platforms and e-commerce websites, user-posted reviews have become an essential factor influencing consumers' purchasing decisions. The growing presence of review spammers who post misleading or biased reviews has raised concerns about the credibility of online platforms. Due to the difficulty arising from the absence of evident behavioral cues among solitary reviewers, our proposal entails inferring the concealed associations between reviewers and products by completing the user-review-product graph. To accomplish this, we propose an integrated approach comprising three key components. The first component aims to construct comprehensive reviewer node embeddings to capture the essence of user behaviors. We introduce a novel approach called the Weighted Node Random Walk Learning-Based Heterogeneous Graph (WNRWL-HG) to achieve reviewer node embeddings. The second component is designed to identify varying densities among reviewer nodes, utilizing the OPTICS (Ordering Points to Identify the Clustering Structure) clustering technique. The OPTICS technique analyzes the underlying distribution patterns within the clustering structure, offering a more nuanced perspective for identifying candidate reviewer groups. In the last component, a Self-Adversarial Variational Autoencoder (SA-VAE) model is constructed to combat the infiltration of active review spammers within the candidate groups. Experimental results on two real-world review datasets—YelpZip and AmazonBook—demonstrate that our approach outperforms state-of-the-art baselines, achieving improvements of up to 4–5% in precision among the top 100 detected groups.
Author Singh, Dinesh
Maurya, Sushil Kumar
Author_xml – sequence: 1
  givenname: Sushil Kumar
  surname: Maurya
  fullname: Maurya, Sushil Kumar
  email: smaurya@mnnit.ac.in, sushilbbiet@gmail.com
  organization: Computer Science and Engineering, Motilal Nehru National Institute of Technology Allahabad
– sequence: 2
  givenname: Dinesh
  surname: Singh
  fullname: Singh, Dinesh
  organization: Computer Science and Engineering, Motilal Nehru National Institute of Technology Allahabad
BookMark eNp9kM1OwzAQhC1UJFrgBThZ4hzw2klcc0PlV6rEBc6WE2_aVCUOdpKqb4_bVOLGYTV7mJldfTMyaVyDhNwAuwPG5H0ABpAljB8n5cn-jEwZB5UIgHxy2kFIeUFmIWwYA5kDTMnuCUtsu3pA6nGocYeerrzrW2qxw7KrXUP7UDcrGnBbJcYO6IPxtdnS4SAHQ9xN3zlsSmfRP1BD1zHr3QobdH2IfaZdJ4UJaKlpW-9Mub4i55XZBrw-6SX5enn-XLwly4_X98XjMim55F1iQWGW5UIwISuZVVIqKYWtClvJUmRzxVPDlMktGAVKFmUuFEo0vEoLVvBUXJLbsTee_ekxdHrjeh9fDlrwXMlMwZxHFx9dpXcheKx06-tv4_camD4A1iNgHeHqI2C9jyExhkI0Nyv0f9X_pH4Bgw6C5A
Cites_doi 10.1109/ICC.2019.8761650
10.1016/j.jksuci.2019.10.002
10.1016/j.ipm.2019.102140
10.1007/s11042-025-20922-y
10.1007/978-981-10-3376-6_30
10.1016/j.ins.2020.05.084
10.1007/s10489-022-03427-1
10.1007/s10618-020-00693-w
10.1007/978-3-319-23528-8_17
10.1016/j.eswa.2018.06.028
10.1016/j.eswa.2020.113465
10.1609/icwsm.v11i1.14887
10.1007/s10660-020-09413-4
10.1109/TSMC.2022.3205365
10.1007/s11042-023-17348-9
10.1007/s00500-019-04107-y
10.1186/s42400-023-00159-8
10.1145/2783258.2783370
10.1007/s10489-018-1142-1
10.1016/j.ipm.2023.103282
10.1145/2623330.2623732
10.1145/2187836.2187863
10.1109/AIC55036.2022.9848811
10.1145/2505515.2505700
10.1007/s10115-017-1068-7
10.1109/TCSS.2023.3243139
10.1016/j.ins.2020.03.063
10.1007/978-981-99-8318-6_2
10.1145/304181.304187
10.1145/2939672.2939754
10.1016/j.eswa.2022.117482
10.1016/j.knosys.2020.105520
10.1109/TKDE.2018.2880192
10.1016/j.dss.2022.113911
10.1093/comjnl/bxv068
10.1109/TBDATA.2022.3177455
10.1016/j.eswa.2022.119454
10.3390/info7010012
10.1007/s10618-014-0365-y
10.1016/j.eswa.2018.07.005
10.1016/j.ins.2022.05.086
10.1145/1871437.1871557
10.1109/ICDM.2015.62
10.1016/j.asoc.2020.107023
10.1145/3394486.3403135
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10115-025-02542-y
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 0219-3116
EndPage 10610
ExternalDocumentID 10_1007_s10115_025_02542_y
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29L
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6KP
6NX
7WY
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAS
LLZTM
M0C
M4Y
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c272t-d19e55633037f75f779773dfbdf7c358924a09a6d1a9197bc639e7ea2f4b0b243
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001544171300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0219-1377
IngestDate Sun Nov 09 06:52:39 EST 2025
Sat Nov 29 06:56:27 EST 2025
Sat Nov 08 02:23:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Variational autoencoder
Self-adversarial
Heterogeneous graph
Spammer group
Clustering
Meta-walk
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-d19e55633037f75f779773dfbdf7c358924a09a6d1a9197bc639e7ea2f4b0b243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3269759182
PQPubID 43394
PageCount 30
ParticipantIDs proquest_journals_3269759182
crossref_primary_10_1007_s10115_025_02542_y
springer_journals_10_1007_s10115_025_02542_y
PublicationCentury 2000
PublicationDate 20251100
2025-11-00
20251101
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 20251100
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationSubtitle An International Journal
PublicationTitle Knowledge and information systems
PublicationTitleAbbrev Knowl Inf Syst
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Z Zhang (2542_CR46) 2023; 216
2542_CR20
ZW Zhang (2542_CR48) 2022; 53
S Saumya (2542_CR18) 2022; 22
F Zhang (2542_CR38) 2022; 203
SA Shinde (2542_CR47) 2024; 83
LY Dong (2542_CR22) 2018; 114
Z Wang (2542_CR11) 2016; 59
D Zhang (2542_CR32) 2023; 166
M Ankerst (2542_CR14) 1999; 28
RM Saeed (2542_CR19) 2022; 34
S Noekhah (2542_CR29) 2020; 57
L Li (2542_CR7) 2018; 41
2542_CR10
2542_CR9
A Ligthart (2542_CR24) 2021; 101
2542_CR8
J Chao (2542_CR39) 2022; 2022
2542_CR3
Y Liu (2542_CR6) 2018; 112
N Cao (2542_CR16) 2020; 156
G Giasemidis (2542_CR23) 2018; 32
MZ Asghar (2542_CR5) 2020; 24
X Wang (2542_CR42) 2022; 9
2542_CR17
2542_CR43
2542_CR44
2542_CR45
Z Wang (2542_CR13) 2020; 34
F Zhang (2542_CR31) 2020; 193
2542_CR40
2542_CR41
Z Wang (2542_CR12) 2018; 48
L Akoglu (2542_CR1) 2015; 29
X Tang (2542_CR4) 2020; 526
Q Zhang (2542_CR30) 2023; 6
Z Wang (2542_CR28) 2018; 55
2542_CR49
2542_CR33
2542_CR34
2542_CR35
F Zhang (2542_CR26) 2022; 606
SJ Ji (2542_CR27) 2020; 536
W Zhang (2542_CR25) 2016; 7
L Wu (2542_CR2) 2017; 11
2542_CR36
F Zhang (2542_CR37) 2023; 60
SK Maurya (2542_CR15) 2023; 53
RY Lau (2542_CR21) 2012; 2
References_xml – ident: 2542_CR44
  doi: 10.1109/ICC.2019.8761650
– volume: 34
  start-page: 1407
  issue: 1
  year: 2022
  ident: 2542_CR19
  publication-title: J King Saud Univ-Comput Inform Sci
  doi: 10.1016/j.jksuci.2019.10.002
– volume: 57
  issue: 1
  year: 2020
  ident: 2542_CR29
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2019.102140
– ident: 2542_CR49
  doi: 10.1007/s11042-025-20922-y
– ident: 2542_CR20
  doi: 10.1007/978-981-10-3376-6_30
– volume: 41
  start-page: 946
  issue: 4
  year: 2018
  ident: 2542_CR7
  publication-title: Chin J Comput
– volume: 536
  start-page: 454
  year: 2020
  ident: 2542_CR27
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.05.084
– volume: 53
  start-page: 2189
  issue: 2
  year: 2023
  ident: 2542_CR15
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-03427-1
– volume: 34
  start-page: 1621
  year: 2020
  ident: 2542_CR13
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-020-00693-w
– ident: 2542_CR35
  doi: 10.1007/978-3-319-23528-8_17
– volume: 112
  start-page: 148
  year: 2018
  ident: 2542_CR6
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.06.028
– volume: 2022
  start-page: 1
  year: 2022
  ident: 2542_CR39
  publication-title: Secur Commun Netw
– volume: 156
  year: 2020
  ident: 2542_CR16
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113465
– volume: 11
  start-page: 319
  issue: 1
  year: 2017
  ident: 2542_CR2
  publication-title: Proceedings of the international AAAI conference on web and social media
  doi: 10.1609/icwsm.v11i1.14887
– volume: 22
  start-page: 113
  issue: 1
  year: 2022
  ident: 2542_CR18
  publication-title: Electron Commer Res
  doi: 10.1007/s10660-020-09413-4
– volume: 53
  start-page: 1748
  issue: 3
  year: 2022
  ident: 2542_CR48
  publication-title: IEEE Trans Syst Man Cybernet: Syst
  doi: 10.1109/TSMC.2022.3205365
– volume: 83
  start-page: 45111
  issue: 15
  year: 2024
  ident: 2542_CR47
  publication-title: Multim Tools Appl
  doi: 10.1007/s11042-023-17348-9
– volume: 24
  start-page: 3475
  year: 2020
  ident: 2542_CR5
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04107-y
– volume: 6
  start-page: 26
  issue: 1
  year: 2023
  ident: 2542_CR30
  publication-title: Cybersecurity
  doi: 10.1186/s42400-023-00159-8
– ident: 2542_CR10
  doi: 10.1145/2783258.2783370
– volume: 48
  start-page: 3094
  year: 2018
  ident: 2542_CR12
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1142-1
– volume: 60
  issue: 3
  year: 2023
  ident: 2542_CR37
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2023.103282
– ident: 2542_CR40
  doi: 10.1145/2623330.2623732
– ident: 2542_CR8
  doi: 10.1145/2187836.2187863
– ident: 2542_CR33
  doi: 10.1109/AIC55036.2022.9848811
– ident: 2542_CR36
  doi: 10.1145/2505515.2505700
– ident: 2542_CR43
– volume: 55
  start-page: 571
  year: 2018
  ident: 2542_CR28
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-017-1068-7
– ident: 2542_CR45
  doi: 10.1109/TCSS.2023.3243139
– volume: 526
  start-page: 274
  year: 2020
  ident: 2542_CR4
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.03.063
– ident: 2542_CR17
  doi: 10.1007/978-981-99-8318-6_2
– volume: 28
  start-page: 49
  issue: no. 2
  year: 1999
  ident: 2542_CR14
  publication-title: ACM Sigmod Rec
  doi: 10.1145/304181.304187
– ident: 2542_CR41
  doi: 10.1145/2939672.2939754
– volume: 203
  year: 2022
  ident: 2542_CR38
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.117482
– volume: 193
  year: 2020
  ident: 2542_CR31
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2020.105520
– volume: 32
  start-page: 1
  issue: 1
  year: 2018
  ident: 2542_CR23
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2018.2880192
– volume: 166
  year: 2023
  ident: 2542_CR32
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2022.113911
– volume: 59
  start-page: 861
  issue: no. 6
  year: 2016
  ident: 2542_CR11
  publication-title: Comput J
  doi: 10.1093/comjnl/bxv068
– volume: 9
  start-page: 415
  issue: 2
  year: 2022
  ident: 2542_CR42
  publication-title: IEEE Trans Big Data
  doi: 10.1109/TBDATA.2022.3177455
– volume: 216
  year: 2023
  ident: 2542_CR46
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.119454
– volume: 7
  start-page: 12
  issue: 1
  year: 2016
  ident: 2542_CR25
  publication-title: Information
  doi: 10.3390/info7010012
– volume: 29
  start-page: 626
  year: 2015
  ident: 2542_CR1
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-014-0365-y
– volume: 2
  start-page: 1
  issue: 4
  year: 2012
  ident: 2542_CR21
  publication-title: ACM Trans Manag Inform Syst (TMIS)
– volume: 114
  start-page: 210
  year: 2018
  ident: 2542_CR22
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.07.005
– volume: 606
  start-page: 819
  year: 2022
  ident: 2542_CR26
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2022.05.086
– ident: 2542_CR3
  doi: 10.1145/1871437.1871557
– ident: 2542_CR9
  doi: 10.1109/ICDM.2015.62
– volume: 101
  year: 2021
  ident: 2542_CR24
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.107023
– ident: 2542_CR34
  doi: 10.1145/3394486.3403135
SSID ssj0017611
Score 2.401818
Snippet With the rapid growth of online review platforms and e-commerce websites, user-posted reviews have become an essential factor influencing consumers' purchasing...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 10581
SubjectTerms Behavior
Clustering
Computer Science
Data Mining and Knowledge Discovery
Database Management
Datasets
Deep learning
Graphs
Information Storage and Retrieval
Information Systems and Communication Service
Information Systems Applications (incl.Internet)
IT in Business
Machine learning
Nodes
Product reviews
Propagation
Random walk
Spamming
Title Deceptive reviewer group detection using self-adversarial variational autoencoder: a heterogeneous graph-based approach
URI https://link.springer.com/article/10.1007/s10115-025-02542-y
https://www.proquest.com/docview/3269759182
Volume 67
WOSCitedRecordID wos001544171300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 0219-3116
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017611
  issn: 0219-1377
  databaseCode: RSV
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYWChPEWhIA9sYClxHk7YEFAxoArxUrfIT0BCCWrSov57bCehgGCAKYMjK7qH7y6-7zuAQ6KlJyPtYxGJCIeccsx9U_No5gVSyZBI7khcr-hwmIxG6XUDCivbbvf2StKd1J_AbiZ7wXb8qkVwEzxbhCUT7hI7sOHm9uHj7sAU5m5OnvFFbPn0GqjMz3t8DUfzHPPbtaiLNoPu_75zDVab7BKd1uawDgsq34BuO7kBNY68CW_nyrWzTBWqsStm0eE7kFSVa87Kke2If0SletGY2anNJbO2iqb2Uf9ARGxSFZYIU6rxCWLoybbWFMYiVTEpkaPCxjZKStQyl2_B_eDi7uwSNyMYsCCUVFj6qbIUYibQUU0jTanJFwOpudRUBFFiqjfmpSyWPkv9lHJhEh5FFSM65B4nYbANnbzI1Q4gGQtChCA8YDoMAy-ljCfS95kMYqqiuAdHrSay15ppI5tzKluZZkaemZNpNutBv1VW1nhdmZlUNKVRakqmHhy3ypkv_77b7t9e34MVYvXrIIl96FTjidqHZTGtnsvxgbPGd7vx3YY
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CnqxPrFadQ_edCHZJN3Gm6ilYi2iVXoL-1RBGmnSSv-9u9vEquhBTzlsWMI8dmay830DcEi09GSkfSwiEeGQU465b2oezbxAKhkSyR2Ja4d2u81-P74pQGFZ2e1eXkm6k_oT2M1kL9iOX7UIboIn87AQmohlGfNv7x4-7g5MYe7m5BlfxJZPr4DK_LzH13A0yzG_XYu6aNOq_u87V2GlyC7R6dQc1mBODdahWk5uQIUjb8DbuXLtLGOFptgVs-jwHUiq3DVnDZDtiH9EmXrRmNmpzRmztorG9jH9gYjYKE8tEaZUwxPE0JNtrUmNRap0lCFHhY1tlJSoZC7fhPvWRe-sjYsRDFgQSnIs_VhZCjET6KimkabU5IuB1FxqKoKoaao35sWsIX0W-zHlwiQ8iipGdMg9TsJgCyqDdKC2AcmGIEQIwgOmwzDwYsp4U_o-k0GDqqhRg6NSE8nrlGkjmXEqW5kmRp6Jk2kyqUG9VFZSeF2WmFQ0plFsSqYaHJfKmS3_vtvO314_gKV277qTdC67V7uwTKyuHTyxDpV8OFJ7sCjG-XM23HeW-Q4nb-Bq
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60inixPrFadQ_edDHZJN3Gm1iLohTBB97CPlWQtDRppf_e3U1iq-hBPOWwYQnzYGYy830DcEi09GSkfSwiEeGQU465b2oezbxAKhkSyR2J6w3t9dpPT_HtDIrfTbtXLckC02BZmtL8ZCD1yQzwzWQy2K5itWhugifzsBDaQXpbr989fvYRTJHuduYZv8SWW6-Ezfx8x9fQNM03v7VIXeTp1v__zauwUmad6KwwkzWYU-k61KuNDqh08A147yg35jJWqMC0mEOH-0BS5W5oK0V2Uv4ZZepNY2a3OWfM2jAa20fxYxGxUd63BJlSDU8RQy925KZvLFX1RxlyFNnYRk-JKkbzTXjoXtyfX-JyNQMWhJIcSz9WllrMBECqaaQpNXlkIDWXmoogapuqjnkxa0mfxX5MuTCJkKKKER1yj5Mw2IJa2k_VNiDZEoQIQXjAdBgGXkwZb0vfZzJoURW1GnBUaSUZFAwcyZRr2co0MfJMnEyTSQOaleKS0huzxKSoMY1iU0o14LhS1PT499t2_vb6ASzddrrJzVXveheWiVW1Qy02oZYPR2oPFsU4f82G-85IPwAtnOlO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deceptive+reviewer+group+detection+using+self-adversarial+variational+autoencoder%3A+a+heterogeneous+graph-based+approach&rft.jtitle=Knowledge+and+information+systems&rft.au=Maurya%2C+Sushil+Kumar&rft.au=Singh%2C+Dinesh&rft.date=2025-11-01&rft.pub=Springer+London&rft.issn=0219-1377&rft.eissn=0219-3116&rft.volume=67&rft.issue=11&rft.spage=10581&rft.epage=10610&rft_id=info:doi/10.1007%2Fs10115-025-02542-y&rft.externalDocID=10_1007_s10115_025_02542_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-1377&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-1377&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-1377&client=summon