A modified wind driven optimization algorithm and its applications in hardware-software partitioning
The Wind Driven Optimization (WDO) algorithm is a metaheuristic technique inspired by atmospheric flow dynamics. Although structurally simple, WDO suffers from static search behavior and diversity loss caused by global wind-speed-based sorting. It also lacks fine-grained local search capabilities, w...
Uloženo v:
| Vydáno v: | Cluster computing Ročník 28; číslo 16; s. 1032 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.12.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1386-7857, 1573-7543 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The Wind Driven Optimization (WDO) algorithm is a metaheuristic technique inspired by atmospheric flow dynamics. Although structurally simple, WDO suffers from static search behavior and diversity loss caused by global wind-speed-based sorting. It also lacks fine-grained local search capabilities, which limit its performance in complex, high-dimensional, and constrained tasks. To address these issues, this study proposes an improved optimization model by integrating WDO, Beluga Whale Optimization (BWO), and the Golden Sine Algorithm (GSA). WDO removes wind-speed sorting to preserve diversity and enable multi-strategy fusion. Subsequently, WDO is integrated with BWO to enhance global search capabilities, while GSA is adopted for fine-grained local exploitation. Consequently, the integrated WDO-BWO-GSA approach is applied to estimate the optimal hardware-software (HW-SW) partitioning. Experiments on 24 benchmark functions including both ablation and comparative studies were conducted to evaluate the effectiveness of the proposed algorithm. The results confirmed that the integrated WDO-BWO-GSA significantly enhanced global exploration and local exploitation. Comparative results further demonstrated that the proposed integrated WDO-BWO-GSA outperformed WDO, BWO, Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), Particle Swarm Optimization (PSO), and GSA, achieving average convergence speed improvements of 62.07%, 54.28%, 62.31%, 70.69%, 72.26%, and 62.19%, respectively. Additionally, on a HW-SW partitioning task, it surpassed the Complex-valued encoding WDO (CWDO) by 59.55% in convergence speed, while also delivering superior solution quality. These results confirmed the robustness and adaptability of the proposed integrated WDO-BWO-GSA in solving complex partitioning optimization problems. |
|---|---|
| AbstractList | The Wind Driven Optimization (WDO) algorithm is a metaheuristic technique inspired by atmospheric flow dynamics. Although structurally simple, WDO suffers from static search behavior and diversity loss caused by global wind-speed-based sorting. It also lacks fine-grained local search capabilities, which limit its performance in complex, high-dimensional, and constrained tasks. To address these issues, this study proposes an improved optimization model by integrating WDO, Beluga Whale Optimization (BWO), and the Golden Sine Algorithm (GSA). WDO removes wind-speed sorting to preserve diversity and enable multi-strategy fusion. Subsequently, WDO is integrated with BWO to enhance global search capabilities, while GSA is adopted for fine-grained local exploitation. Consequently, the integrated WDO-BWO-GSA approach is applied to estimate the optimal hardware-software (HW-SW) partitioning. Experiments on 24 benchmark functions including both ablation and comparative studies were conducted to evaluate the effectiveness of the proposed algorithm. The results confirmed that the integrated WDO-BWO-GSA significantly enhanced global exploration and local exploitation. Comparative results further demonstrated that the proposed integrated WDO-BWO-GSA outperformed WDO, BWO, Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), Particle Swarm Optimization (PSO), and GSA, achieving average convergence speed improvements of 62.07%, 54.28%, 62.31%, 70.69%, 72.26%, and 62.19%, respectively. Additionally, on a HW-SW partitioning task, it surpassed the Complex-valued encoding WDO (CWDO) by 59.55% in convergence speed, while also delivering superior solution quality. These results confirmed the robustness and adaptability of the proposed integrated WDO-BWO-GSA in solving complex partitioning optimization problems. |
| ArticleNumber | 1032 |
| Author | Mao, Le-Le Zhou, Kai-Qing Li, Xin Zain, Azlan Mohd |
| Author_xml | – sequence: 1 givenname: Le-Le surname: Mao fullname: Mao, Le-Le organization: College of Mathematics and Computer Science, Hengshui University, Faculty of Computing, Universiti Teknologi Malaysia – sequence: 2 givenname: Azlan Mohd surname: Zain fullname: Zain, Azlan Mohd organization: Faculty of Computing, Universiti Teknologi Malaysia – sequence: 3 givenname: Kai-Qing surname: Zhou fullname: Zhou, Kai-Qing organization: School of Communication and Electronic Engineering, Jishou University – sequence: 4 givenname: Xin surname: Li fullname: Li, Xin email: lixinhszyjsxy@outlook.com organization: Department of Information Engineering, Hengshui College of Vocational and Technology |
| BookMark | eNp9kEtLAzEUhYNUsK3-AVcB19E8JpNkWYovENzoOqSTTJvSJmMyteivN9MR3Lm6B8537uWeGZiEGBwA1wTfEozFXSaYyxphyhHmouJInoEp4YIhwSs2KZoVW0guLsAs5y3GWAmqpsAu4D5a33pn4dEHC23yny7A2PV-779N72OAZreOyfebPTSF8H2Gput2vjm5GfoANybZo0kO5dj2g4CdSb0ffB_Wl-C8Nbvsrn7nHLw_3L8tn9DL6-PzcvGCGipojyzh1QoLWVPSWKVqVUtCBOFOSlfTylLerLCxrlKcSVVZ5ShbCeycIUap8uwc3Ix7uxQ_Di73ehsPKZSTmtGaMskVk4WiI9WkmHNyre6S35v0pQnWQ5t6bFOXNvWpTT2E2BjKBQ5rl_5W_5P6AX0nepY |
| Cites_doi | 10.1109/ICSP48669.2020.9321087 10.1109/ICIEA51954.2021.9516244 10.1155/2024/5570228 10.3390/drones7120687 10.1016/j.aeue.2024.155653 10.1177/0161734620956897 10.1109/ACCESS.2024.3449998 10.1016/j.swevo.2022.101126 10.21123/bsj.2024.9707 10.1016/j.knosys.2022.109215 10.1088/1402-4896/ad91f2 10.24237/djes.2024.18201 10.1038/s41598-025-95406-y 10.1109/JPHOTOV.2021.3129874 10.1038/s41598-023-50910-x 10.1016/j.cie.2021.107904 10.1007/s10489-016-0855-2 10.1088/1402-4896/ad86f7 10.1051/epjpv/2024026 10.1631/FITEE.2200334 10.1109/ICACITE57410.2023.10183253 10.1038/s41598-023-30862-y 10.1007/s11042-020-09705-9 10.4316/AECE.2017.02010 10.1016/j.jksuci.2024.102093 10.14419/d5pxkg39 10.3389/fnbot.2023.1190977 10.3390/engproc2023059238 10.1108/EC-10-2024-0904 10.1038/s41598-024-77925-2 10.3390/sym16030286 10.1029/2019RS007027 10.1016/j.matcom.2024.11.023 10.1016/j.cageo.2024.105785 10.1016/j.enconman.2020.112872 10.1109/APS.2010.5562213 10.1007/s12065-024-00998-5 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10586-025-05745-8 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7543 |
| ExternalDocumentID | 10_1007_s10586_025_05745_8 |
| GrantInformation_xml | – fundername: Hebei Province Higher Education Teaching Reform Research and Practice Project grantid: (2025GJJG532) – fundername: Decision-Making Consultation and Research Project of Hebei Association for Science and Technology grantid: (06-25-004-011) – fundername: Special Project of Hebei Province Wetland Protection and Green Development Collaborative Innovation Center grantid: (2024XTCX017) – fundername: Hebei Province "14th Five-Year Plan" Educational Research Project grantid: (2403089) – fundername: Research Foundation of Education Bureau of Hunan Province, China grantid: (22B0549) – fundername: National Natural Science Foundation of China grantid: (62066016) – fundername: Research Project on Institutional Establishment and Staffing in Hebei Province grantid: (YB2025166) |
| GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 1N0 203 29B 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AFDZB AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P9O PF0 PT4 PT5 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 -Y2 1SB 2P1 2VQ AAIAL AARHV AAYTO AAYXX ABQSL ABULA ACBXY ADHKG AEBTG AEKMD AFFHD AFGCZ AFKRA AGGDS AGQPQ AHSBF AJBLW ARAPS BDATZ BENPR BGLVJ CAG CCPQU CITATION COF EJD FINBP FSGXE H13 HCIFZ HZ~ IHE K7- N2Q O9- OVD PHGZM PHGZT PQGLB RNI RZC RZE RZK TEORI JQ2 |
| ID | FETCH-LOGICAL-c272t-d154b078621cd99696811715e88e624d25cb0ade4953894d9e23b70eea1a99573 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001597096900041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1386-7857 |
| IngestDate | Wed Nov 26 14:52:43 EST 2025 Sat Nov 29 07:05:17 EST 2025 Wed Dec 10 12:21:58 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Keywords | Hardware-software partitioning Wind driven optimization Function optimization Knapsack problem |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-d154b078621cd99696811715e88e624d25cb0ade4953894d9e23b70eea1a99573 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3262385938 |
| PQPubID | 2043865 |
| ParticipantIDs | proquest_journals_3262385938 crossref_primary_10_1007_s10586_025_05745_8 springer_journals_10_1007_s10586_025_05745_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-01 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | The Journal of Networks, Software Tools and Applications |
| PublicationTitle | Cluster computing |
| PublicationTitleAbbrev | Cluster Comput |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | X Wang (5745_CR13) 2025; 42 M Abdel-Basset (5745_CR36) 2024; 36 E Tanyildizi (5745_CR35) 2017; 17 J Liu (5745_CR17) 2023; 13 K Wang (5745_CR25) 2020; 42 X Wang (5745_CR11) 2024; 99 OR Adegboye (5745_CR14) 2024; 14 D Mathew (5745_CR29) 2022; 12 5745_CR21 S-Y Yang (5745_CR19) 2024; 21 5745_CR20 Y Zhou (5745_CR37) 2017; 46 S Ye (5745_CR8) 2023; 24 5745_CR26 5745_CR23 5745_CR24 F Qin (5745_CR18) 2022; 74 L Xu (5745_CR28) 2021; 56 Y Mhanni (5745_CR6) 2024; 15 5745_CR5 X Wang (5745_CR12) 2024; 99 5745_CR1 M Hooshyar (5745_CR7) 2023; 7 5745_CR2 X Wang (5745_CR10) 2024; 18 Z Huang (5745_CR16) 2024; 14 C Hua (5745_CR3) 2023; 17 NS Rashid (5745_CR4) 2025; 11 5745_CR33 5745_CR30 F Qin (5745_CR9) 2025; 15 5745_CR15 X Jia (5745_CR32) 2025; 190 D Fang (5745_CR31) 2024 S Sawant (5745_CR27) 2021; 80 C Zhong (5745_CR34) 2022; 251 L-L Mao (5745_CR22) 2024; 12 |
| References_xml | – ident: 5745_CR23 doi: 10.1109/ICSP48669.2020.9321087 – ident: 5745_CR26 doi: 10.1109/ICIEA51954.2021.9516244 – year: 2024 ident: 5745_CR31 publication-title: Mathematical Problems in Engineering doi: 10.1155/2024/5570228 – volume: 7 issue: 12 year: 2023 ident: 5745_CR7 publication-title: Drones doi: 10.3390/drones7120687 – volume: 190 year: 2025 ident: 5745_CR32 publication-title: AEU doi: 10.1016/j.aeue.2024.155653 – volume: 42 start-page: 245 issue: 6 year: 2020 ident: 5745_CR25 publication-title: Ultrason Imaging doi: 10.1177/0161734620956897 – volume: 12 start-page: 120023 year: 2024 ident: 5745_CR22 publication-title: IEEE Access. doi: 10.1109/ACCESS.2024.3449998 – volume: 74 year: 2022 ident: 5745_CR18 publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2022.101126 – volume: 21 start-page: 0568 issue: 2(SI) year: 2024 ident: 5745_CR19 publication-title: Baghdad Sci.J doi: 10.21123/bsj.2024.9707 – volume: 251 year: 2022 ident: 5745_CR34 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2022.109215 – volume: 99 start-page: 125280 issue: 12 year: 2024 ident: 5745_CR12 publication-title: Phys. Scr. doi: 10.1088/1402-4896/ad91f2 – ident: 5745_CR2 doi: 10.24237/djes.2024.18201 – volume: 15 start-page: 11012 issue: 1 year: 2025 ident: 5745_CR9 publication-title: Sci. Rep. doi: 10.1038/s41598-025-95406-y – volume: 12 start-page: 327 issue: 1 year: 2022 ident: 5745_CR29 publication-title: IEEE J. Photovoltaics doi: 10.1109/JPHOTOV.2021.3129874 – volume: 14 issue: 1 year: 2024 ident: 5745_CR14 publication-title: Sci. Rep doi: 10.1038/s41598-023-50910-x – ident: 5745_CR30 doi: 10.1016/j.cie.2021.107904 – volume: 46 start-page: 684 issue: 3 year: 2017 ident: 5745_CR37 publication-title: Appl. Intell. doi: 10.1007/s10489-016-0855-2 – volume: 99 issue: 11 year: 2024 ident: 5745_CR11 publication-title: Phys. Scr. doi: 10.1088/1402-4896/ad86f7 – volume: 15 start-page: 31 year: 2024 ident: 5745_CR6 publication-title: EPJ Photovolt. doi: 10.1051/epjpv/2024026 – volume: 24 start-page: 1574 issue: 11 year: 2023 ident: 5745_CR8 publication-title: Front Inform Technol Electron Eng doi: 10.1631/FITEE.2200334 – ident: 5745_CR5 doi: 10.1109/ICACITE57410.2023.10183253 – volume: 13 issue: 1 year: 2023 ident: 5745_CR17 publication-title: Sci. Rep. doi: 10.1038/s41598-023-30862-y – volume: 80 start-page: 1725 issue: 2 year: 2021 ident: 5745_CR27 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-09705-9 – volume: 17 start-page: 71 issue: 2 year: 2017 ident: 5745_CR35 publication-title: Adv. Electr. Comp. Eng. doi: 10.4316/AECE.2017.02010 – volume: 36 issue: 6 year: 2024 ident: 5745_CR36 publication-title: Journal of King Saud University - Computer and Information Sciences doi: 10.1016/j.jksuci.2024.102093 – volume: 11 start-page: 83 issue: 1 year: 2025 ident: 5745_CR4 publication-title: Int. J. Sci. World doi: 10.14419/d5pxkg39 – volume: 17 year: 2023 ident: 5745_CR3 publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2023.1190977 – ident: 5745_CR1 doi: 10.3390/engproc2023059238 – volume: 42 start-page: 780 issue: 2 year: 2025 ident: 5745_CR13 publication-title: EC doi: 10.1108/EC-10-2024-0904 – volume: 14 issue: 1 year: 2024 ident: 5745_CR16 publication-title: Sci. Rep. doi: 10.1038/s41598-024-77925-2 – ident: 5745_CR15 doi: 10.3390/sym16030286 – volume: 56 issue: 1 year: 2021 ident: 5745_CR28 publication-title: Radio Science doi: 10.1029/2019RS007027 – ident: 5745_CR33 doi: 10.1016/j.matcom.2024.11.023 – ident: 5745_CR20 doi: 10.1016/j.cageo.2024.105785 – ident: 5745_CR24 doi: 10.1016/j.enconman.2020.112872 – ident: 5745_CR21 doi: 10.1109/APS.2010.5562213 – volume: 18 issue: 1 year: 2024 ident: 5745_CR10 publication-title: Evol. Intel. doi: 10.1007/s12065-024-00998-5 |
| SSID | ssj0009729 |
| Score | 2.3688595 |
| Snippet | The Wind Driven Optimization (WDO) algorithm is a metaheuristic technique inspired by atmospheric flow dynamics. Although structurally simple, WDO suffers from... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1032 |
| SubjectTerms | Ablation Accuracy Algorithms Comparative studies Computer Communication Networks Computer Science Convergence Efficiency Exploitation Feature selection Hardware Heuristic methods Operating Systems Optimization algorithms Optimization models Optimization techniques Parameter estimation Parameter identification Particle swarm optimization Partitioning Processor Architectures Searching Software Task complexity Wind speed |
| Title | A modified wind driven optimization algorithm and its applications in hardware-software partitioning |
| URI | https://link.springer.com/article/10.1007/s10586-025-05745-8 https://www.proquest.com/docview/3262385938 |
| Volume | 28 |
| WOSCitedRecordID | wos001597096900041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: RSV dateStart: 19980101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAc2iJTETmyPFQIxVYiXukVO7EIkmlRJoH-fs-soBcEAWyQ7TnR3vvvseyF0TqOpUsrE6RAx9WigUk-YikNZrHwFmlLKOLPNJth4zCcTceeSwuo22r11SVpNvZLsFnETMBt5gDFo5PF1tAHmjpuGDfcPz12pXWZ7kwUEZjP4rkuV-XmNr-aow5jf3KLW2tz0__efO2jboUs8WorDLlrTxR7qt50bsNvI-0iN8KxU-RTwJ17AqRyrymg9XIICmbnMTCzfXsoqb15nWMKMvKnxqrcb5wU2GVsLWWmvBmVuHvDcSKK74z1ATzfXj1e3nuu34GUhCxtPAZxKATLEYZApYcvmBAELIs25jkOqwihLfam0CUnlgiqhQ5IyX2sZSCEiRg5RrygLfYRwSgiFkxVJNfMpvMyV1OYkqpnikhIyQBct2ZP5sqxG0hVQNgRMgICJJWDCB2jYciZxW6xOAHcC3IgEgeHLlhPd8O-rHf9t-gnaCg0zbQjLEPWa6l2fos3so8nr6syK3icjkNOu |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA46BX1x_sTp1Dz4poW1SZvkcYhj4hyiU_ZW0ibTgmtHW92_76Vr6RR90LdCrmm5JJfvkrvvEDqn7kQpZeJ0iJhY1FaBJQzjUOipjgJLKaUXFsUm2HDIx2NxXyaFZVW0e3UlWVjqpWQ3l5uAWdcCjEFdi6-iNQo7lmHMf3h8rql2WVGbzCYgzeC7ZarMz3183Y5qjPntWrTYbXrN__3nNtoq0SXuLqbDDlrR8S5qVpUbcLmQ95Dq4mmiogngTzwHrxyr1Fg9nIABmZaZmVi-vSRplL9OsQSJKM_w8m03jmJsMrbmMtVWBsbcPOCZmYnlGe8-eupdj676VllvwQod5uSWAl0GABk8xw6VKGhzbJvZruZcew5VjhsGHam0CUnlgiqhHRKwjtbSlkK4jBygRpzE-hDhgBAKnhUJNOtQeJkrqY0nqpnikhLSQheV2v3ZglbDrwmUjQJ9UKBfKNDnLdSuRsYvl1jmA-4EuOEKAs2X1UjUzb_3dvQ38TO00R_dDfzBzfD2GG06ZmCLcJY2auTpuz5B6-FHHmXpaTENPwEZRdaS |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86RXxxfuJ0ah580-LapEvyONShKGPgB3sraS_TgmtHV92_76Vr2RR9EN8K-SDcXS6_630Rcsr9IQDYOB2mhg53IXSUrTgUtaEFqCm1bkdFswnR68nBQPUXsviLaPfKJTnLabBVmpL8YgzDi4XEN1_a4FnfQbzBfUcukxVuA-mtvf7wPC-7K4o-ZS7D2QLPUKbN_LzH16dpjje_uUiLl6db__-ZN8lGiTppZyYmW2TJJNukXnV0oOUF3yHQoaMU4iHiUjpFa51CZrUhTVGxjMqMTarfXtIszl9HVOOMOJ_QRS84jRNqM7mmOjPOBJW8_aBjK6Hlv99d8tS9fry8cco-DE7kCS93AGFWiFCi7bkRqKKcjusK1zdSmrbHwfOjsKXB2FBVqTgo47FQtIzRrlbKF2yP1JI0MfuEhoxxtLhYaESL42IJ2lgL1QiQmjPWIGcVC4LxrNxGMC-sbAkYIAGDgoCBbJBmxaWgvHqTAPEowhBfMRw-r7gyH_59t4O_TT8ha_2rbnB_27s7JOue5WsR5dIktTx7N0dkNfrI40l2XEjkJ2rE33Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+wind+driven+optimization+algorithm+and+its+applications+in+hardware-software+partitioning&rft.jtitle=Cluster+computing&rft.au=Mao%2C+Le-Le&rft.au=Zain%2C+Azlan+Mohd&rft.au=Zhou%2C+Kai-Qing&rft.au=Li%2C+Xin&rft.date=2025-12-01&rft.pub=Springer+US&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=28&rft.issue=16&rft_id=info:doi/10.1007%2Fs10586-025-05745-8&rft.externalDocID=10_1007_s10586_025_05745_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon |