A modified wind driven optimization algorithm and its applications in hardware-software partitioning

The Wind Driven Optimization (WDO) algorithm is a metaheuristic technique inspired by atmospheric flow dynamics. Although structurally simple, WDO suffers from static search behavior and diversity loss caused by global wind-speed-based sorting. It also lacks fine-grained local search capabilities, w...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cluster computing Ročník 28; číslo 16; s. 1032
Hlavní autoři: Mao, Le-Le, Zain, Azlan Mohd, Zhou, Kai-Qing, Li, Xin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2025
Springer Nature B.V
Témata:
ISSN:1386-7857, 1573-7543
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Wind Driven Optimization (WDO) algorithm is a metaheuristic technique inspired by atmospheric flow dynamics. Although structurally simple, WDO suffers from static search behavior and diversity loss caused by global wind-speed-based sorting. It also lacks fine-grained local search capabilities, which limit its performance in complex, high-dimensional, and constrained tasks. To address these issues, this study proposes an improved optimization model by integrating WDO, Beluga Whale Optimization (BWO), and the Golden Sine Algorithm (GSA). WDO removes wind-speed sorting to preserve diversity and enable multi-strategy fusion. Subsequently, WDO is integrated with BWO to enhance global search capabilities, while GSA is adopted for fine-grained local exploitation. Consequently, the integrated WDO-BWO-GSA approach is applied to estimate the optimal hardware-software (HW-SW) partitioning. Experiments on 24 benchmark functions including both ablation and comparative studies were conducted to evaluate the effectiveness of the proposed algorithm. The results confirmed that the integrated WDO-BWO-GSA significantly enhanced global exploration and local exploitation. Comparative results further demonstrated that the proposed integrated WDO-BWO-GSA outperformed WDO, BWO, Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), Particle Swarm Optimization (PSO), and GSA, achieving average convergence speed improvements of 62.07%, 54.28%, 62.31%, 70.69%, 72.26%, and 62.19%, respectively. Additionally, on a HW-SW partitioning task, it surpassed the Complex-valued encoding WDO (CWDO) by 59.55% in convergence speed, while also delivering superior solution quality. These results confirmed the robustness and adaptability of the proposed integrated WDO-BWO-GSA in solving complex partitioning optimization problems.
AbstractList The Wind Driven Optimization (WDO) algorithm is a metaheuristic technique inspired by atmospheric flow dynamics. Although structurally simple, WDO suffers from static search behavior and diversity loss caused by global wind-speed-based sorting. It also lacks fine-grained local search capabilities, which limit its performance in complex, high-dimensional, and constrained tasks. To address these issues, this study proposes an improved optimization model by integrating WDO, Beluga Whale Optimization (BWO), and the Golden Sine Algorithm (GSA). WDO removes wind-speed sorting to preserve diversity and enable multi-strategy fusion. Subsequently, WDO is integrated with BWO to enhance global search capabilities, while GSA is adopted for fine-grained local exploitation. Consequently, the integrated WDO-BWO-GSA approach is applied to estimate the optimal hardware-software (HW-SW) partitioning. Experiments on 24 benchmark functions including both ablation and comparative studies were conducted to evaluate the effectiveness of the proposed algorithm. The results confirmed that the integrated WDO-BWO-GSA significantly enhanced global exploration and local exploitation. Comparative results further demonstrated that the proposed integrated WDO-BWO-GSA outperformed WDO, BWO, Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), Particle Swarm Optimization (PSO), and GSA, achieving average convergence speed improvements of 62.07%, 54.28%, 62.31%, 70.69%, 72.26%, and 62.19%, respectively. Additionally, on a HW-SW partitioning task, it surpassed the Complex-valued encoding WDO (CWDO) by 59.55% in convergence speed, while also delivering superior solution quality. These results confirmed the robustness and adaptability of the proposed integrated WDO-BWO-GSA in solving complex partitioning optimization problems.
ArticleNumber 1032
Author Mao, Le-Le
Zhou, Kai-Qing
Li, Xin
Zain, Azlan Mohd
Author_xml – sequence: 1
  givenname: Le-Le
  surname: Mao
  fullname: Mao, Le-Le
  organization: College of Mathematics and Computer Science, Hengshui University, Faculty of Computing, Universiti Teknologi Malaysia
– sequence: 2
  givenname: Azlan Mohd
  surname: Zain
  fullname: Zain, Azlan Mohd
  organization: Faculty of Computing, Universiti Teknologi Malaysia
– sequence: 3
  givenname: Kai-Qing
  surname: Zhou
  fullname: Zhou, Kai-Qing
  organization: School of Communication and Electronic Engineering, Jishou University
– sequence: 4
  givenname: Xin
  surname: Li
  fullname: Li, Xin
  email: lixinhszyjsxy@outlook.com
  organization: Department of Information Engineering, Hengshui College of Vocational and Technology
BookMark eNp9kEtLAzEUhYNUsK3-AVcB19E8JpNkWYovENzoOqSTTJvSJmMyteivN9MR3Lm6B8537uWeGZiEGBwA1wTfEozFXSaYyxphyhHmouJInoEp4YIhwSs2KZoVW0guLsAs5y3GWAmqpsAu4D5a33pn4dEHC23yny7A2PV-779N72OAZreOyfebPTSF8H2Gput2vjm5GfoANybZo0kO5dj2g4CdSb0ffB_Wl-C8Nbvsrn7nHLw_3L8tn9DL6-PzcvGCGipojyzh1QoLWVPSWKVqVUtCBOFOSlfTylLerLCxrlKcSVVZ5ShbCeycIUap8uwc3Ix7uxQ_Di73ehsPKZSTmtGaMskVk4WiI9WkmHNyre6S35v0pQnWQ5t6bFOXNvWpTT2E2BjKBQ5rl_5W_5P6AX0nepY
Cites_doi 10.1109/ICSP48669.2020.9321087
10.1109/ICIEA51954.2021.9516244
10.1155/2024/5570228
10.3390/drones7120687
10.1016/j.aeue.2024.155653
10.1177/0161734620956897
10.1109/ACCESS.2024.3449998
10.1016/j.swevo.2022.101126
10.21123/bsj.2024.9707
10.1016/j.knosys.2022.109215
10.1088/1402-4896/ad91f2
10.24237/djes.2024.18201
10.1038/s41598-025-95406-y
10.1109/JPHOTOV.2021.3129874
10.1038/s41598-023-50910-x
10.1016/j.cie.2021.107904
10.1007/s10489-016-0855-2
10.1088/1402-4896/ad86f7
10.1051/epjpv/2024026
10.1631/FITEE.2200334
10.1109/ICACITE57410.2023.10183253
10.1038/s41598-023-30862-y
10.1007/s11042-020-09705-9
10.4316/AECE.2017.02010
10.1016/j.jksuci.2024.102093
10.14419/d5pxkg39
10.3389/fnbot.2023.1190977
10.3390/engproc2023059238
10.1108/EC-10-2024-0904
10.1038/s41598-024-77925-2
10.3390/sym16030286
10.1029/2019RS007027
10.1016/j.matcom.2024.11.023
10.1016/j.cageo.2024.105785
10.1016/j.enconman.2020.112872
10.1109/APS.2010.5562213
10.1007/s12065-024-00998-5
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10586-025-05745-8
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7543
ExternalDocumentID 10_1007_s10586_025_05745_8
GrantInformation_xml – fundername: Hebei Province Higher Education Teaching Reform Research and Practice Project
  grantid: (2025GJJG532)
– fundername: Decision-Making Consultation and Research Project of Hebei Association for Science and Technology
  grantid: (06-25-004-011)
– fundername: Special Project of Hebei Province Wetland Protection and Green Development Collaborative Innovation Center
  grantid: (2024XTCX017)
– fundername: Hebei Province "14th Five-Year Plan" Educational Research Project
  grantid: (2403089)
– fundername: Research Foundation of Education Bureau of Hunan Province, China
  grantid: (22B0549)
– fundername: National Natural Science Foundation of China
  grantid: (62066016)
– fundername: Research Project on Institutional Establishment and Staffing in Hebei Province
  grantid: (YB2025166)
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
1N0
203
29B
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFDZB
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I09
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P9O
PF0
PT4
PT5
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
-Y2
1SB
2P1
2VQ
AAIAL
AARHV
AAYTO
AAYXX
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEKMD
AFFHD
AFGCZ
AFKRA
AGGDS
AGQPQ
AHSBF
AJBLW
ARAPS
BDATZ
BENPR
BGLVJ
CAG
CCPQU
CITATION
COF
EJD
FINBP
FSGXE
H13
HCIFZ
HZ~
IHE
K7-
N2Q
O9-
OVD
PHGZM
PHGZT
PQGLB
RNI
RZC
RZE
RZK
TEORI
JQ2
ID FETCH-LOGICAL-c272t-d154b078621cd99696811715e88e624d25cb0ade4953894d9e23b70eea1a99573
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001597096900041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1386-7857
IngestDate Wed Nov 26 14:52:43 EST 2025
Sat Nov 29 07:05:17 EST 2025
Wed Dec 10 12:21:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Hardware-software partitioning
Wind driven optimization
Function optimization
Knapsack problem
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-d154b078621cd99696811715e88e624d25cb0ade4953894d9e23b70eea1a99573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3262385938
PQPubID 2043865
ParticipantIDs proquest_journals_3262385938
crossref_primary_10_1007_s10586_025_05745_8
springer_journals_10_1007_s10586_025_05745_8
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle The Journal of Networks, Software Tools and Applications
PublicationTitle Cluster computing
PublicationTitleAbbrev Cluster Comput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References X Wang (5745_CR13) 2025; 42
M Abdel-Basset (5745_CR36) 2024; 36
E Tanyildizi (5745_CR35) 2017; 17
J Liu (5745_CR17) 2023; 13
K Wang (5745_CR25) 2020; 42
X Wang (5745_CR11) 2024; 99
OR Adegboye (5745_CR14) 2024; 14
D Mathew (5745_CR29) 2022; 12
5745_CR21
S-Y Yang (5745_CR19) 2024; 21
5745_CR20
Y Zhou (5745_CR37) 2017; 46
S Ye (5745_CR8) 2023; 24
5745_CR26
5745_CR23
5745_CR24
F Qin (5745_CR18) 2022; 74
L Xu (5745_CR28) 2021; 56
Y Mhanni (5745_CR6) 2024; 15
5745_CR5
X Wang (5745_CR12) 2024; 99
5745_CR1
M Hooshyar (5745_CR7) 2023; 7
5745_CR2
X Wang (5745_CR10) 2024; 18
Z Huang (5745_CR16) 2024; 14
C Hua (5745_CR3) 2023; 17
NS Rashid (5745_CR4) 2025; 11
5745_CR33
5745_CR30
F Qin (5745_CR9) 2025; 15
5745_CR15
X Jia (5745_CR32) 2025; 190
D Fang (5745_CR31) 2024
S Sawant (5745_CR27) 2021; 80
C Zhong (5745_CR34) 2022; 251
L-L Mao (5745_CR22) 2024; 12
References_xml – ident: 5745_CR23
  doi: 10.1109/ICSP48669.2020.9321087
– ident: 5745_CR26
  doi: 10.1109/ICIEA51954.2021.9516244
– year: 2024
  ident: 5745_CR31
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2024/5570228
– volume: 7
  issue: 12
  year: 2023
  ident: 5745_CR7
  publication-title: Drones
  doi: 10.3390/drones7120687
– volume: 190
  year: 2025
  ident: 5745_CR32
  publication-title: AEU
  doi: 10.1016/j.aeue.2024.155653
– volume: 42
  start-page: 245
  issue: 6
  year: 2020
  ident: 5745_CR25
  publication-title: Ultrason Imaging
  doi: 10.1177/0161734620956897
– volume: 12
  start-page: 120023
  year: 2024
  ident: 5745_CR22
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2024.3449998
– volume: 74
  year: 2022
  ident: 5745_CR18
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2022.101126
– volume: 21
  start-page: 0568
  issue: 2(SI)
  year: 2024
  ident: 5745_CR19
  publication-title: Baghdad Sci.J
  doi: 10.21123/bsj.2024.9707
– volume: 251
  year: 2022
  ident: 5745_CR34
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.109215
– volume: 99
  start-page: 125280
  issue: 12
  year: 2024
  ident: 5745_CR12
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ad91f2
– ident: 5745_CR2
  doi: 10.24237/djes.2024.18201
– volume: 15
  start-page: 11012
  issue: 1
  year: 2025
  ident: 5745_CR9
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-025-95406-y
– volume: 12
  start-page: 327
  issue: 1
  year: 2022
  ident: 5745_CR29
  publication-title: IEEE J. Photovoltaics
  doi: 10.1109/JPHOTOV.2021.3129874
– volume: 14
  issue: 1
  year: 2024
  ident: 5745_CR14
  publication-title: Sci. Rep
  doi: 10.1038/s41598-023-50910-x
– ident: 5745_CR30
  doi: 10.1016/j.cie.2021.107904
– volume: 46
  start-page: 684
  issue: 3
  year: 2017
  ident: 5745_CR37
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-016-0855-2
– volume: 99
  issue: 11
  year: 2024
  ident: 5745_CR11
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ad86f7
– volume: 15
  start-page: 31
  year: 2024
  ident: 5745_CR6
  publication-title: EPJ Photovolt.
  doi: 10.1051/epjpv/2024026
– volume: 24
  start-page: 1574
  issue: 11
  year: 2023
  ident: 5745_CR8
  publication-title: Front Inform Technol Electron Eng
  doi: 10.1631/FITEE.2200334
– ident: 5745_CR5
  doi: 10.1109/ICACITE57410.2023.10183253
– volume: 13
  issue: 1
  year: 2023
  ident: 5745_CR17
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-30862-y
– volume: 80
  start-page: 1725
  issue: 2
  year: 2021
  ident: 5745_CR27
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-09705-9
– volume: 17
  start-page: 71
  issue: 2
  year: 2017
  ident: 5745_CR35
  publication-title: Adv. Electr. Comp. Eng.
  doi: 10.4316/AECE.2017.02010
– volume: 36
  issue: 6
  year: 2024
  ident: 5745_CR36
  publication-title: Journal of King Saud University - Computer and Information Sciences
  doi: 10.1016/j.jksuci.2024.102093
– volume: 11
  start-page: 83
  issue: 1
  year: 2025
  ident: 5745_CR4
  publication-title: Int. J. Sci. World
  doi: 10.14419/d5pxkg39
– volume: 17
  year: 2023
  ident: 5745_CR3
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2023.1190977
– ident: 5745_CR1
  doi: 10.3390/engproc2023059238
– volume: 42
  start-page: 780
  issue: 2
  year: 2025
  ident: 5745_CR13
  publication-title: EC
  doi: 10.1108/EC-10-2024-0904
– volume: 14
  issue: 1
  year: 2024
  ident: 5745_CR16
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-77925-2
– ident: 5745_CR15
  doi: 10.3390/sym16030286
– volume: 56
  issue: 1
  year: 2021
  ident: 5745_CR28
  publication-title: Radio Science
  doi: 10.1029/2019RS007027
– ident: 5745_CR33
  doi: 10.1016/j.matcom.2024.11.023
– ident: 5745_CR20
  doi: 10.1016/j.cageo.2024.105785
– ident: 5745_CR24
  doi: 10.1016/j.enconman.2020.112872
– ident: 5745_CR21
  doi: 10.1109/APS.2010.5562213
– volume: 18
  issue: 1
  year: 2024
  ident: 5745_CR10
  publication-title: Evol. Intel.
  doi: 10.1007/s12065-024-00998-5
SSID ssj0009729
Score 2.3688595
Snippet The Wind Driven Optimization (WDO) algorithm is a metaheuristic technique inspired by atmospheric flow dynamics. Although structurally simple, WDO suffers from...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1032
SubjectTerms Ablation
Accuracy
Algorithms
Comparative studies
Computer Communication Networks
Computer Science
Convergence
Efficiency
Exploitation
Feature selection
Hardware
Heuristic methods
Operating Systems
Optimization algorithms
Optimization models
Optimization techniques
Parameter estimation
Parameter identification
Particle swarm optimization
Partitioning
Processor Architectures
Searching
Software
Task complexity
Wind speed
Title A modified wind driven optimization algorithm and its applications in hardware-software partitioning
URI https://link.springer.com/article/10.1007/s10586-025-05745-8
https://www.proquest.com/docview/3262385938
Volume 28
WOSCitedRecordID wos001597096900041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: RSV
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAc2iJTETmyPFQIxVYiXukVO7EIkmlRJoH-fs-soBcEAWyQ7TnR3vvvseyF0TqOpUsrE6RAx9WigUk-YikNZrHwFmlLKOLPNJth4zCcTceeSwuo22r11SVpNvZLsFnETMBt5gDFo5PF1tAHmjpuGDfcPz12pXWZ7kwUEZjP4rkuV-XmNr-aow5jf3KLW2tz0__efO2jboUs8WorDLlrTxR7qt50bsNvI-0iN8KxU-RTwJ17AqRyrymg9XIICmbnMTCzfXsoqb15nWMKMvKnxqrcb5wU2GVsLWWmvBmVuHvDcSKK74z1ATzfXj1e3nuu34GUhCxtPAZxKATLEYZApYcvmBAELIs25jkOqwihLfam0CUnlgiqhQ5IyX2sZSCEiRg5RrygLfYRwSgiFkxVJNfMpvMyV1OYkqpnikhIyQBct2ZP5sqxG0hVQNgRMgICJJWDCB2jYciZxW6xOAHcC3IgEgeHLlhPd8O-rHf9t-gnaCg0zbQjLEPWa6l2fos3so8nr6syK3icjkNOu
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA46BX1x_sTp1Dz4poW1SZvkcYhj4hyiU_ZW0ibTgmtHW92_76Vr6RR90LdCrmm5JJfvkrvvEDqn7kQpZeJ0iJhY1FaBJQzjUOipjgJLKaUXFsUm2HDIx2NxXyaFZVW0e3UlWVjqpWQ3l5uAWdcCjEFdi6-iNQo7lmHMf3h8rql2WVGbzCYgzeC7ZarMz3183Y5qjPntWrTYbXrN__3nNtoq0SXuLqbDDlrR8S5qVpUbcLmQ95Dq4mmiogngTzwHrxyr1Fg9nIABmZaZmVi-vSRplL9OsQSJKM_w8m03jmJsMrbmMtVWBsbcPOCZmYnlGe8-eupdj676VllvwQod5uSWAl0GABk8xw6VKGhzbJvZruZcew5VjhsGHam0CUnlgiqhHRKwjtbSlkK4jBygRpzE-hDhgBAKnhUJNOtQeJkrqY0nqpnikhLSQheV2v3ZglbDrwmUjQJ9UKBfKNDnLdSuRsYvl1jmA-4EuOEKAs2X1UjUzb_3dvQ38TO00R_dDfzBzfD2GG06ZmCLcJY2auTpuz5B6-FHHmXpaTENPwEZRdaS
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86RXxxfuJ0ah580-LapEvyONShKGPgB3sraS_TgmtHV92_76Vr2RR9EN8K-SDcXS6_630Rcsr9IQDYOB2mhg53IXSUrTgUtaEFqCm1bkdFswnR68nBQPUXsviLaPfKJTnLabBVmpL8YgzDi4XEN1_a4FnfQbzBfUcukxVuA-mtvf7wPC-7K4o-ZS7D2QLPUKbN_LzH16dpjje_uUiLl6db__-ZN8lGiTppZyYmW2TJJNukXnV0oOUF3yHQoaMU4iHiUjpFa51CZrUhTVGxjMqMTarfXtIszl9HVOOMOJ_QRS84jRNqM7mmOjPOBJW8_aBjK6Hlv99d8tS9fry8cco-DE7kCS93AGFWiFCi7bkRqKKcjusK1zdSmrbHwfOjsKXB2FBVqTgo47FQtIzRrlbKF2yP1JI0MfuEhoxxtLhYaESL42IJ2lgL1QiQmjPWIGcVC4LxrNxGMC-sbAkYIAGDgoCBbJBmxaWgvHqTAPEowhBfMRw-r7gyH_59t4O_TT8ha_2rbnB_27s7JOue5WsR5dIktTx7N0dkNfrI40l2XEjkJ2rE33Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+wind+driven+optimization+algorithm+and+its+applications+in+hardware-software+partitioning&rft.jtitle=Cluster+computing&rft.au=Mao%2C+Le-Le&rft.au=Zain%2C+Azlan+Mohd&rft.au=Zhou%2C+Kai-Qing&rft.au=Li%2C+Xin&rft.date=2025-12-01&rft.pub=Springer+US&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=28&rft.issue=16&rft_id=info:doi/10.1007%2Fs10586-025-05745-8&rft.externalDocID=10_1007_s10586_025_05745_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon