A new hybrid neural network based on gated recurrent unit and simple exponential smoothing for forecasting
Deep recurrent artificial neural networks can be easily adapted to the forecasting problem due to the dynamic structure in their architecture. In this paper, two different hybrid neural network architectures based on gated recurrent units and exponential smoothing are proposed for forecasting. The a...
Uložené v:
| Vydané v: | Computing Ročník 107; číslo 10; s. 196 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Vienna
Springer Vienna
01.10.2025
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0010-485X, 1436-5057 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Deep recurrent artificial neural networks can be easily adapted to the forecasting problem due to the dynamic structure in their architecture. In this paper, two different hybrid neural network architectures based on gated recurrent units and exponential smoothing are proposed for forecasting. The architectures combine gated recurrent units and structures inspired by exponential smoothing models. In addition, training algorithms based on differential evolution and particle swarm optimization algorithms are proposed separately for training. Different strategies are used to solve overfitting and local optimum problems in these training algorithms. The performance of the proposed method is applied to sustainable water resources. The analysis results show that the proposed deep neural network methods have superior forecasting performance than many artificial neural networks. |
|---|---|
| AbstractList | Deep recurrent artificial neural networks can be easily adapted to the forecasting problem due to the dynamic structure in their architecture. In this paper, two different hybrid neural network architectures based on gated recurrent units and exponential smoothing are proposed for forecasting. The architectures combine gated recurrent units and structures inspired by exponential smoothing models. In addition, training algorithms based on differential evolution and particle swarm optimization algorithms are proposed separately for training. Different strategies are used to solve overfitting and local optimum problems in these training algorithms. The performance of the proposed method is applied to sustainable water resources. The analysis results show that the proposed deep neural network methods have superior forecasting performance than many artificial neural networks. |
| ArticleNumber | 196 |
| Author | Egrioglu, Erol Turkmen, Mustafa Kolemen, Emine Bas, Eren |
| Author_xml | – sequence: 1 givenname: Emine orcidid: 0000-0001-6035-2065 surname: Kolemen fullname: Kolemen, Emine organization: Department of Computer Engineering, Faculty of Architecture and Engineering, Avrasya University – sequence: 2 givenname: Erol orcidid: 0000-0003-4301-4149 surname: Egrioglu fullname: Egrioglu, Erol organization: Department of Data Science and Analytics, Faculty of Arts and Science, Giresun University – sequence: 3 givenname: Eren orcidid: 0000-0002-0263-8804 surname: Bas fullname: Bas, Eren email: eren.bas@giresun.edu.tr organization: Department of Data Science and Analytics, Faculty of Arts and Science, Giresun University – sequence: 4 givenname: Mustafa orcidid: 0000-0001-6700-5947 surname: Turkmen fullname: Turkmen, Mustafa organization: Department of Biology, Faculty of Arts and Science, Giresun University |
| BookMark | eNp9UMtOwzAQtFCRaAs_wMkSZ8PaiePkWFW8pEpceuBmObHTprR2sB2V_j0uQeLGYbWz2pnd0czQxDprELqlcE8BxEMAKEAQYJwA5XlF6AWa0jwrCAcuJmgKQIHkJX-_QrMQdgDAsrKaot0CW3PE21PtO53g4NU-tXh0_gPXKhiNncUbFRPwphm8NzbiwXYRK6tx6A793mDz1Sc_NnZJHA7OxW1nN7h1_lymUSGm-RpdtmofzM1vn6P10-N6-UJWb8-vy8WKNEywSJqGtqytuGi4MWWymRV5waimVJSgMlUWrVBU1IVui7QRmmqoBM8Er1it82yO7sazvXefgwlR7tzgbfooM5ZXuYCSnllsZDXeheBNK3vfHZQ_SQryHKkcI5UpUvkTqaRJlI2ikMh2Y_zf6X9U370je8w |
| Cites_doi | 10.1162/neco.1997.9.8.1735 10.1109/ICCIS49240.2020.9257651 10.1016/j.eswa.2023.119527 10.1007/s41066-021-00274-2 10.1016/j.envpol.2022.119136 10.1016/j.eswa.2024.124187 10.3390/w13010091 10.1016/j.psep.2023.03.052 10.1111/geoj.12488 10.3390/su14063352 10.1016/j.engappai.2022.105445 10.1145/3653924.3653931 10.1016/j.engappai.2022.105717 10.1016/j.jhydrol.2020.125188 10.1016/j.engappai.2023.105982 10.1007/s41066-023-00389-8 10.3115/v1/D14-1179 10.1016/j.resourpol.2022.102906 10.1016/j.jhydrol.2022.127934 10.1038/323533a0 10.1109/JIOT.2023.3340182 10.1016/j.energy.2022.126503 10.1016/j.compchemeng.2021.107513 10.1016/j.jhydrol.2022.127440 10.1016/j.jhydrol.2022.128262 10.1016/j.aej.2022.01.011 10.1016/j.eswa.2023.119617 10.1016/j.socl.2020.100009 10.1016/j.advengsoft.2022.103190 10.3390/s23073631 10.1016/j.energy.2020.118787 10.1016/j.energy.2021.120492 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s00607-025-01549-1 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1436-5057 |
| ExternalDocumentID | 10_1007_s00607_025_01549_1 |
| GrantInformation_xml | – fundername: Yükseköğretim Kurulu grantid: YOK100/2000 funderid: http://dx.doi.org/10.13039/501100007246 |
| GroupedDBID | -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKWF AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BENPR BGNMA BKOMP BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAP EBLON EBR EBS EBU EIOEI ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LAS LLZTM M2O M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS QWB R89 R9I RHV RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZL0 ZMTXR ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI 6TJ 8AO 8FE 8FG 8G5 AAOBN AARHV AAYTO AAYXX ABQSL ABULA ABUWG ACBXY ACUHS ADHKG AEBTG AEFIE AEKMD AEMOZ AFEXP AFFHD AFFNX AFGCZ AFKRA AGGDS AGQPQ AHQJS AJBLW AMVHM ARCSS AZQEC B0M BBWZM BDATZ BEZIV BGLVJ BPHCQ CAG CCPQU CITATION COF DWQXO EAD EBA ECS EDO EJD EMK EPL FINBP FRNLG FSGXE GNUQQ GUQSH H13 IHE ITG ITH K1G K6V K7- KOW M0C MK~ ML~ N2Q NDZJH O9- P62 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC Q2X R4E RNI RZK S26 S28 SCJ SCLPG T16 TH9 TUS ~8M 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c272t-cc1f2f957c5ee8023364621d11780a3a86f7a17b6df66467d1d097537592bd43 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001568889300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-485X |
| IngestDate | Wed Nov 26 14:53:21 EST 2025 Sat Nov 29 07:07:00 EST 2025 Thu Oct 16 01:19:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Exponential smoothing Gated recurrent unit Differential evolution algorithm Forecasting Sustainable water resources Particle swarm optimization algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-cc1f2f957c5ee8023364621d11780a3a86f7a17b6df66467d1d097537592bd43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0263-8804 0000-0001-6700-5947 0000-0003-4301-4149 0000-0001-6035-2065 |
| PQID | 3249470814 |
| PQPubID | 48322 |
| ParticipantIDs | proquest_journals_3249470814 crossref_primary_10_1007_s00607_025_01549_1 springer_journals_10_1007_s00607_025_01549_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Vienna |
| PublicationPlace_xml | – name: Vienna – name: Wien |
| PublicationTitle | Computing |
| PublicationTitleAbbrev | Computing |
| PublicationYear | 2025 |
| Publisher | Springer Vienna Springer Nature B.V |
| Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
| References | S Zhu (1549_CR33) 2023; 189 L Chen (1549_CR6) 2022; 606 X Zhao (1549_CR31) 2021; 13 S Zhang (1549_CR30) 2023; 218 X Liu (1549_CR17) 2021; 227 JW Yu (1549_CR28) 2022; 303 T Cansu (1549_CR4) 2023; 8 MS Islam (1549_CR12) 2021; 3 1549_CR25 KE ArunKumar (1549_CR1) 2022; 61 GA Busari (1549_CR3) 2021; 155 Y Xiao (1549_CR27) 2023; 267 Z Guo (1549_CR10) 2023; 173 AC Ozdemi (1549_CR20) 2022; 78 DE Rumelhart (1549_CR22) 1986; 323 T Wang (1549_CR24) 2022; 116 1549_CR7 J Li (1549_CR14) 2020; 213 E Bas (1549_CR2) 2022; 7 G Li (1549_CR15) 2023; 119 D Wu (1549_CR26) 2023; 11 S Hochreiter (1549_CR11) 1997; 9 HC Kilinc (1549_CR13) 2022; 14 K Chaudhari (1549_CR5) 2023; 219 P Mei (1549_CR18) 2022; 610 B Li (1549_CR16) 2023; 23 D Skrobek (1549_CR23) 2022; 173 S Gao (1549_CR8) 2020; 589 NR Pokhrel (1549_CR21) 2022; 9 1549_CR19 D Yu (1549_CR29) 2024; 252 Z Zhao (1549_CR32) 2023; 121 A Gharehbaghi (1549_CR9) 2022; 612 |
| References_xml | – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 1549_CR11 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – ident: 1549_CR19 doi: 10.1109/ICCIS49240.2020.9257651 – volume: 219 start-page: 119527 year: 2023 ident: 1549_CR5 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.119527 – volume: 7 start-page: 411 issue: 2 year: 2022 ident: 1549_CR2 publication-title: Granul Comput doi: 10.1007/s41066-021-00274-2 – volume: 303 start-page: 119136 year: 2022 ident: 1549_CR28 publication-title: Environ Pollut doi: 10.1016/j.envpol.2022.119136 – volume: 252 start-page: 124187 year: 2024 ident: 1549_CR29 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2024.124187 – volume: 13 start-page: 91 issue: 1 year: 2021 ident: 1549_CR31 publication-title: Water doi: 10.3390/w13010091 – volume: 173 start-page: 604 year: 2023 ident: 1549_CR10 publication-title: Process Saf Environ Prot doi: 10.1016/j.psep.2023.03.052 – volume: 189 start-page: 357 issue: 2 year: 2023 ident: 1549_CR33 publication-title: Geographical J doi: 10.1111/geoj.12488 – volume: 14 start-page: 3352 issue: 6 year: 2022 ident: 1549_CR13 publication-title: Sustainability doi: 10.3390/su14063352 – volume: 116 start-page: 105445 year: 2022 ident: 1549_CR24 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2022.105445 – ident: 1549_CR25 doi: 10.1145/3653924.3653931 – volume: 119 start-page: 105717 year: 2023 ident: 1549_CR15 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2022.105717 – volume: 589 start-page: 125188 year: 2020 ident: 1549_CR8 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125188 – volume: 121 start-page: 105982 year: 2023 ident: 1549_CR32 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.105982 – volume: 8 start-page: 1645 issue: 6 year: 2023 ident: 1549_CR4 publication-title: Granul Comput doi: 10.1007/s41066-023-00389-8 – ident: 1549_CR7 doi: 10.3115/v1/D14-1179 – volume: 78 start-page: 102906 year: 2022 ident: 1549_CR20 publication-title: Resour Policy doi: 10.1016/j.resourpol.2022.102906 – volume: 610 start-page: 127934 year: 2022 ident: 1549_CR18 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2022.127934 – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 1549_CR22 publication-title: Nature doi: 10.1038/323533a0 – volume: 11 start-page: 14267 issue: 8 year: 2023 ident: 1549_CR26 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2023.3340182 – volume: 267 start-page: 126503 year: 2023 ident: 1549_CR27 publication-title: Energy doi: 10.1016/j.energy.2022.126503 – volume: 9 start-page: 100385 year: 2022 ident: 1549_CR21 publication-title: Mach Learn Appl – volume: 155 start-page: 107513 year: 2021 ident: 1549_CR3 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2021.107513 – volume: 606 start-page: 127440 year: 2022 ident: 1549_CR6 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2022.127440 – volume: 612 start-page: 128262 year: 2022 ident: 1549_CR9 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2022.128262 – volume: 61 start-page: 7585 issue: 10 year: 2022 ident: 1549_CR1 publication-title: Alexandria Eng J doi: 10.1016/j.aej.2022.01.011 – volume: 218 start-page: 119617 year: 2023 ident: 1549_CR30 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.119617 – volume: 3 start-page: 100009 year: 2021 ident: 1549_CR12 publication-title: Soft Comput Lett doi: 10.1016/j.socl.2020.100009 – volume: 173 start-page: 103190 year: 2022 ident: 1549_CR23 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2022.103190 – volume: 23 start-page: 3631 issue: 7 year: 2023 ident: 1549_CR16 publication-title: Sensors doi: 10.3390/s23073631 – volume: 213 start-page: 118787 year: 2020 ident: 1549_CR14 publication-title: Energy doi: 10.1016/j.energy.2020.118787 – volume: 227 start-page: 120492 year: 2021 ident: 1549_CR17 publication-title: Energy doi: 10.1016/j.energy.2021.120492 |
| SSID | ssj0002389 |
| Score | 2.3925962 |
| Snippet | Deep recurrent artificial neural networks can be easily adapted to the forecasting problem due to the dynamic structure in their architecture. In this paper,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 196 |
| SubjectTerms | Algorithms Artificial Intelligence Artificial neural networks Computer Appl. in Administrative Data Processing Computer Communication Networks Computer Science Deep learning Evolutionary computation Forecasting Information Systems Applications (incl.Internet) Machine learning Neural networks Particle swarm optimization Regular Paper Smoothing Software Engineering Stream flow Time series Traffic flow Water resources Wind power |
| Title | A new hybrid neural network based on gated recurrent unit and simple exponential smoothing for forecasting |
| URI | https://link.springer.com/article/10.1007/s00607-025-01549-1 https://www.proquest.com/docview/3249470814 |
| Volume | 107 |
| WOSCitedRecordID | wos001568889300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1436-5057 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002389 issn: 0010-485X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yPejB6VScTsnBmwaaNL96HOLw4hAdsltJmxYn2I11E_3vfUnbDUUPeugpTRryknxfk_e-h9CFCawAYAiIlVwQHmpJDM8jEjKlACAYMIzcJ5tQw6Eej6P7OiisbLzdmytJv1Ovgt2cdIgiLv2q1xUj8M-zCXCnXcKGh8en1f4LIFSRXugB12Jch8r83MZXOFpzzG_Xoh5tBu3_9XMP7dbsEver6bCPNrKig9pN5gZcL-QO2rlbqbWWB-ilj4Fc4-cPF72FncIltFFU_uHYwZzF0wK78zaL5-583ik64SVsBtgUFpcTpzCMs_fZtHC-R1C5fJ3CDIBeY-DE7slSUzoH60M0GtyMrm9JnYOBpEyxBUlTmrM8EioVWebE4kLJJaOWUqUDExotc2WoSqTNJZQoS23gYnWViFhieXiEWgV8_BhhoY2Qmicc6gJy0igzIXCphCU8TGjOu-iysUQ8q5Q24pWmsh_TGMY09mMa0y7qNcaK61VXxkAOI66A5EBjV41x1sW_t3byt9dP0TZz9vU-fT3UWsyX2RnaSt8Wk3J-7mfjJygY17M |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yBfXgdCpOp-bgTQNLmjbtcYhj4jZEh-wW0qbFCXZj3UT_e1_SH0PRgx56SvMa8pJ8X5P3viB0odraBWBoE-1xl3DH94jiSUAcJgQABAOGkdjLJsRw6I_HwX2RFJaV0e7lkaRdqatkNyMdIoi5ftXqihH451nngFhGMf_h8alafwGEctILLeC-Oy5SZX628RWOVhzz27GoRZtu_X_t3EU7BbvEnXw47KG1OG2genlzAy4mcgNtDyq11mwfvXQwkGv8_GGyt7BRuAQbaR4fjg3MaTxNsdlv03hu9ueNohNewmKAVapxNjEKwzh-n01TE3sElbPXKYwAaDUGTmyeOFKZCbA-QKPuzei6R4o7GEjEBFuQKKIJSwJXRG4cG7E4x-Meo5pS4beVo3wvEYqK0NOJByVCU902ubrCDViouXOIail8_Ahh11eu5_OQQ11AThrEygEuFbKQOyFNeBNdlp6Qs1xpQ1aayrZPJfSptH0qaRO1SmfJYtZlEshhwAWQHDB2VTpnVfy7teO_vX6ONnujQV_2b4d3J2iLGV_b-L4Wqi3my_gUbURvi0k2P7Mj8xNNr9qX |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA6iInpwOhWnU3PwpmFLmjbtcahDUcfAIbuVtGlxgt1YO9H_3vf6Y1PRg3joKc1rmpfkfUne-x4hp7ptbDAMbWYcaTNpuQ7TMvaYJZQCAyEAYcR5sgnV67nDodf_FMWfe7tXV5JFTAOyNCVZa2Li1jzwDWlEFMNUrDnHGIP9z4pER3rcrz88ztdiMEgFAIbWSNcelmEzP8v4apoWePPbFWluebq1_7d5i2yWqJN2imGyTZaipE5qVUYHWk7wOtm4n7O4pjvkuUMBdNOnd4zqosh8CTKSwm-covkzdJxQPIczdIrn9sj0RGewSFCdGJqOkHmYRm-TcYI-SVA5fRnDyIA_oICV8YlCnaLj9S4ZdK8GF9eszM3AQqFExsKQxyL2bBXaUYQkcpYjHcEN58pta0u7Tqw0V4FjYgdKlOGmjTG8yvZEYKS1R5YT-Pg-obarbceVgYS6YFG5F2kLMFYgAmkFPJYNclZpxZ8UDBz-nGs571Mf-tTP-9TnDdKsFOeXszH1ATR6UgH4AWHnlaIWxb9LO_jb6ydkrX_Z9e9uereHZF2gqnO3vyZZzqaz6Iishq_ZKJ0e54P0AyrO43s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+hybrid+neural+network+based+on+gated+recurrent+unit+and+simple+exponential+smoothing+for+forecasting&rft.jtitle=Computing&rft.au=Kolemen%2C+Emine&rft.au=Egrioglu%2C+Erol&rft.au=Bas%2C+Eren&rft.au=Turkmen%2C+Mustafa&rft.date=2025-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0010-485X&rft.eissn=1436-5057&rft.volume=107&rft.issue=10&rft.spage=196&rft_id=info:doi/10.1007%2Fs00607-025-01549-1&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-485X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-485X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-485X&client=summon |