A new hybrid neural network based on gated recurrent unit and simple exponential smoothing for forecasting

Deep recurrent artificial neural networks can be easily adapted to the forecasting problem due to the dynamic structure in their architecture. In this paper, two different hybrid neural network architectures based on gated recurrent units and exponential smoothing are proposed for forecasting. The a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computing Ročník 107; číslo 10; s. 196
Hlavní autori: Kolemen, Emine, Egrioglu, Erol, Bas, Eren, Turkmen, Mustafa
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Vienna Springer Vienna 01.10.2025
Springer Nature B.V
Predmet:
ISSN:0010-485X, 1436-5057
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Deep recurrent artificial neural networks can be easily adapted to the forecasting problem due to the dynamic structure in their architecture. In this paper, two different hybrid neural network architectures based on gated recurrent units and exponential smoothing are proposed for forecasting. The architectures combine gated recurrent units and structures inspired by exponential smoothing models. In addition, training algorithms based on differential evolution and particle swarm optimization algorithms are proposed separately for training. Different strategies are used to solve overfitting and local optimum problems in these training algorithms. The performance of the proposed method is applied to sustainable water resources. The analysis results show that the proposed deep neural network methods have superior forecasting performance than many artificial neural networks.
AbstractList Deep recurrent artificial neural networks can be easily adapted to the forecasting problem due to the dynamic structure in their architecture. In this paper, two different hybrid neural network architectures based on gated recurrent units and exponential smoothing are proposed for forecasting. The architectures combine gated recurrent units and structures inspired by exponential smoothing models. In addition, training algorithms based on differential evolution and particle swarm optimization algorithms are proposed separately for training. Different strategies are used to solve overfitting and local optimum problems in these training algorithms. The performance of the proposed method is applied to sustainable water resources. The analysis results show that the proposed deep neural network methods have superior forecasting performance than many artificial neural networks.
ArticleNumber 196
Author Egrioglu, Erol
Turkmen, Mustafa
Kolemen, Emine
Bas, Eren
Author_xml – sequence: 1
  givenname: Emine
  orcidid: 0000-0001-6035-2065
  surname: Kolemen
  fullname: Kolemen, Emine
  organization: Department of Computer Engineering, Faculty of Architecture and Engineering, Avrasya University
– sequence: 2
  givenname: Erol
  orcidid: 0000-0003-4301-4149
  surname: Egrioglu
  fullname: Egrioglu, Erol
  organization: Department of Data Science and Analytics, Faculty of Arts and Science, Giresun University
– sequence: 3
  givenname: Eren
  orcidid: 0000-0002-0263-8804
  surname: Bas
  fullname: Bas, Eren
  email: eren.bas@giresun.edu.tr
  organization: Department of Data Science and Analytics, Faculty of Arts and Science, Giresun University
– sequence: 4
  givenname: Mustafa
  orcidid: 0000-0001-6700-5947
  surname: Turkmen
  fullname: Turkmen, Mustafa
  organization: Department of Biology, Faculty of Arts and Science, Giresun University
BookMark eNp9UMtOwzAQtFCRaAs_wMkSZ8PaiePkWFW8pEpceuBmObHTprR2sB2V_j0uQeLGYbWz2pnd0czQxDprELqlcE8BxEMAKEAQYJwA5XlF6AWa0jwrCAcuJmgKQIHkJX-_QrMQdgDAsrKaot0CW3PE21PtO53g4NU-tXh0_gPXKhiNncUbFRPwphm8NzbiwXYRK6tx6A793mDz1Sc_NnZJHA7OxW1nN7h1_lymUSGm-RpdtmofzM1vn6P10-N6-UJWb8-vy8WKNEywSJqGtqytuGi4MWWymRV5waimVJSgMlUWrVBU1IVui7QRmmqoBM8Er1it82yO7sazvXefgwlR7tzgbfooM5ZXuYCSnllsZDXeheBNK3vfHZQ_SQryHKkcI5UpUvkTqaRJlI2ikMh2Y_zf6X9U370je8w
Cites_doi 10.1162/neco.1997.9.8.1735
10.1109/ICCIS49240.2020.9257651
10.1016/j.eswa.2023.119527
10.1007/s41066-021-00274-2
10.1016/j.envpol.2022.119136
10.1016/j.eswa.2024.124187
10.3390/w13010091
10.1016/j.psep.2023.03.052
10.1111/geoj.12488
10.3390/su14063352
10.1016/j.engappai.2022.105445
10.1145/3653924.3653931
10.1016/j.engappai.2022.105717
10.1016/j.jhydrol.2020.125188
10.1016/j.engappai.2023.105982
10.1007/s41066-023-00389-8
10.3115/v1/D14-1179
10.1016/j.resourpol.2022.102906
10.1016/j.jhydrol.2022.127934
10.1038/323533a0
10.1109/JIOT.2023.3340182
10.1016/j.energy.2022.126503
10.1016/j.compchemeng.2021.107513
10.1016/j.jhydrol.2022.127440
10.1016/j.jhydrol.2022.128262
10.1016/j.aej.2022.01.011
10.1016/j.eswa.2023.119617
10.1016/j.socl.2020.100009
10.1016/j.advengsoft.2022.103190
10.3390/s23073631
10.1016/j.energy.2020.118787
10.1016/j.energy.2021.120492
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s00607-025-01549-1
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1436-5057
ExternalDocumentID 10_1007_s00607_025_01549_1
GrantInformation_xml – fundername: Yükseköğretim Kurulu
  grantid: YOK100/2000
  funderid: http://dx.doi.org/10.13039/501100007246
GroupedDBID -~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKWF
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BENPR
BGNMA
BKOMP
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAP
EBLON
EBR
EBS
EBU
EIOEI
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LAS
LLZTM
M2O
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
QWB
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZL0
ZMTXR
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
6TJ
8AO
8FE
8FG
8G5
AAOBN
AARHV
AAYTO
AAYXX
ABQSL
ABULA
ABUWG
ACBXY
ACUHS
ADHKG
AEBTG
AEFIE
AEKMD
AEMOZ
AFEXP
AFFHD
AFFNX
AFGCZ
AFKRA
AGGDS
AGQPQ
AHQJS
AJBLW
AMVHM
ARCSS
AZQEC
B0M
BBWZM
BDATZ
BEZIV
BGLVJ
BPHCQ
CAG
CCPQU
CITATION
COF
DWQXO
EAD
EBA
ECS
EDO
EJD
EMK
EPL
FINBP
FRNLG
FSGXE
GNUQQ
GUQSH
H13
IHE
ITG
ITH
K1G
K6V
K7-
KOW
M0C
MK~
ML~
N2Q
NDZJH
O9-
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
Q2X
R4E
RNI
RZK
S26
S28
SCJ
SCLPG
T16
TH9
TUS
~8M
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c272t-cc1f2f957c5ee8023364621d11780a3a86f7a17b6df66467d1d097537592bd43
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001568889300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-485X
IngestDate Wed Nov 26 14:53:21 EST 2025
Sat Nov 29 07:07:00 EST 2025
Thu Oct 16 01:19:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Exponential smoothing
Gated recurrent unit
Differential evolution algorithm
Forecasting
Sustainable water resources
Particle swarm optimization algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-cc1f2f957c5ee8023364621d11780a3a86f7a17b6df66467d1d097537592bd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0263-8804
0000-0001-6700-5947
0000-0003-4301-4149
0000-0001-6035-2065
PQID 3249470814
PQPubID 48322
ParticipantIDs proquest_journals_3249470814
crossref_primary_10_1007_s00607_025_01549_1
springer_journals_10_1007_s00607_025_01549_1
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Computing
PublicationTitleAbbrev Computing
PublicationYear 2025
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References S Zhu (1549_CR33) 2023; 189
L Chen (1549_CR6) 2022; 606
X Zhao (1549_CR31) 2021; 13
S Zhang (1549_CR30) 2023; 218
X Liu (1549_CR17) 2021; 227
JW Yu (1549_CR28) 2022; 303
T Cansu (1549_CR4) 2023; 8
MS Islam (1549_CR12) 2021; 3
1549_CR25
KE ArunKumar (1549_CR1) 2022; 61
GA Busari (1549_CR3) 2021; 155
Y Xiao (1549_CR27) 2023; 267
Z Guo (1549_CR10) 2023; 173
AC Ozdemi (1549_CR20) 2022; 78
DE Rumelhart (1549_CR22) 1986; 323
T Wang (1549_CR24) 2022; 116
1549_CR7
J Li (1549_CR14) 2020; 213
E Bas (1549_CR2) 2022; 7
G Li (1549_CR15) 2023; 119
D Wu (1549_CR26) 2023; 11
S Hochreiter (1549_CR11) 1997; 9
HC Kilinc (1549_CR13) 2022; 14
K Chaudhari (1549_CR5) 2023; 219
P Mei (1549_CR18) 2022; 610
B Li (1549_CR16) 2023; 23
D Skrobek (1549_CR23) 2022; 173
S Gao (1549_CR8) 2020; 589
NR Pokhrel (1549_CR21) 2022; 9
1549_CR19
D Yu (1549_CR29) 2024; 252
Z Zhao (1549_CR32) 2023; 121
A Gharehbaghi (1549_CR9) 2022; 612
References_xml – volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 1549_CR11
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– ident: 1549_CR19
  doi: 10.1109/ICCIS49240.2020.9257651
– volume: 219
  start-page: 119527
  year: 2023
  ident: 1549_CR5
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.119527
– volume: 7
  start-page: 411
  issue: 2
  year: 2022
  ident: 1549_CR2
  publication-title: Granul Comput
  doi: 10.1007/s41066-021-00274-2
– volume: 303
  start-page: 119136
  year: 2022
  ident: 1549_CR28
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2022.119136
– volume: 252
  start-page: 124187
  year: 2024
  ident: 1549_CR29
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2024.124187
– volume: 13
  start-page: 91
  issue: 1
  year: 2021
  ident: 1549_CR31
  publication-title: Water
  doi: 10.3390/w13010091
– volume: 173
  start-page: 604
  year: 2023
  ident: 1549_CR10
  publication-title: Process Saf Environ Prot
  doi: 10.1016/j.psep.2023.03.052
– volume: 189
  start-page: 357
  issue: 2
  year: 2023
  ident: 1549_CR33
  publication-title: Geographical J
  doi: 10.1111/geoj.12488
– volume: 14
  start-page: 3352
  issue: 6
  year: 2022
  ident: 1549_CR13
  publication-title: Sustainability
  doi: 10.3390/su14063352
– volume: 116
  start-page: 105445
  year: 2022
  ident: 1549_CR24
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2022.105445
– ident: 1549_CR25
  doi: 10.1145/3653924.3653931
– volume: 119
  start-page: 105717
  year: 2023
  ident: 1549_CR15
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2022.105717
– volume: 589
  start-page: 125188
  year: 2020
  ident: 1549_CR8
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125188
– volume: 121
  start-page: 105982
  year: 2023
  ident: 1549_CR32
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.105982
– volume: 8
  start-page: 1645
  issue: 6
  year: 2023
  ident: 1549_CR4
  publication-title: Granul Comput
  doi: 10.1007/s41066-023-00389-8
– ident: 1549_CR7
  doi: 10.3115/v1/D14-1179
– volume: 78
  start-page: 102906
  year: 2022
  ident: 1549_CR20
  publication-title: Resour Policy
  doi: 10.1016/j.resourpol.2022.102906
– volume: 610
  start-page: 127934
  year: 2022
  ident: 1549_CR18
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2022.127934
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 1549_CR22
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 11
  start-page: 14267
  issue: 8
  year: 2023
  ident: 1549_CR26
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2023.3340182
– volume: 267
  start-page: 126503
  year: 2023
  ident: 1549_CR27
  publication-title: Energy
  doi: 10.1016/j.energy.2022.126503
– volume: 9
  start-page: 100385
  year: 2022
  ident: 1549_CR21
  publication-title: Mach Learn Appl
– volume: 155
  start-page: 107513
  year: 2021
  ident: 1549_CR3
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2021.107513
– volume: 606
  start-page: 127440
  year: 2022
  ident: 1549_CR6
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2022.127440
– volume: 612
  start-page: 128262
  year: 2022
  ident: 1549_CR9
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2022.128262
– volume: 61
  start-page: 7585
  issue: 10
  year: 2022
  ident: 1549_CR1
  publication-title: Alexandria Eng J
  doi: 10.1016/j.aej.2022.01.011
– volume: 218
  start-page: 119617
  year: 2023
  ident: 1549_CR30
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.119617
– volume: 3
  start-page: 100009
  year: 2021
  ident: 1549_CR12
  publication-title: Soft Comput Lett
  doi: 10.1016/j.socl.2020.100009
– volume: 173
  start-page: 103190
  year: 2022
  ident: 1549_CR23
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2022.103190
– volume: 23
  start-page: 3631
  issue: 7
  year: 2023
  ident: 1549_CR16
  publication-title: Sensors
  doi: 10.3390/s23073631
– volume: 213
  start-page: 118787
  year: 2020
  ident: 1549_CR14
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118787
– volume: 227
  start-page: 120492
  year: 2021
  ident: 1549_CR17
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120492
SSID ssj0002389
Score 2.3925962
Snippet Deep recurrent artificial neural networks can be easily adapted to the forecasting problem due to the dynamic structure in their architecture. In this paper,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 196
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Computer Appl. in Administrative Data Processing
Computer Communication Networks
Computer Science
Deep learning
Evolutionary computation
Forecasting
Information Systems Applications (incl.Internet)
Machine learning
Neural networks
Particle swarm optimization
Regular Paper
Smoothing
Software Engineering
Stream flow
Time series
Traffic flow
Water resources
Wind power
Title A new hybrid neural network based on gated recurrent unit and simple exponential smoothing for forecasting
URI https://link.springer.com/article/10.1007/s00607-025-01549-1
https://www.proquest.com/docview/3249470814
Volume 107
WOSCitedRecordID wos001568889300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-5057
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002389
  issn: 0010-485X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yPejB6VScTsnBmwaaNL96HOLw4hAdsltJmxYn2I11E_3vfUnbDUUPeugpTRryknxfk_e-h9CFCawAYAiIlVwQHmpJDM8jEjKlACAYMIzcJ5tQw6Eej6P7OiisbLzdmytJv1Ovgt2cdIgiLv2q1xUj8M-zCXCnXcKGh8en1f4LIFSRXugB12Jch8r83MZXOFpzzG_Xoh5tBu3_9XMP7dbsEver6bCPNrKig9pN5gZcL-QO2rlbqbWWB-ilj4Fc4-cPF72FncIltFFU_uHYwZzF0wK78zaL5-583ik64SVsBtgUFpcTpzCMs_fZtHC-R1C5fJ3CDIBeY-DE7slSUzoH60M0GtyMrm9JnYOBpEyxBUlTmrM8EioVWebE4kLJJaOWUqUDExotc2WoSqTNJZQoS23gYnWViFhieXiEWgV8_BhhoY2Qmicc6gJy0igzIXCphCU8TGjOu-iysUQ8q5Q24pWmsh_TGMY09mMa0y7qNcaK61VXxkAOI66A5EBjV41x1sW_t3byt9dP0TZz9vU-fT3UWsyX2RnaSt8Wk3J-7mfjJygY17M
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yBfXgdCpOp-bgTQNLmjbtcYhj4jZEh-wW0qbFCXZj3UT_e1_SH0PRgx56SvMa8pJ8X5P3viB0odraBWBoE-1xl3DH94jiSUAcJgQABAOGkdjLJsRw6I_HwX2RFJaV0e7lkaRdqatkNyMdIoi5ftXqihH451nngFhGMf_h8alafwGEctILLeC-Oy5SZX628RWOVhzz27GoRZtu_X_t3EU7BbvEnXw47KG1OG2genlzAy4mcgNtDyq11mwfvXQwkGv8_GGyt7BRuAQbaR4fjg3MaTxNsdlv03hu9ueNohNewmKAVapxNjEKwzh-n01TE3sElbPXKYwAaDUGTmyeOFKZCbA-QKPuzei6R4o7GEjEBFuQKKIJSwJXRG4cG7E4x-Meo5pS4beVo3wvEYqK0NOJByVCU902ubrCDViouXOIail8_Ahh11eu5_OQQ11AThrEygEuFbKQOyFNeBNdlp6Qs1xpQ1aayrZPJfSptH0qaRO1SmfJYtZlEshhwAWQHDB2VTpnVfy7teO_vX6ONnujQV_2b4d3J2iLGV_b-L4Wqi3my_gUbURvi0k2P7Mj8xNNr9qX
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA6iInpwOhWnU3PwpmFLmjbtcahDUcfAIbuVtGlxgt1YO9H_3vf6Y1PRg3joKc1rmpfkfUne-x4hp7ptbDAMbWYcaTNpuQ7TMvaYJZQCAyEAYcR5sgnV67nDodf_FMWfe7tXV5JFTAOyNCVZa2Li1jzwDWlEFMNUrDnHGIP9z4pER3rcrz88ztdiMEgFAIbWSNcelmEzP8v4apoWePPbFWluebq1_7d5i2yWqJN2imGyTZaipE5qVUYHWk7wOtm4n7O4pjvkuUMBdNOnd4zqosh8CTKSwm-covkzdJxQPIczdIrn9sj0RGewSFCdGJqOkHmYRm-TcYI-SVA5fRnDyIA_oICV8YlCnaLj9S4ZdK8GF9eszM3AQqFExsKQxyL2bBXaUYQkcpYjHcEN58pta0u7Tqw0V4FjYgdKlOGmjTG8yvZEYKS1R5YT-Pg-obarbceVgYS6YFG5F2kLMFYgAmkFPJYNclZpxZ8UDBz-nGs571Mf-tTP-9TnDdKsFOeXszH1ATR6UgH4AWHnlaIWxb9LO_jb6ydkrX_Z9e9uereHZF2gqnO3vyZZzqaz6Iishq_ZKJ0e54P0AyrO43s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+hybrid+neural+network+based+on+gated+recurrent+unit+and+simple+exponential+smoothing+for+forecasting&rft.jtitle=Computing&rft.au=Kolemen%2C+Emine&rft.au=Egrioglu%2C+Erol&rft.au=Bas%2C+Eren&rft.au=Turkmen%2C+Mustafa&rft.date=2025-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0010-485X&rft.eissn=1436-5057&rft.volume=107&rft.issue=10&rft.spage=196&rft_id=info:doi/10.1007%2Fs00607-025-01549-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-485X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-485X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-485X&client=summon