Prescribed-Time Adaptive Parameter Estimation for Uncertain Linear Systems via Modified Volterra Operator

In this paper, a novel framework is developed to address the parameter estimation problem in uncertain linear systems. Primarily, a new modified Volterra operator is proposed by incorporating a delayed term into the standard Volterra operator. Several properties of the modified Volterra operator are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics Jg. 113; H. 21; S. 29337 - 29354
Hauptverfasser: Shi, Shang, Min, Huifang, Hu, YinLong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.11.2025
Springer Nature B.V
Schlagworte:
ISSN:0924-090X, 1573-269X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, a novel framework is developed to address the parameter estimation problem in uncertain linear systems. Primarily, a new modified Volterra operator is proposed by incorporating a delayed term into the standard Volterra operator. Several properties of the modified Volterra operator are presented, illustrating that the proposed operator offers enhanced robustness against a wide range of uncertainties without requiring an increase in the order of the kernel functions. Building on the modified Volterra operator, we propose a novel adaptive estimation algorithm to achieve precise parameter estimation within a given prescribed time for continuous-time linear systems without uncertainties. Subsequent to this, a robustness analysis for systems subject to output uncertainties is provided. We present a sufficient condition under which the proposed robust estimation algorithm has been shown to achieve enhanced robustness against a wide range of uncertainties. The boundedness of the estimation error is guaranteed for uncertainties that satisfy this condition, including constant, slowly varying, and even some unbounded uncertainties. Additionally, our proposed parameter estimation algorithm only requires the availability of input and output signals, effectively eliminating dependency on unknown initial conditions and high-order derivatives of measurable signals. Finally, simulation comparison is presented to show the effectiveness of the proposed method.
AbstractList In this paper, a novel framework is developed to address the parameter estimation problem in uncertain linear systems. Primarily, a new modified Volterra operator is proposed by incorporating a delayed term into the standard Volterra operator. Several properties of the modified Volterra operator are presented, illustrating that the proposed operator offers enhanced robustness against a wide range of uncertainties without requiring an increase in the order of the kernel functions. Building on the modified Volterra operator, we propose a novel adaptive estimation algorithm to achieve precise parameter estimation within a given prescribed time for continuous-time linear systems without uncertainties. Subsequent to this, a robustness analysis for systems subject to output uncertainties is provided. We present a sufficient condition under which the proposed robust estimation algorithm has been shown to achieve enhanced robustness against a wide range of uncertainties. The boundedness of the estimation error is guaranteed for uncertainties that satisfy this condition, including constant, slowly varying, and even some unbounded uncertainties. Additionally, our proposed parameter estimation algorithm only requires the availability of input and output signals, effectively eliminating dependency on unknown initial conditions and high-order derivatives of measurable signals. Finally, simulation comparison is presented to show the effectiveness of the proposed method.
Author Min, Huifang
Hu, YinLong
Shi, Shang
Author_xml – sequence: 1
  givenname: Shang
  surname: Shi
  fullname: Shi, Shang
  organization: School of Internet of Things, Nanjing University of Posts and Telecommunications
– sequence: 2
  givenname: Huifang
  surname: Min
  fullname: Min, Huifang
  email: jiejie1043640772@126.com
  organization: School of Automation, Nanjing University of Science and Technology
– sequence: 3
  givenname: YinLong
  surname: Hu
  fullname: Hu, YinLong
  organization: College of Artificial Intelligence and Automation, Hohai University
BookMark eNp9kM1KAzEURoNUsFZfwFXAdfQm0zQzSyn1ByoVrOIuxMytROyk3qSlfXujFdy5yuY755JzzHpd7JCxMwkXEsBcJinBSAFKCyl104jtAetLbSqhRs1Lj_WhUUMBDbwcseOU3gGgUlD3WXggTJ7CK7ZiHpbIr1q3ymGD_MGRW2JG4pOUw9LlEDu-iMSfOo-UXej4NHToiD_uUsZl4pvg-H1swyJgy5_jR2HJ8dkKyeVIJ-xw4T4Snv6-Aza_nszHt2I6u7kbX02FV0Zl4c1rq0bKVa4ZOmmGjVIeoQavVI1OVyNtPGiP2uDIO2O0Rj_UALUHJ6WpBux8r11R_FxjyvY9rqkrF22ldF2ExVBWar_yFFMiXNgVlT_Szkqw30XtvqgtRe1PUbstULWHUhl3b0h_6n-oL76tfFc
Cites_doi 10.1109/TAC.2022.3149964
10.1007/s11071-023-08868-y
10.1109/TAC.2017.2671343
10.1109/TIE.2024.3443954
10.1016/j.automatica.2024.111933
10.1177/01423312241262540
10.1016/j.enconman.2024.118866
10.1109/TAC.2019.2933388
10.23919/ECC.1999.7099355
10.1109/TAC.2011.2179869
10.1109/TAC.2008.919568
10.1016/j.automatica.2022.110485
10.1007/s11071-021-06462-8
10.1007/s11071-023-08623-3
10.1080/0020717031000149636
10.1007/s11071-023-08933-6
10.1007/978-3-642-21981-8
10.1016/j.automatica.2021.109559
10.1016/j.automatica.2017.06.008
10.1016/j.automatica.2016.10.031
10.23919/ECC57647.2023.10178290
10.1109/TAC.2020.3003651
10.1109/TSMC.2023.3240751
10.1007/BF02551284
10.1007/s11071-021-06859-5
10.1109/TAC.2021.3061645
10.1109/TAC.2022.3212005
10.1016/j.ejcon.2020.05.011
10.1121/1.399905
10.1016/j.automatica.2019.04.048
10.23919/ECC64448.2024.10590922
10.1016/j.automatica.2019.04.016
10.1109/TAC.2021.3130883
10.1016/j.media.2025.103537
10.1007/s11071-022-07820-w
10.1109/ACC.2016.7526771
10.1016/j.arcontrol.2020.06.002
10.1109/ACC.2013.6580311
10.1007/s11071-023-08304-1
10.1049/iet-cta.2010.0228
10.1109/TSMC.2024.3358350
10.1109/TAC.2019.2953146
10.1109/TAC.2022.3218592
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature B.V. 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2025.
DBID AAYXX
CITATION
DOI 10.1007/s11071-025-11599-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1573-269X
EndPage 29354
ExternalDocumentID 10_1007_s11071_025_11599_x
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20220943
  funderid: http://dx.doi.org/10.13039/501100004608
– fundername: China Postdoctoral Science Foundation
  grantid: 2022M710682
– fundername: National Natural Science Foundation of China
  grantid: 62373135, 62203221, 62003131
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z8Z
ZMTXR
~A9
~EX
AAYXX
AFFHD
CITATION
ID FETCH-LOGICAL-c272t-c7bd262a3a94a174922ce080c228ea53657c05ce57e6ca7755ec45008c0a1173
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001530408900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-090X
IngestDate Wed Nov 05 08:43:17 EST 2025
Sat Nov 29 07:13:13 EST 2025
Thu Oct 09 01:10:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Linear system
Uncertainties
Delay
Adaptive parameter estimation
Prescribed time
Volterra operator
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-c7bd262a3a94a174922ce080c228ea53657c05ce57e6ca7755ec45008c0a1173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3258749657
PQPubID 2043746
PageCount 18
ParticipantIDs proquest_journals_3258749657
crossref_primary_10_1007_s11071_025_11599_x
springer_journals_10_1007_s11071_025_11599_x
PublicationCentury 2000
PublicationDate 20251100
2025-11-00
20251101
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 20251100
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationYear 2025
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References P Ge (11599_CR26) 2022; 68
V Adetola (11599_CR8) 2008; 53
Y Orlov (11599_CR34) 2022; 144
11599_CR18
CC Hua (11599_CR36) 2022; 67
G Pin (11599_CR24) 2017; 77
L Cui (11599_CR33) 2021; 106
B Yi (11599_CR11) 2022; 68
11599_CR21
11599_CR43
B Yi (11599_CR15) 2023; 111
11599_CR44
H Garnier (11599_CR5) 2003; 76
G Fedele (11599_CR20) 2018; 318
11599_CR25
H Min (11599_CR16) 2023; 68
11599_CR27
B Chen (11599_CR23) 2019; 106
W Zhai (11599_CR1) 2023; 111
11599_CR41
G Pin (11599_CR17) 2016; 61
11599_CR42
H Min (11599_CR29) 2025; 171
H Khalil (11599_CR39) 2002
R Kamalapurkar (11599_CR48) 2017; 62
M Krstic (11599_CR40) 1995
R Ortega (11599_CR45) 2020; 50
P Li (11599_CR22) 2020; 55
11599_CR6
M Bergamasco (11599_CR4) 2011; 5
11599_CR32
P Li (11599_CR19) 2020; 65
L Zhang (11599_CR35) 2022; 110
A Polyakov (11599_CR14) 2012; 57
W Consagra (11599_CR46) 2025; 102
P Young (11599_CR3) 2011
S Shi (11599_CR13) 2021; 127
Y Song (11599_CR28) 2017; 83
G Pin (11599_CR7) 2019; 107
11599_CR38
B Zhou (11599_CR37) 2021; 66
S Fang (11599_CR12) 2023; 111
I Karafyllis (11599_CR9) 2019; 65
T Zhang (11599_CR2) 2023; 111
R Ortega (11599_CR10) 2020; 66
11599_CR30
E Ozturk (11599_CR47) 2024; 319
11599_CR31
References_xml – volume: 68
  start-page: 1253
  issue: 2
  year: 2022
  ident: 11599_CR11
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2022.3149964
– volume: 111
  start-page: 19947
  issue: 7
  year: 2023
  ident: 11599_CR12
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-08868-y
– volume: 62
  start-page: 3594
  issue: 7
  year: 2017
  ident: 11599_CR48
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2017.2671343
– ident: 11599_CR30
  doi: 10.1109/TIE.2024.3443954
– volume: 171
  year: 2025
  ident: 11599_CR29
  publication-title: Automatica
  doi: 10.1016/j.automatica.2024.111933
– ident: 11599_CR27
  doi: 10.1177/01423312241262540
– volume: 319
  year: 2024
  ident: 11599_CR47
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2024.118866
– volume: 65
  start-page: 2842
  issue: 7
  year: 2019
  ident: 11599_CR9
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2019.2933388
– volume-title: Nonlinear and Adaptive Control Systems Design
  year: 1995
  ident: 11599_CR40
– ident: 11599_CR6
  doi: 10.23919/ECC.1999.7099355
– volume: 57
  start-page: 2106
  issue: 8
  year: 2012
  ident: 11599_CR14
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2011.2179869
– volume: 53
  start-page: 807
  issue: 3
  year: 2008
  ident: 11599_CR8
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2008.919568
– volume: 144
  year: 2022
  ident: 11599_CR34
  publication-title: Automatica
  doi: 10.1016/j.automatica.2022.110485
– ident: 11599_CR38
  doi: 10.1007/s11071-021-06462-8
– volume: 111
  start-page: 15127
  year: 2023
  ident: 11599_CR2
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-08623-3
– volume: 76
  start-page: 1337
  issue: 13
  year: 2003
  ident: 11599_CR5
  publication-title: Int. J. Control
  doi: 10.1080/0020717031000149636
– volume: 111
  start-page: 21117
  year: 2023
  ident: 11599_CR1
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-08933-6
– volume-title: Recursive estimation and time-series analysis: An introduction for the student and practitioner
  year: 2011
  ident: 11599_CR3
  doi: 10.1007/978-3-642-21981-8
– volume: 127
  year: 2021
  ident: 11599_CR13
  publication-title: Automatica
  doi: 10.1016/j.automatica.2021.109559
– volume: 83
  start-page: 243
  year: 2017
  ident: 11599_CR28
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.06.008
– volume: 77
  start-page: 120
  year: 2017
  ident: 11599_CR24
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.10.031
– ident: 11599_CR25
  doi: 10.23919/ECC57647.2023.10178290
– volume: 66
  start-page: 2265
  issue: 5
  year: 2020
  ident: 11599_CR10
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2020.3003651
– ident: 11599_CR32
  doi: 10.1109/TSMC.2023.3240751
– ident: 11599_CR42
  doi: 10.1007/BF02551284
– ident: 11599_CR43
– volume: 106
  start-page: 491
  issue: 1
  year: 2021
  ident: 11599_CR33
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06859-5
– volume: 66
  start-page: 6123
  issue: 12
  year: 2021
  ident: 11599_CR37
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2021.3061645
– volume: 68
  start-page: 4932
  issue: 8
  year: 2022
  ident: 11599_CR26
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2022.3212005
– volume: 55
  start-page: 45
  year: 2020
  ident: 11599_CR22
  publication-title: Eur. J. Control.
  doi: 10.1016/j.ejcon.2020.05.011
– ident: 11599_CR41
  doi: 10.1121/1.399905
– volume: 107
  start-page: 95
  year: 2019
  ident: 11599_CR7
  publication-title: Automatic
  doi: 10.1016/j.automatica.2019.04.048
– ident: 11599_CR21
  doi: 10.23919/ECC64448.2024.10590922
– volume: 106
  start-page: 1
  year: 2019
  ident: 11599_CR23
  publication-title: Automatica
  doi: 10.1016/j.automatica.2019.04.016
– volume: 67
  start-page: 6159
  issue: 11
  year: 2022
  ident: 11599_CR36
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2021.3130883
– volume: 102
  year: 2025
  ident: 11599_CR46
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2025.103537
– volume: 110
  start-page: 3535
  issue: 4
  year: 2022
  ident: 11599_CR35
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-07820-w
– ident: 11599_CR44
  doi: 10.1109/ACC.2016.7526771
– volume: 50
  start-page: 278
  year: 2020
  ident: 11599_CR45
  publication-title: Annu. Rev. Control.
  doi: 10.1016/j.arcontrol.2020.06.002
– volume: 61
  start-page: 360
  issue: 2
  year: 2016
  ident: 11599_CR17
  publication-title: IEEE Trans. Autom. Control
– ident: 11599_CR18
  doi: 10.1109/ACC.2013.6580311
– volume: 111
  start-page: 10049
  issue: 7
  year: 2023
  ident: 11599_CR15
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-08304-1
– volume: 5
  start-page: 856
  issue: 7
  year: 2011
  ident: 11599_CR4
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2010.0228
– volume-title: Nonlinear systems
  year: 2002
  ident: 11599_CR39
– ident: 11599_CR31
  doi: 10.1109/TSMC.2024.3358350
– volume: 65
  start-page: 3053
  issue: 7
  year: 2020
  ident: 11599_CR19
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2019.2953146
– volume: 68
  start-page: 5052
  issue: 8
  year: 2023
  ident: 11599_CR16
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2022.3218592
– volume: 318
  start-page: 121
  year: 2018
  ident: 11599_CR20
  publication-title: Appl. Math. Comput.
SSID ssj0003208
Score 2.4431558
Snippet In this paper, a novel framework is developed to address the parameter estimation problem in uncertain linear systems. Primarily, a new modified Volterra...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 29337
SubjectTerms Adaptive algorithms
Applications of Nonlinear Dynamics and Chaos Theory
Classical Mechanics
Continuous time systems
Control
Control algorithms
Design
Dynamical Systems
Initial conditions
Kernel functions
Linear systems
Operators (mathematics)
Parameter estimation
Parameter identification
Parameter modification
Parameter uncertainty
Physics
Physics and Astronomy
Robustness
Statistical Physics and Dynamical Systems
Vibration
Title Prescribed-Time Adaptive Parameter Estimation for Uncertain Linear Systems via Modified Volterra Operator
URI https://link.springer.com/article/10.1007/s11071-025-11599-x
https://www.proquest.com/docview/3258749657
Volume 113
WOSCitedRecordID wos001530408900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbQAAkOPAaIwUA5cINIXdo07RGhIS48BAPtViVOJu2yTeuY-Pk4WcsAwQHOrZzKju3P9QvgTBkXSyMF1zbNeIKouEmjhCsjozRzqBFtWDah7u6yfj9_qJrCyrravU5JBku9bHajSIVCXyE5oZg854QcV8ndZV4dH59ePuxvLMIeuogiC_8Xol-1yvxM46s7WmLMb2nR4G2ut__3nTuwVaFLdrm4Druw4kZN2K6QJqv0uGzC5qcxhE1YD2WgWO7B0FdkkB0xznLfHMIurZ54g8getK_iIiGwLhmFRb8jI8DLnoliqCpgFNaS2rBqBjqbDzW7HdvhwB_9MvZZ-alm9xMXEvv70Lvu9q5ueLWMgaNQYsZRGStSoWOdJ5rCmFwIdAQ3UYjMaRmnUmEk0UnlUtRKSekwkYQwMNKdjooPoDEaj9whMEUoZCCsThRiEjljYmGkSbOBFYOoY5MWnNciKSaLkRvFcriyZ25BzC0Cc4u3FrRrqRWV-pVFLGSm_CR81YKLWkrLx79TO_rb68ewIRaC5lGnDY3Z9NWdwBrOZ8Nyehqu5TtTht5r
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-hbmjsAVi3aR0d8wNvYClx4jh5rKYiptEOQUF9i-yzK_WlrZpS7c_f2U1WQOMBnhOdozvf3e9yXwAnyrhEGim4tlnOU0TFTRalXBkZZblDjWjDsgk1HObjcXFVN4VVTbV7k5IMlnrb7EaRCoW-QnJCMUXBCTm-Sclj-UK-65u7f_Y3EWEPXUSRhf8LMa5bZf5P47E72mLMJ2nR4G3OD173nYewX6NL1ttchw-w42ZtOKiRJqv1uGrD-wdjCNuwG8pAsfoIU1-RQXbEOMt9cwjrWb3wBpFdaV_FRUJgfTIKm35HRoCX3RLFUFXAKKwltWH1DHS2nmo2mNvpxB99N_dZ-aVmvxcuJPY_wei8P_pxwetlDByFEiuOyliRCZ3oItUUxhRCoCO4iULkTsskkwojiU4ql6FWSkqHqSSEgZGOY5V8htZsPnNfgClCIRNhdaoQ08gZkwgjTZZPrJhEsU07cNqIpFxsRm6U2-HKnrklMbcMzC3_dKDbSK2s1a8qEyFz5Sfhqw6cNVLaPn6e2teXvf4d3l2MBpfl5c_hryPYExuh8yjuQmu1vHff4C2uV9NqeRyu6F_Je-FP
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4hHis48OjuivL0YW9gkTpxnBwRUIGAUmkB9RbZY0fqpa3agvj5jJ2Usis4IM6J7GjGM_4mM98MwB9lXCyNFFzbNOMJouImjRKujIzSzKFGtGHYhOp0sl4v775j8Ydq91lKsuI0-C5Ng-nJyJYnc-IbRS0UBgvJCdHkOScUuZT4oUE-Xv_7-OaLYxFm0kUUZfg_Er2aNvPxGv9eTXO8-V-KNNw87Y3vf_MmrNeok51Wx2QLFtygARs1AmW1fU8asPauPWEDVkJ5KE5-Qt9XapB_Mc5yTxphp1aPvKNkXe2ru0g57IKcRcWDZASE2QOtGKoNGIW7ZE6s7o3Onvua3Q5tv_RbPw59tn6s2d3IhYT_L7hvX9yfXfJ6SANHocSUozJWpELHOk80hTe5EOgIhqIQmdMyTqXCSKKTyqWolZLSYSIJeWCkWy0V_4bFwXDgtoEpQielsDpRiEnkjImFkSbNSivKqGWTJhzN1FOMqlYcxbzpshduQcItgnCLlybszTRY1GY5KWIhM-U75KsmHM80Nn_8-Wo7X3v9EH50z9vFzVXnehdWRaVzHrX2YHE6fnL7sIzP0_5kfBBO6ysicuoz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prescribed-Time+Adaptive+Parameter+Estimation+for+Uncertain+Linear+Systems+via+Modified+Volterra+Operator&rft.jtitle=Nonlinear+dynamics&rft.au=Shi%2C+Shang&rft.au=Min%2C+Huifang&rft.au=Hu%2C+YinLong&rft.date=2025-11-01&rft.pub=Springer+Netherlands&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=113&rft.issue=21&rft.spage=29337&rft.epage=29354&rft_id=info:doi/10.1007%2Fs11071-025-11599-x&rft.externalDocID=10_1007_s11071_025_11599_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon