Data Clustering with Partial Supervision
Clustering with partial supervision finds its application in situations where data is neither entirely nor accurately labeled. This paper discusses a semi-supervised clustering algorithm based on a modified version of the fuzzy C-Means (FCM) algorithm. The objective function of the proposed algorith...
Gespeichert in:
| Veröffentlicht in: | Data mining and knowledge discovery Jg. 12; H. 1; S. 47 - 78 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer Nature B.V
01.01.2006
|
| Schlagworte: | |
| ISSN: | 1384-5810, 1573-756X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Clustering with partial supervision finds its application in situations where data is neither entirely nor accurately labeled. This paper discusses a semi-supervised clustering algorithm based on a modified version of the fuzzy C-Means (FCM) algorithm. The objective function of the proposed algorithm consists of two components. The first concerns traditional unsupervised clustering while the second tracks the relationship between classes (available labels) and the clusters generated by the first component. The balance between the two components is tuned by a scaling factor. Comprehensive experimental studies are presented. First, the discrimination of the proposed algorithm is discussed before its reformulation as a classifier is addressed. The induced classifier is evaluated on completely labeled data and validated by comparison against some fully supervised classifiers, namely support vector machines and neural networks. This classifier is then evaluated and compared against three semi-supervised algorithms in the context of learning from partly labeled data. In addition, the behavior of the algorithm is discussed and the relation between classes and clusters is investigated using a linear regression model. Finally, the complexity of the algorithm is briefly discussed. |
|---|---|
| AbstractList | Clustering with partial supervision finds its application in situations where data is neither entirely nor accurately labeled. This paper discusses a semi-supervised clustering algorithm based on a modified version of the fuzzy C-Means (FCM) algorithm. The objective function of the proposed algorithm consists of two components. The first concerns traditional unsupervised clustering while the second tracks the relationship between classes (available labels) and the clusters generated by the first component. The balance between the two components is tuned by a scaling factor. Comprehensive experimental studies are presented. First, the discrimination of the proposed algorithm is discussed before its reformulation as a classifier is addressed. The induced classifier is evaluated on completely labeled data and validated by comparison against some fully supervised classifiers, namely support vector machines and neural networks. This classifier is then evaluated and compared against three semi-supervised algorithms in the context of learning from partly labeled data. In addition, the behavior of the algorithm is discussed and the relation between classes and clusters is investigated using a linear regression model. Finally, the complexity of the algorithm is briefly discussed. |
| Author | PEDRYCZ, WITOLD BOUCHACHIA, ABDELHAMID |
| Author_xml | – sequence: 1 givenname: ABDELHAMID surname: BOUCHACHIA fullname: BOUCHACHIA, ABDELHAMID – sequence: 2 givenname: WITOLD surname: PEDRYCZ fullname: PEDRYCZ, WITOLD |
| BookMark | eNp9UMFKxDAQDbKCu6sf4K148hKdaZqkPcrqqrCgoIK3kNZEs9S2Jqni35ulnjx4GGYG3pv35i3IrOs7Q8gxwhkCyPOAILCkADwVVhT3yBy5ZFRy8TxLMysLykuEA7IIYQsJmDOYk9NLHXW2ascQjXfda_bl4lt2r310us0exsH4Txdc3x2SfavbYI5--5I8ra8eVzd0c3d9u7rY0CaXeaSNZE1lSyEsg0IK-yI1r2uTttrwKokaBowXaC3Y0gqBhsu6yhlrCotocrYkJ9PdwfcfowlRbfvRd0lSJcMIvOJFAskJ1Pg-BG-salzUMdmMXrtWIahdKmpKRaVn1S4VhYmJf5iDd-_af__D-QFf2WTZ |
| CitedBy_id | crossref_primary_10_1243_09544062JMES508 crossref_primary_10_1007_s00521_007_0091_0 crossref_primary_10_1016_j_bspc_2017_07_005 crossref_primary_10_1016_j_oregeorev_2016_10_002 crossref_primary_10_1007_s13042_018_0790_0 crossref_primary_10_1155_2020_5648206 crossref_primary_10_1007_s10115_012_0521_x crossref_primary_10_1111_j_1468_0394_2008_00502_x crossref_primary_10_1007_s10489_015_0656_z crossref_primary_10_1016_j_eswa_2015_11_001 crossref_primary_10_4028_www_scientific_net_AMM_448_453_3772 crossref_primary_10_1016_j_eswa_2023_121812 crossref_primary_10_20965_jaciii_2011_p0095 crossref_primary_10_1109_TFUZZ_2018_2889010 crossref_primary_10_3233_JIFS_189744 crossref_primary_10_1016_j_patcog_2012_05_021 crossref_primary_10_1109_TCYB_2013_2278466 crossref_primary_10_4028_www_scientific_net_AMR_989_994_4594 crossref_primary_10_1002_ima_22267 crossref_primary_10_1007_s13042_025_02731_9 crossref_primary_10_3233_JIFS_234148 crossref_primary_10_1016_j_chaos_2024_114670 crossref_primary_10_1016_j_asoc_2024_111712 crossref_primary_10_1007_s10489_016_0763_5 crossref_primary_10_1016_j_cageo_2019_06_005 crossref_primary_10_1007_s40815_019_00683_1 crossref_primary_10_1016_j_datak_2009_10_004 crossref_primary_10_1016_j_jafrearsci_2016_09_007 crossref_primary_10_1016_j_fss_2022_08_003 crossref_primary_10_1016_j_ins_2022_06_062 |
| Cites_doi | 10.1007/978-1-4757-0450-1 10.1109/ICHIS.2005.68 10.1016/S0933-3657(98)00071-2 10.1109/36.752225 10.1109/91.873580 10.1023/A:1018628609742 10.1201/9781420050646.ptb6 10.1109/3477.623232 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, Inc. 2006 |
| Copyright_xml | – notice: Springer Science+Business Media, Inc. 2006 |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s10618-005-0019-1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-756X |
| EndPage | 78 |
| ExternalDocumentID | 991048321 10_1007_s10618_005_0019_1 |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFFHD AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D M0N MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c272t-c73c9f866f30476fd7a5bbef30be59052e303541ff0f8f661e57b9233c4f11e23 |
| IEDL.DBID | 7WY |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000235449300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1384-5810 |
| IngestDate | Wed Nov 26 13:51:50 EST 2025 Tue Nov 18 22:12:48 EST 2025 Sat Nov 29 01:44:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-c73c9f866f30476fd7a5bbef30be59052e303541ff0f8f661e57b9233c4f11e23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| PQID | 230105954 |
| PQPubID | 43030 |
| PageCount | 32 |
| ParticipantIDs | proquest_journals_230105954 crossref_citationtrail_10_1007_s10618_005_0019_1 crossref_primary_10_1007_s10618_005_0019_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2006-1-00 20060101 |
| PublicationDateYYYYMMDD | 2006-01-01 |
| PublicationDate_xml | – month: 01 year: 2006 text: 2006-1-00 |
| PublicationDecade | 2000 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Data mining and knowledge discovery |
| PublicationYear | 2006 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| References | 19_CR2 19_CR3 19_CR19 19_CR4 19_CR18 19_CR5 19_CR17 19_CR16 19_CR15 19_CR14 19_CR1 19_CR13 19_CR12 19_CR11 19_CR22 19_CR10 19_CR21 19_CR20 19_CR6 19_CR7 19_CR8 19_CR9 |
| References_xml | – ident: 19_CR4 doi: 10.1007/978-1-4757-0450-1 – ident: 19_CR10 – ident: 19_CR22 – ident: 19_CR9 doi: 10.1109/ICHIS.2005.68 – ident: 19_CR7 – ident: 19_CR6 – ident: 19_CR8 – ident: 19_CR19 doi: 10.1016/S0933-3657(98)00071-2 – ident: 19_CR14 doi: 10.1109/36.752225 – ident: 19_CR16 – ident: 19_CR13 doi: 10.1109/91.873580 – ident: 19_CR15 – ident: 19_CR17 – ident: 19_CR2 – ident: 19_CR3 – ident: 19_CR1 – ident: 19_CR11 – ident: 19_CR12 – ident: 19_CR20 – ident: 19_CR21 doi: 10.1023/A:1018628609742 – ident: 19_CR5 doi: 10.1201/9781420050646.ptb6 – ident: 19_CR18 doi: 10.1109/3477.623232 |
| SSID | ssj0005230 |
| Score | 2.0363734 |
| Snippet | Clustering with partial supervision finds its application in situations where data is neither entirely nor accurately labeled. This paper discusses a... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 47 |
| SubjectTerms | Algorithms Classification Clustering Data mining Genetic algorithms Knowledge discovery Regression analysis Supervision Support vector machines |
| Title | Data Clustering with Partial Supervision |
| URI | https://www.proquest.com/docview/230105954 |
| Volume | 12 |
| WOSCitedRecordID | wos000235449300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1573-756X dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0005230 issn: 1384-5810 databaseCode: 7WY dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1573-756X dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0005230 issn: 1384-5810 databaseCode: M0C dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-756X dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0005230 issn: 1384-5810 databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-756X dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0005230 issn: 1384-5810 databaseCode: K7- dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-756X dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0005230 issn: 1384-5810 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1573-756X dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0005230 issn: 1384-5810 databaseCode: M2O dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1573-756X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005230 issn: 1384-5810 databaseCode: RSV dateStart: 19970301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5g48CF8RRjMPXAASFFNG3TpCcEYxMSMKaNx-BSpWkiIU3b2IPfj911G7vswsVS1ESqPju2ZTs2Iec64J7RYUSZCl0aYKZQ2UBTkCdfB6lSqck4_SiaTdntRq28Nmecl1XOdWKmqNOBxhj5FbjK6Arw4Hr4TXFoFCZX8wkam6QIdprjAAPx_vGnwsOfPRKWAeWSLZKas5dzIZMU23Cik0PZqlla1cqZqWmU_vmTu2Qn9zGdm5lQ7JEN098npfn8Bie_zgfk4k5NlFPrTbFZApgwB4OyTguFCY53pkPUIxhNOySvjfpL7Z7mkxOo9oQ3oVr4OrIyDC1m1UKbCsWTxMAqMTwCYAywggfMWtdKCybacJGAqwfssYwZzz8ihf6gb46Jk2gWiVQAXJEJMKsqQmUiJaUfysSzSZm4c-BinbcVx-kWvXjZEBmxjgFrLKCLYlYml4sjw1lPjXWbK3Oo4_x6jeMFzidrv1bI9jJickoKk9HUnJEt_TP5Go-qmbBUSfG23my1YfUgKNAnt4bUewba4p9A2523X6bKye4 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB6KCnqxPrHWRw4KIix2k012cxCRVmmxloIVvMXNZhcEqbVNFX-U_9GdPKq9ePPgMSQbhnyzM5OZ2W8AjhTzXa2CkFAZNAjDSqE0TBGrT55iiZSJzpDu8l5PPDyE_Qp8lmdhsK2ytImZoU5eFObIz2yojKGAzy5GrwSHRmFxtZygkWvFjf54t39sk_NOy8J77LrXV4NmmxRDBYhyuZsSxT0VGhEEBgtOgUm49ONY26tY-2HDSm6l9Bk1pmGEsd5L-zy2UZCV3FCqkefAWvxF5tlXYA2Ykx8dJV5-KFkw4gs6K6LmJ_UCKgjSfmJQRei8G5z3Aplru67-s4-yBqtFDO1c5kq_DhU93IBqOZ_CKczVJpy0ZCqd5vMUySCsi3Yw6ez0cbPY5XfTEdpJzBZuwf2fyLsNC8OXod4BJ1Y05Am38ISaYdWYB1KHUggvELFr4ho0SqAiVdCm4_SO5-ib8BmxjSy22CAYRrQGp7Mlo5wz5LeH6yW0UWE-JtEM191f7x7Ccntw2426nd5NHVa-s0N7sJCOp3ofltRb-jQZH2SK6sDjXyvBF2cAH2Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LSwMxEB6kinjxLdbnHhRECDb7SvYgorZFqSzFB_S2ZrMJCKVW2yr-NP-dM93dVi_ePHhcdgPJfpNvJjOTGYAD7Qeu0WHEuAprzKdIobK-ZihPnvYzpTIzRvpGxLHsdKL2DHyWd2EorbLkxDFRZ8-afOQnaCqTKRD4J7bIimjXm2f9F0YNpCjQWnbTyCWkZT7e8fQ2OL2uI9SHrtts3F9esaLBANOucIdMC09HVoahpeBTaDOhgjQ1-JSaIKrhKnDGgc-trVlpUZOZQKRoEeEqLOeGah4g-88KD888FZi9aMTt22_5JV5-RVn6LJB8ElLN7-2FXDIqAkomFuM_leJPnTBWdM2lf_yLlmGxsK6d83w7rMCM6a3CUtm5wimIbA2O6mqonMvuiMpEoPJ2yB3ttGkb4fC7UZ8YlPyI6_DwJ_PdgErvuWc2wUk1j0QmEKrI-BRPFqEykZLSC2Xq2rQKtRK0RBcF1amvRzeZloImnBPEmVIHo4RX4XgypJ9XE_nt4-0S5qQglkEywXjr17f7MI_YJzfXcWsbFqZuox2oDF9HZhfm9NvwafC6V0itA49_LQVfHJ4ptg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Clustering+with+Partial+Supervision&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=BOUCHACHIA%2C+ABDELHAMID&rft.au=Pedrycz%2C+Witold&rft.date=2006-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=12&rft.issue=1&rft.spage=47&rft_id=info:doi/10.1007%2Fs10618-005-0019-1&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=991048321 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |