Noncrossing Longest Paths and Cycles Noncrossing Longest Paths and Cycles
Edge crossings in geometric graphs are sometimes undesirable as they could lead to unwanted situations such as collisions in motion planning and inconsistency in VLSI layout. Short geometric structures such as shortest perfect matchings, shortest spanning trees, shortest spanning paths, and shortest...
Saved in:
| Published in: | Graphs and combinatorics Vol. 41; no. 6; p. 122 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Tokyo
Springer Japan
01.12.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0911-0119, 1435-5914 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Edge crossings in geometric graphs are sometimes undesirable as they could lead to unwanted situations such as collisions in motion planning and inconsistency in VLSI layout. Short geometric structures such as shortest perfect matchings, shortest spanning trees, shortest spanning paths, and shortest spanning cycles on a given point set are inherently noncrossing. However, the longest such structures need not be noncrossing. In fact, it is intuitive to expect many edge crossings in various geometric graphs that are longest.
Recently, Álvarez-Rebollar, Cravioto-Lagos, Marín, Solé-Pi, and Urrutia (Graphs and Combinatorics, 2024) constructed a set of points for which the longest perfect matching is noncrossing. They raised several challenging questions in this direction. In particular, they asked whether the longest spanning path, on every finite set of points in the plane, must have a pair of crossing edges. They also conjectured that the longest spanning cycle must have a pair of crossing edges.
In this paper, we give a negative answer to the question and also refute the conjecture. We present a framework for constructing arbitrarily large point sets for which the longest perfect matchings, the longest spanning paths, and the longest spanning cycles are noncrossing. |
|---|---|
| AbstractList | Edge crossings in geometric graphs are sometimes undesirable as they could lead to unwanted situations such as collisions in motion planning and inconsistency in VLSI layout. Short geometric structures such as shortest perfect matchings, shortest spanning trees, shortest spanning paths, and shortest spanning cycles on a given point set are inherently noncrossing. However, the longest such structures need not be noncrossing. In fact, it is intuitive to expect many edge crossings in various geometric graphs that are longest.Recently, Álvarez-Rebollar, Cravioto-Lagos, Marín, Solé-Pi, and Urrutia (Graphs and Combinatorics, 2024) constructed a set of points for which the longest perfect matching is noncrossing. They raised several challenging questions in this direction. In particular, they asked whether the longest spanning path, on every finite set of points in the plane, must have a pair of crossing edges. They also conjectured that the longest spanning cycle must have a pair of crossing edges.In this paper, we give a negative answer to the question and also refute the conjecture. We present a framework for constructing arbitrarily large point sets for which the longest perfect matchings, the longest spanning paths, and the longest spanning cycles are noncrossing. Edge crossings in geometric graphs are sometimes undesirable as they could lead to unwanted situations such as collisions in motion planning and inconsistency in VLSI layout. Short geometric structures such as shortest perfect matchings, shortest spanning trees, shortest spanning paths, and shortest spanning cycles on a given point set are inherently noncrossing. However, the longest such structures need not be noncrossing. In fact, it is intuitive to expect many edge crossings in various geometric graphs that are longest. Recently, Álvarez-Rebollar, Cravioto-Lagos, Marín, Solé-Pi, and Urrutia (Graphs and Combinatorics, 2024) constructed a set of points for which the longest perfect matching is noncrossing. They raised several challenging questions in this direction. In particular, they asked whether the longest spanning path, on every finite set of points in the plane, must have a pair of crossing edges. They also conjectured that the longest spanning cycle must have a pair of crossing edges. In this paper, we give a negative answer to the question and also refute the conjecture. We present a framework for constructing arbitrarily large point sets for which the longest perfect matchings, the longest spanning paths, and the longest spanning cycles are noncrossing. |
| ArticleNumber | 122 |
| Author | Biniaz, Ahmad Valtr, Pavel Smid, Michiel Bose, Prosenjit De Carufel, Jean-Lou Odak, Saeed Aloupis, Greg Maheshwari, Anil Tóth, Csaba D. Eppstein, David |
| Author_xml | – sequence: 1 givenname: Greg surname: Aloupis fullname: Aloupis, Greg organization: Khoury College of Computer Sciences, Northeastern University – sequence: 2 givenname: Ahmad surname: Biniaz fullname: Biniaz, Ahmad email: abiniaz@uwindsor.ca organization: School of Computer Science, University of Windsor – sequence: 3 givenname: Prosenjit surname: Bose fullname: Bose, Prosenjit organization: School of Computer Science, Carleton University – sequence: 4 givenname: Jean-Lou surname: De Carufel fullname: De Carufel, Jean-Lou organization: School of Electrical Engineering and Computer Science, University of Ottawa – sequence: 5 givenname: David surname: Eppstein fullname: Eppstein, David organization: Computer Science Department, University of California – sequence: 6 givenname: Anil surname: Maheshwari fullname: Maheshwari, Anil organization: School of Computer Science, Carleton University – sequence: 7 givenname: Saeed surname: Odak fullname: Odak, Saeed organization: School of Electrical Engineering and Computer Science, University of Ottawa – sequence: 8 givenname: Michiel surname: Smid fullname: Smid, Michiel organization: School of Computer Science, Carleton University – sequence: 9 givenname: Csaba D. surname: Tóth fullname: Tóth, Csaba D. organization: Department of Mathematics, California State University Northridge, Department of Computer Science, Tufts University – sequence: 10 givenname: Pavel surname: Valtr fullname: Valtr, Pavel organization: Department of Applied Mathematics, Charles University |
| BookMark | eNp9kL1OAzEQhC0UJC6BF6A6CVrDrv_OLlEEASkCCqgt584OiYIv2EmRt8fkkOgoVtvMzM5-YzKKffSEXCLcIEBzmwF4wykwWcZoSfUJqVBwSaVBMSIVGEQKiOaMjHNeA4BEARW5fu5jm_qcV3FZz_u49HlXv7rdR65d7Orpod34fE5Og9tkf_G7J-T94f5t-kjnL7On6d2ctqxhO9oCZ9obcCKwVosF-kY3KrRcBYVOgXdSaNEFwX2nvGOSg2iMDIYtwATt-YRcDbnb1H_tSxO77vcplpOWMyUVKoOmqNigOvZOPthtWn26dLAI9oeGHWjYQsMeaVhdTHww5SIuX6a_6H9c308iYe8 |
| Cites_doi | 10.1007/0-306-48213-4_12 10.1007/3-540-45535-3_32 10.20382/JOCG.V15I1A4 10.7146/math.scand.a-11840 10.1145/876638.876640 10.1007/0-387-29929-7 10.1145/800113.803626 10.46298/dmtcs.525 10.1137/S0097539796309764 10.1007/S00373-023-02734-9 10.1016/j.dam.2005.12.010 10.1145/3765740 10.1007/S00453-018-0482-X 10.1137/S0097539796312721 10.1016/S0925-7721(96)00012-0 10.37236/2356 10.1016/j.aim.2021.107779 10.1007/978-1-4614-0110-0_19 10.1007/s00454-013-9563-4 10.1016/J.JDA.2008.11.007 10.1007/BF01215345 10.1007/s00454-010-9277-9 10.1007/s00454-021-00286-4 10.1007/s00454-023-00486-0 10.1145/3478537 10.1137/S0097539797320281 10.1016/0304-3975(77)90012-3 10.3233/FI-1995-2245 10.1145/290179.290180 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Japan KK 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature Japan KK 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Japan KK 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature Japan KK 2025. |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1007/s00373-025-02985-8 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1435-5914 |
| ExternalDocumentID | 10_1007_s00373_025_02985_8 |
| GrantInformation_xml | – fundername: National Science Foundation grantid: CCF-2212129; DMS-2154347 funderid: http://dx.doi.org/10.13039/100000001 – fundername: Natural Sciences and Engineering Research Council of Canada funderid: http://dx.doi.org/10.13039/501100000038 |
| GroupedDBID | -~C -~X .86 .VR 06D 0R~ 0VY 1N0 203 29I 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAP EBLON EBS EIOEI ESBYG ESX FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM MA- N9A NB0 NPVJJ NQJWS O93 O9G O9I O9J OAM P19 P2P P9R PF0 PQQKQ PT4 PT5 QOK QOS R89 R9I RHV ROL RPX RSV S16 S1Z S27 S3B SAP SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WIP WK8 YLTOR Z45 ZMTXR ~A9 ~EX -Y2 1SB 28- 2P1 2VQ 5QI 88I 8AO AARHV AAYTO AAYXX ABJCF ABQSL ABULA ABUWG ACBXY ACUHS ADHKG AEBTG AEFIE AEKMD AFEXP AFFHD AFFNX AFGCZ AFKRA AGGDS AGQPQ AJBLW AMVHM ARAPS AZQEC B0M BBWZM BDATZ BENPR BGLVJ BGNMA CAG CCPQU CITATION COF DWQXO EAD EJD EMK EPL FINBP FSGXE GNUQQ H13 HCIFZ I-F IHE K7- KOW M2P M4Y M7S N2Q NDZJH NU0 O9- PHGZM PHGZT PQGLB PTHSS Q2X R4E RNI RZK S26 S28 SCLPG T16 ZWQNP ~8M 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c272t-c0328e90a4f2c84b1e7876fc36f61a60ea5484df43ed6ea25304795f92b09f8e3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001600880200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0911-0119 |
| IngestDate | Wed Oct 29 04:44:06 EDT 2025 Sat Nov 29 07:01:19 EST 2025 Tue Oct 28 02:38:08 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-c0328e90a4f2c84b1e7876fc36f61a60ea5484df43ed6ea25304795f92b09f8e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3265616919 |
| PQPubID | 30813 |
| ParticipantIDs | proquest_journals_3265616919 crossref_primary_10_1007_s00373_025_02985_8 springer_journals_10_1007_s00373_025_02985_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-01 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Tokyo |
| PublicationPlace_xml | – name: Tokyo |
| PublicationTitle | Graphs and combinatorics |
| PublicationTitleAbbrev | Graphs and Combinatorics |
| PublicationYear | 2025 |
| Publisher | Springer Japan Springer Nature B.V |
| Publisher_xml | – name: Springer Japan – name: Springer Nature B.V |
| References | JL Álvarez-Rebollar (2985_CR4) 2024; 40 2985_CR10 A Biniaz (2985_CR12) 2022; 67 A Biniaz (2985_CR14) 2024; 15 A Aggarwal (2985_CR1) 1999; 29 N Alon (2985_CR3) 1995; 22 S Arora (2985_CR9) 1998; 45 A Biniaz (2985_CR15) 2019; 81 CH Papadimitriou (2985_CR29) 1977; 4 B Aronov (2985_CR8) 1994; 14 2985_CR5 AI Barvinok (2985_CR11) 2003; 50 2985_CR30 H Tverberg (2985_CR31) 1979; 45 J Cerný (2985_CR18) 2007; 155 A Dumitrescu (2985_CR19) 2014; 51 H-C An (2985_CR6) 2021; 17 G Károlyi (2985_CR26) 2013 A Dumitrescu (2985_CR20) 2012; 19 S Cabello (2985_CR17) 2025 2985_CR22 A Biniaz (2985_CR13) 2024; 72 2985_CR24 J Pach (2985_CR28) 2021; 386 O Aichholzer (2985_CR2) 2010; 12 A Dumitrescu (2985_CR21) 2010; 44 M-Y Kao (2985_CR25) 2009; 7 JSB Mitchell (2985_CR27) 1999; 28 SP Fekete (2985_CR23) 1997; 8 P Brass (2985_CR16) 2005 EM Arkin (2985_CR7) 1999; 29 |
| References_xml | – ident: 2985_CR10 doi: 10.1007/0-306-48213-4_12 – ident: 2985_CR30 doi: 10.1007/3-540-45535-3_32 – volume: 15 start-page: 88 issue: 1 year: 2024 ident: 2985_CR14 publication-title: J. Comput. Geom. doi: 10.20382/JOCG.V15I1A4 – volume: 45 start-page: 255 year: 1979 ident: 2985_CR31 publication-title: Math. Scand. doi: 10.7146/math.scand.a-11840 – volume: 50 start-page: 641 issue: 5 year: 2003 ident: 2985_CR11 publication-title: J. ACM doi: 10.1145/876638.876640 – volume-title: Research Problems in Discrete Geometry year: 2005 ident: 2985_CR16 doi: 10.1007/0-387-29929-7 – ident: 2985_CR24 doi: 10.1145/800113.803626 – volume: 12 start-page: 75 issue: 1 year: 2010 ident: 2985_CR2 publication-title: Discrete Math. Theoretical Comput. Sci. doi: 10.46298/dmtcs.525 – volume: 28 start-page: 1298 issue: 4 year: 1999 ident: 2985_CR27 publication-title: SIAM J. Comput. doi: 10.1137/S0097539796309764 – volume: 40 start-page: 17 issue: 1 year: 2024 ident: 2985_CR4 publication-title: Graph. aCombinatorics doi: 10.1007/S00373-023-02734-9 – volume: 155 start-page: 1096 issue: 9 year: 2007 ident: 2985_CR18 publication-title: Discret. Appl. Math. doi: 10.1016/j.dam.2005.12.010 – year: 2025 ident: 2985_CR17 publication-title: ACM Trans. Algorithms doi: 10.1145/3765740 – volume: 81 start-page: 1512 issue: 4 year: 2019 ident: 2985_CR15 publication-title: Algorithmica doi: 10.1007/S00453-018-0482-X – ident: 2985_CR22 – volume: 29 start-page: 697 issue: 3 year: 1999 ident: 2985_CR1 publication-title: SIAM J. Comput. doi: 10.1137/S0097539796312721 – volume: 8 start-page: 195 year: 1997 ident: 2985_CR23 publication-title: Comput. Geom.: Theory Appl. doi: 10.1016/S0925-7721(96)00012-0 – volume: 19 start-page: P31 issue: 2 year: 2012 ident: 2985_CR20 publication-title: The Electronic Journal of Combinatorics doi: 10.37236/2356 – ident: 2985_CR5 – volume: 386 year: 2021 ident: 2985_CR28 publication-title: Adv. Math. doi: 10.1016/j.aim.2021.107779 – start-page: 371 volume-title: Thirty Essays on Geometric Graph Theory year: 2013 ident: 2985_CR26 doi: 10.1007/978-1-4614-0110-0_19 – volume: 51 start-page: 462 issue: 2 year: 2014 ident: 2985_CR19 publication-title: Discrete Comput. Geom. doi: 10.1007/s00454-013-9563-4 – volume: 7 start-page: 315 issue: 3 year: 2009 ident: 2985_CR25 publication-title: J. Discrete Algorithms doi: 10.1016/J.JDA.2008.11.007 – volume: 14 start-page: 127 issue: 2 year: 1994 ident: 2985_CR8 publication-title: Combinatorica doi: 10.1007/BF01215345 – volume: 44 start-page: 727 issue: 4 year: 2010 ident: 2985_CR21 publication-title: Discrete Comput. Geom. doi: 10.1007/s00454-010-9277-9 – volume: 67 start-page: 311 issue: 1 year: 2022 ident: 2985_CR12 publication-title: Discrete Comput. Geom. doi: 10.1007/s00454-021-00286-4 – volume: 72 start-page: 665 year: 2024 ident: 2985_CR13 publication-title: Discrete Comput. Geom. doi: 10.1007/s00454-023-00486-0 – volume: 17 start-page: 35:1 issue: 4 year: 2021 ident: 2985_CR6 publication-title: ACM Transactions on Algorithms doi: 10.1145/3478537 – volume: 29 start-page: 515 issue: 2 year: 1999 ident: 2985_CR7 publication-title: SIAM J. Comput. doi: 10.1137/S0097539797320281 – volume: 4 start-page: 237 issue: 3 year: 1977 ident: 2985_CR29 publication-title: Theoret. Comput. Sci. doi: 10.1016/0304-3975(77)90012-3 – volume: 22 start-page: 385 issue: 4 year: 1995 ident: 2985_CR3 publication-title: Fund. Inform. doi: 10.3233/FI-1995-2245 – volume: 45 start-page: 753 issue: 5 year: 1998 ident: 2985_CR9 publication-title: J. ACM doi: 10.1145/290179.290180 |
| SSID | ssj0005140 |
| Score | 2.3743014 |
| Snippet | Edge crossings in geometric graphs are sometimes undesirable as they could lead to unwanted situations such as collisions in motion planning and inconsistency... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 122 |
| SubjectTerms | Combinatorial analysis Combinatorics Engineering Design Graph theory Graphs Inequality Mathematics Mathematics and Statistics Motion planning Original Paper Questions |
| Subtitle | Noncrossing Longest Paths and Cycles |
| Title | Noncrossing Longest Paths and Cycles |
| URI | https://link.springer.com/article/10.1007/s00373-025-02985-8 https://www.proquest.com/docview/3265616919 |
| Volume | 41 |
| WOSCitedRecordID | wos001600880200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature Link Journals customDbUrl: eissn: 1435-5914 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005140 issn: 0911-0119 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBN6JQUIZuYMlxHMceUQVigKripW6R45wllhQ1BYl_j-0mrUAwwGzr5Dv7_J11950B-hwd6LJYE8xkQXgpU6KQJcQ5ZYpxVlBMTfhsIhsO5XisRg0prG6r3duUZLipF2Q33yrF5xw9o1g5mXIV1hzcSe-O9w_Py8KOOQ3SAaF_KMeqocr8LOMrHC1jzG9p0YA219v_W-cObDXRZXQ5Pw67sILVHmzeLVqz1vvQH06qsBYnM7qdVD6_FI3cjDrSVRkNPnyZ3AE8XV89Dm5I81UCMSxjM2J8WzxUVHPLjORF7EyfCWsSYUWsBUXtXia8tDzBUqBmqc-2qdQqVlBlJSaH0KkmFR5BlFlqtUJrhKac61SX1JqU0dIgtwnnXThvLZa_zjti5Ivex0H33OmeB91z2YVea9S88Y46dyGjC9uEilUXLlojLod_l3b8t-knsMH8PoTqkx50ZtM3PIV18z57qadn4dR8AmYzucc |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEB20CurBb7FadQ-96UI2m_3IUYpSsV2KVuktpNkJeNlKtwr-e5N0t0XRg543DJnZJDNh3nsBaDM0SZcG0sckHfssTyOfIw19sykjDJIxwUi5xyaSLEtHIz6oSGFljXavW5LupF6Q3axUiu05WkYxNzbTVVhjJmNZIN_D4_MS2DGnQZpEaC_KAa-oMj_b-JqOljXmt7aoyza3O_-b5y5sV9Wldz1fDnuwgsU-bPUX0qzlAbSzSeHmYmx6vUlh-0vewIwoPVnkXufDwuQO4en2Ztjp-tVTCb6iCZ35ysriISeSaapSNg5M6JNYqzDWcSBjgtLcTFiuWYh5jJJGttvGI83pmHCdYngEjWJS4DF4iSZactQqloQxGcmcaBVRkitkOmSsCZd1xMTrXBFDLLSPne_C-C6c7yJtQqsOqqh2RylMyWjKtpgHvAlXdRCXn3-3dvK34Rew0R32e6J3l92fwia1_8QhUVrQmE3f8AzW1fvspZyeuxX0CSajvKs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIAQH3ojBgB52g2ppmj5yRIMJxKgm8dBuUZomEpduWgsS_54kbTdAcECcE1mxk8i27O8zQJdI7XSxx10ZxalLsjhwqcS-qz9lIL0oRTIQdthElCTxeExHn1D8ttu9KUlWmAbD0pSXvWmmenPgm6FNMfVHgy6mWn68DCvEDA0y-frD86LJo4JEaqdokmaP1rCZn2V8dU2LePNbidR6nsHW_8-8DZt11OlcVs9kB5Zkvgsb93PK1mIPuskkt-fS8p3hJDd1J2ekdxQOzzOn_27a5_bhaXD92L9x6xEKrsARLl1h6PIkRZwoLGKSevpKolAJP1Shx0Mkuc5YSKaIL7NQchyYKhwNFMUpoiqW_gG08kkuD8GJFFKcSiVCjgjhAc-QEgFGmZBE-YS04byxHptWTBlszolsdWdad2Z1Z3EbOo2BWf1rCqZDSR3OhdSjbbhoDLpY_l3a0d-2n8Ha6GrAhrfJ3TGsY3MltkGlA61y9ipPYFW8lS_F7NQ-pg8E_8WP |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noncrossing+Longest+Paths+and+Cycles&rft.jtitle=Graphs+and+combinatorics&rft.au=Aloupis%2C+Greg&rft.au=Biniaz%2C+Ahmad&rft.au=Bose%2C+Prosenjit&rft.au=De+Carufel%2C+Jean-Lou&rft.date=2025-12-01&rft.pub=Springer+Japan&rft.issn=0911-0119&rft.eissn=1435-5914&rft.volume=41&rft.issue=6&rft_id=info:doi/10.1007%2Fs00373-025-02985-8&rft.externalDocID=10_1007_s00373_025_02985_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0911-0119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0911-0119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0911-0119&client=summon |