Noncrossing Longest Paths and Cycles Noncrossing Longest Paths and Cycles

Edge crossings in geometric graphs are sometimes undesirable as they could lead to unwanted situations such as collisions in motion planning and inconsistency in VLSI layout. Short geometric structures such as shortest perfect matchings, shortest spanning trees, shortest spanning paths, and shortest...

Full description

Saved in:
Bibliographic Details
Published in:Graphs and combinatorics Vol. 41; no. 6; p. 122
Main Authors: Aloupis, Greg, Biniaz, Ahmad, Bose, Prosenjit, De Carufel, Jean-Lou, Eppstein, David, Maheshwari, Anil, Odak, Saeed, Smid, Michiel, Tóth, Csaba D., Valtr, Pavel
Format: Journal Article
Language:English
Published: Tokyo Springer Japan 01.12.2025
Springer Nature B.V
Subjects:
ISSN:0911-0119, 1435-5914
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Edge crossings in geometric graphs are sometimes undesirable as they could lead to unwanted situations such as collisions in motion planning and inconsistency in VLSI layout. Short geometric structures such as shortest perfect matchings, shortest spanning trees, shortest spanning paths, and shortest spanning cycles on a given point set are inherently noncrossing. However, the longest such structures need not be noncrossing. In fact, it is intuitive to expect many edge crossings in various geometric graphs that are longest. Recently, Álvarez-Rebollar, Cravioto-Lagos, Marín, Solé-Pi, and Urrutia (Graphs and Combinatorics, 2024) constructed a set of points for which the longest perfect matching is noncrossing. They raised several challenging questions in this direction. In particular, they asked whether the longest spanning path, on every finite set of points in the plane, must have a pair of crossing edges. They also conjectured that the longest spanning cycle must have a pair of crossing edges. In this paper, we give a negative answer to the question and also refute the conjecture. We present a framework for constructing arbitrarily large point sets for which the longest perfect matchings, the longest spanning paths, and the longest spanning cycles are noncrossing.
AbstractList Edge crossings in geometric graphs are sometimes undesirable as they could lead to unwanted situations such as collisions in motion planning and inconsistency in VLSI layout. Short geometric structures such as shortest perfect matchings, shortest spanning trees, shortest spanning paths, and shortest spanning cycles on a given point set are inherently noncrossing. However, the longest such structures need not be noncrossing. In fact, it is intuitive to expect many edge crossings in various geometric graphs that are longest.Recently, Álvarez-Rebollar, Cravioto-Lagos, Marín, Solé-Pi, and Urrutia (Graphs and Combinatorics, 2024) constructed a set of points for which the longest perfect matching is noncrossing. They raised several challenging questions in this direction. In particular, they asked whether the longest spanning path, on every finite set of points in the plane, must have a pair of crossing edges. They also conjectured that the longest spanning cycle must have a pair of crossing edges.In this paper, we give a negative answer to the question and also refute the conjecture. We present a framework for constructing arbitrarily large point sets for which the longest perfect matchings, the longest spanning paths, and the longest spanning cycles are noncrossing.
Edge crossings in geometric graphs are sometimes undesirable as they could lead to unwanted situations such as collisions in motion planning and inconsistency in VLSI layout. Short geometric structures such as shortest perfect matchings, shortest spanning trees, shortest spanning paths, and shortest spanning cycles on a given point set are inherently noncrossing. However, the longest such structures need not be noncrossing. In fact, it is intuitive to expect many edge crossings in various geometric graphs that are longest. Recently, Álvarez-Rebollar, Cravioto-Lagos, Marín, Solé-Pi, and Urrutia (Graphs and Combinatorics, 2024) constructed a set of points for which the longest perfect matching is noncrossing. They raised several challenging questions in this direction. In particular, they asked whether the longest spanning path, on every finite set of points in the plane, must have a pair of crossing edges. They also conjectured that the longest spanning cycle must have a pair of crossing edges. In this paper, we give a negative answer to the question and also refute the conjecture. We present a framework for constructing arbitrarily large point sets for which the longest perfect matchings, the longest spanning paths, and the longest spanning cycles are noncrossing.
ArticleNumber 122
Author Biniaz, Ahmad
Valtr, Pavel
Smid, Michiel
Bose, Prosenjit
De Carufel, Jean-Lou
Odak, Saeed
Aloupis, Greg
Maheshwari, Anil
Tóth, Csaba D.
Eppstein, David
Author_xml – sequence: 1
  givenname: Greg
  surname: Aloupis
  fullname: Aloupis, Greg
  organization: Khoury College of Computer Sciences, Northeastern University
– sequence: 2
  givenname: Ahmad
  surname: Biniaz
  fullname: Biniaz, Ahmad
  email: abiniaz@uwindsor.ca
  organization: School of Computer Science, University of Windsor
– sequence: 3
  givenname: Prosenjit
  surname: Bose
  fullname: Bose, Prosenjit
  organization: School of Computer Science, Carleton University
– sequence: 4
  givenname: Jean-Lou
  surname: De Carufel
  fullname: De Carufel, Jean-Lou
  organization: School of Electrical Engineering and Computer Science, University of Ottawa
– sequence: 5
  givenname: David
  surname: Eppstein
  fullname: Eppstein, David
  organization: Computer Science Department, University of California
– sequence: 6
  givenname: Anil
  surname: Maheshwari
  fullname: Maheshwari, Anil
  organization: School of Computer Science, Carleton University
– sequence: 7
  givenname: Saeed
  surname: Odak
  fullname: Odak, Saeed
  organization: School of Electrical Engineering and Computer Science, University of Ottawa
– sequence: 8
  givenname: Michiel
  surname: Smid
  fullname: Smid, Michiel
  organization: School of Computer Science, Carleton University
– sequence: 9
  givenname: Csaba D.
  surname: Tóth
  fullname: Tóth, Csaba D.
  organization: Department of Mathematics, California State University Northridge, Department of Computer Science, Tufts University
– sequence: 10
  givenname: Pavel
  surname: Valtr
  fullname: Valtr, Pavel
  organization: Department of Applied Mathematics, Charles University
BookMark eNp9kL1OAzEQhC0UJC6BF6A6CVrDrv_OLlEEASkCCqgt584OiYIv2EmRt8fkkOgoVtvMzM5-YzKKffSEXCLcIEBzmwF4wykwWcZoSfUJqVBwSaVBMSIVGEQKiOaMjHNeA4BEARW5fu5jm_qcV3FZz_u49HlXv7rdR65d7Orpod34fE5Og9tkf_G7J-T94f5t-kjnL7On6d2ctqxhO9oCZ9obcCKwVosF-kY3KrRcBYVOgXdSaNEFwX2nvGOSg2iMDIYtwATt-YRcDbnb1H_tSxO77vcplpOWMyUVKoOmqNigOvZOPthtWn26dLAI9oeGHWjYQsMeaVhdTHww5SIuX6a_6H9c308iYe8
Cites_doi 10.1007/0-306-48213-4_12
10.1007/3-540-45535-3_32
10.20382/JOCG.V15I1A4
10.7146/math.scand.a-11840
10.1145/876638.876640
10.1007/0-387-29929-7
10.1145/800113.803626
10.46298/dmtcs.525
10.1137/S0097539796309764
10.1007/S00373-023-02734-9
10.1016/j.dam.2005.12.010
10.1145/3765740
10.1007/S00453-018-0482-X
10.1137/S0097539796312721
10.1016/S0925-7721(96)00012-0
10.37236/2356
10.1016/j.aim.2021.107779
10.1007/978-1-4614-0110-0_19
10.1007/s00454-013-9563-4
10.1016/J.JDA.2008.11.007
10.1007/BF01215345
10.1007/s00454-010-9277-9
10.1007/s00454-021-00286-4
10.1007/s00454-023-00486-0
10.1145/3478537
10.1137/S0097539797320281
10.1016/0304-3975(77)90012-3
10.3233/FI-1995-2245
10.1145/290179.290180
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Japan KK 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature Japan KK 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Japan KK 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature Japan KK 2025.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s00373-025-02985-8
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1435-5914
ExternalDocumentID 10_1007_s00373_025_02985_8
GrantInformation_xml – fundername: National Science Foundation
  grantid: CCF-2212129; DMS-2154347
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: http://dx.doi.org/10.13039/501100000038
GroupedDBID -~C
-~X
.86
.VR
06D
0R~
0VY
1N0
203
29I
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAP
EBLON
EBS
EIOEI
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
MA-
N9A
NB0
NPVJJ
NQJWS
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PQQKQ
PT4
PT5
QOK
QOS
R89
R9I
RHV
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WIP
WK8
YLTOR
Z45
ZMTXR
~A9
~EX
-Y2
1SB
28-
2P1
2VQ
5QI
88I
8AO
AARHV
AAYTO
AAYXX
ABJCF
ABQSL
ABULA
ABUWG
ACBXY
ACUHS
ADHKG
AEBTG
AEFIE
AEKMD
AFEXP
AFFHD
AFFNX
AFGCZ
AFKRA
AGGDS
AGQPQ
AJBLW
AMVHM
ARAPS
AZQEC
B0M
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
CITATION
COF
DWQXO
EAD
EJD
EMK
EPL
FINBP
FSGXE
GNUQQ
H13
HCIFZ
I-F
IHE
K7-
KOW
M2P
M4Y
M7S
N2Q
NDZJH
NU0
O9-
PHGZM
PHGZT
PQGLB
PTHSS
Q2X
R4E
RNI
RZK
S26
S28
SCLPG
T16
ZWQNP
~8M
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c272t-c0328e90a4f2c84b1e7876fc36f61a60ea5484df43ed6ea25304795f92b09f8e3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001600880200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0911-0119
IngestDate Wed Oct 29 04:44:06 EDT 2025
Sat Nov 29 07:01:19 EST 2025
Tue Oct 28 02:38:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-c0328e90a4f2c84b1e7876fc36f61a60ea5484df43ed6ea25304795f92b09f8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3265616919
PQPubID 30813
ParticipantIDs proquest_journals_3265616919
crossref_primary_10_1007_s00373_025_02985_8
springer_journals_10_1007_s00373_025_02985_8
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Graphs and combinatorics
PublicationTitleAbbrev Graphs and Combinatorics
PublicationYear 2025
Publisher Springer Japan
Springer Nature B.V
Publisher_xml – name: Springer Japan
– name: Springer Nature B.V
References JL Álvarez-Rebollar (2985_CR4) 2024; 40
2985_CR10
A Biniaz (2985_CR12) 2022; 67
A Biniaz (2985_CR14) 2024; 15
A Aggarwal (2985_CR1) 1999; 29
N Alon (2985_CR3) 1995; 22
S Arora (2985_CR9) 1998; 45
A Biniaz (2985_CR15) 2019; 81
CH Papadimitriou (2985_CR29) 1977; 4
B Aronov (2985_CR8) 1994; 14
2985_CR5
AI Barvinok (2985_CR11) 2003; 50
2985_CR30
H Tverberg (2985_CR31) 1979; 45
J Cerný (2985_CR18) 2007; 155
A Dumitrescu (2985_CR19) 2014; 51
H-C An (2985_CR6) 2021; 17
G Károlyi (2985_CR26) 2013
A Dumitrescu (2985_CR20) 2012; 19
S Cabello (2985_CR17) 2025
2985_CR22
A Biniaz (2985_CR13) 2024; 72
2985_CR24
J Pach (2985_CR28) 2021; 386
O Aichholzer (2985_CR2) 2010; 12
A Dumitrescu (2985_CR21) 2010; 44
M-Y Kao (2985_CR25) 2009; 7
JSB Mitchell (2985_CR27) 1999; 28
SP Fekete (2985_CR23) 1997; 8
P Brass (2985_CR16) 2005
EM Arkin (2985_CR7) 1999; 29
References_xml – ident: 2985_CR10
  doi: 10.1007/0-306-48213-4_12
– ident: 2985_CR30
  doi: 10.1007/3-540-45535-3_32
– volume: 15
  start-page: 88
  issue: 1
  year: 2024
  ident: 2985_CR14
  publication-title: J. Comput. Geom.
  doi: 10.20382/JOCG.V15I1A4
– volume: 45
  start-page: 255
  year: 1979
  ident: 2985_CR31
  publication-title: Math. Scand.
  doi: 10.7146/math.scand.a-11840
– volume: 50
  start-page: 641
  issue: 5
  year: 2003
  ident: 2985_CR11
  publication-title: J. ACM
  doi: 10.1145/876638.876640
– volume-title: Research Problems in Discrete Geometry
  year: 2005
  ident: 2985_CR16
  doi: 10.1007/0-387-29929-7
– ident: 2985_CR24
  doi: 10.1145/800113.803626
– volume: 12
  start-page: 75
  issue: 1
  year: 2010
  ident: 2985_CR2
  publication-title: Discrete Math. Theoretical Comput. Sci.
  doi: 10.46298/dmtcs.525
– volume: 28
  start-page: 1298
  issue: 4
  year: 1999
  ident: 2985_CR27
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539796309764
– volume: 40
  start-page: 17
  issue: 1
  year: 2024
  ident: 2985_CR4
  publication-title: Graph. aCombinatorics
  doi: 10.1007/S00373-023-02734-9
– volume: 155
  start-page: 1096
  issue: 9
  year: 2007
  ident: 2985_CR18
  publication-title: Discret. Appl. Math.
  doi: 10.1016/j.dam.2005.12.010
– year: 2025
  ident: 2985_CR17
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/3765740
– volume: 81
  start-page: 1512
  issue: 4
  year: 2019
  ident: 2985_CR15
  publication-title: Algorithmica
  doi: 10.1007/S00453-018-0482-X
– ident: 2985_CR22
– volume: 29
  start-page: 697
  issue: 3
  year: 1999
  ident: 2985_CR1
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539796312721
– volume: 8
  start-page: 195
  year: 1997
  ident: 2985_CR23
  publication-title: Comput. Geom.: Theory Appl.
  doi: 10.1016/S0925-7721(96)00012-0
– volume: 19
  start-page: P31
  issue: 2
  year: 2012
  ident: 2985_CR20
  publication-title: The Electronic Journal of Combinatorics
  doi: 10.37236/2356
– ident: 2985_CR5
– volume: 386
  year: 2021
  ident: 2985_CR28
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2021.107779
– start-page: 371
  volume-title: Thirty Essays on Geometric Graph Theory
  year: 2013
  ident: 2985_CR26
  doi: 10.1007/978-1-4614-0110-0_19
– volume: 51
  start-page: 462
  issue: 2
  year: 2014
  ident: 2985_CR19
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-013-9563-4
– volume: 7
  start-page: 315
  issue: 3
  year: 2009
  ident: 2985_CR25
  publication-title: J. Discrete Algorithms
  doi: 10.1016/J.JDA.2008.11.007
– volume: 14
  start-page: 127
  issue: 2
  year: 1994
  ident: 2985_CR8
  publication-title: Combinatorica
  doi: 10.1007/BF01215345
– volume: 44
  start-page: 727
  issue: 4
  year: 2010
  ident: 2985_CR21
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-010-9277-9
– volume: 67
  start-page: 311
  issue: 1
  year: 2022
  ident: 2985_CR12
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-021-00286-4
– volume: 72
  start-page: 665
  year: 2024
  ident: 2985_CR13
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-023-00486-0
– volume: 17
  start-page: 35:1
  issue: 4
  year: 2021
  ident: 2985_CR6
  publication-title: ACM Transactions on Algorithms
  doi: 10.1145/3478537
– volume: 29
  start-page: 515
  issue: 2
  year: 1999
  ident: 2985_CR7
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539797320281
– volume: 4
  start-page: 237
  issue: 3
  year: 1977
  ident: 2985_CR29
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/0304-3975(77)90012-3
– volume: 22
  start-page: 385
  issue: 4
  year: 1995
  ident: 2985_CR3
  publication-title: Fund. Inform.
  doi: 10.3233/FI-1995-2245
– volume: 45
  start-page: 753
  issue: 5
  year: 1998
  ident: 2985_CR9
  publication-title: J. ACM
  doi: 10.1145/290179.290180
SSID ssj0005140
Score 2.3743014
Snippet Edge crossings in geometric graphs are sometimes undesirable as they could lead to unwanted situations such as collisions in motion planning and inconsistency...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 122
SubjectTerms Combinatorial analysis
Combinatorics
Engineering Design
Graph theory
Graphs
Inequality
Mathematics
Mathematics and Statistics
Motion planning
Original Paper
Questions
Subtitle Noncrossing Longest Paths and Cycles
Title Noncrossing Longest Paths and Cycles
URI https://link.springer.com/article/10.1007/s00373-025-02985-8
https://www.proquest.com/docview/3265616919
Volume 41
WOSCitedRecordID wos001600880200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Link Journals
  customDbUrl:
  eissn: 1435-5914
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005140
  issn: 0911-0119
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBN6JQUIZuYMlxHMceUQVigKripW6R45wllhQ1BYl_j-0mrUAwwGzr5Dv7_J11950B-hwd6LJYE8xkQXgpU6KQJcQ5ZYpxVlBMTfhsIhsO5XisRg0prG6r3duUZLipF2Q33yrF5xw9o1g5mXIV1hzcSe-O9w_Py8KOOQ3SAaF_KMeqocr8LOMrHC1jzG9p0YA219v_W-cObDXRZXQ5Pw67sILVHmzeLVqz1vvQH06qsBYnM7qdVD6_FI3cjDrSVRkNPnyZ3AE8XV89Dm5I81UCMSxjM2J8WzxUVHPLjORF7EyfCWsSYUWsBUXtXia8tDzBUqBmqc-2qdQqVlBlJSaH0KkmFR5BlFlqtUJrhKac61SX1JqU0dIgtwnnXThvLZa_zjti5Ivex0H33OmeB91z2YVea9S88Y46dyGjC9uEilUXLlojLod_l3b8t-knsMH8PoTqkx50ZtM3PIV18z57qadn4dR8AmYzucc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEB20CurBb7FadQ-96UI2m_3IUYpSsV2KVuktpNkJeNlKtwr-e5N0t0XRg543DJnZJDNh3nsBaDM0SZcG0sckHfssTyOfIw19sykjDJIxwUi5xyaSLEtHIz6oSGFljXavW5LupF6Q3axUiu05WkYxNzbTVVhjJmNZIN_D4_MS2DGnQZpEaC_KAa-oMj_b-JqOljXmt7aoyza3O_-b5y5sV9Wldz1fDnuwgsU-bPUX0qzlAbSzSeHmYmx6vUlh-0vewIwoPVnkXufDwuQO4en2Ztjp-tVTCb6iCZ35ysriISeSaapSNg5M6JNYqzDWcSBjgtLcTFiuWYh5jJJGttvGI83pmHCdYngEjWJS4DF4iSZactQqloQxGcmcaBVRkitkOmSsCZd1xMTrXBFDLLSPne_C-C6c7yJtQqsOqqh2RylMyWjKtpgHvAlXdRCXn3-3dvK34Rew0R32e6J3l92fwia1_8QhUVrQmE3f8AzW1fvspZyeuxX0CSajvKs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIAQH3ojBgB52g2ppmj5yRIMJxKgm8dBuUZomEpduWgsS_54kbTdAcECcE1mxk8i27O8zQJdI7XSxx10ZxalLsjhwqcS-qz9lIL0oRTIQdthElCTxeExHn1D8ttu9KUlWmAbD0pSXvWmmenPgm6FNMfVHgy6mWn68DCvEDA0y-frD86LJo4JEaqdokmaP1rCZn2V8dU2LePNbidR6nsHW_8-8DZt11OlcVs9kB5Zkvgsb93PK1mIPuskkt-fS8p3hJDd1J2ekdxQOzzOn_27a5_bhaXD92L9x6xEKrsARLl1h6PIkRZwoLGKSevpKolAJP1Shx0Mkuc5YSKaIL7NQchyYKhwNFMUpoiqW_gG08kkuD8GJFFKcSiVCjgjhAc-QEgFGmZBE-YS04byxHptWTBlszolsdWdad2Z1Z3EbOo2BWf1rCqZDSR3OhdSjbbhoDLpY_l3a0d-2n8Ha6GrAhrfJ3TGsY3MltkGlA61y9ipPYFW8lS_F7NQ-pg8E_8WP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noncrossing+Longest+Paths+and+Cycles&rft.jtitle=Graphs+and+combinatorics&rft.au=Aloupis%2C+Greg&rft.au=Biniaz%2C+Ahmad&rft.au=Bose%2C+Prosenjit&rft.au=De+Carufel%2C+Jean-Lou&rft.date=2025-12-01&rft.pub=Springer+Japan&rft.issn=0911-0119&rft.eissn=1435-5914&rft.volume=41&rft.issue=6&rft_id=info:doi/10.1007%2Fs00373-025-02985-8&rft.externalDocID=10_1007_s00373_025_02985_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0911-0119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0911-0119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0911-0119&client=summon